
On Algorithmic Verification Methodsfor Probabilistic Systems
Habilitationsschriftzur Erlangung der venia legendider Fakult�at f�ur Mathematik und Informatikder Universit�at Mannheim

vorgelegt vonChristel Baieraus Karlsruhe1998

0

To my parents, Gerda and Mausi

1

2

Acknowledgements
First of all, I would like to thank to Mila Majster-Cederbaum who is by far more than justa supervisor. Many thanks for introducing me in the theory of parallel systems, variousfruitful discussions about research topics and countless helpful advices in vocational andprivate a�airs. Without her support and encouragement, I would never have started nor�nished my Ph.D.Thesis or this habilitation thesis. In case I will be some time a goodresearcher or teacher it is due to her. It is impossible to express so many thanks that Iowe to her.When I visited Marta Kwiatkowska in November 1995, she convinced me that research onprobabilistic processes is an important and interesting (even so interesting that I wrotea thesis with more than 300 pages about them!) task. Most of the main results in thisthesis were developed in collaboration with her. Even our contact is almost exclusive byelectronic mail I esteem her as a source of inspiration as well as a friend. Thank you somuch.Many thanks to Holger Hermanns, Joost Katoen and Pedro d'Argenio for being friendsand for the various helpful discussions that we had via electronic mail, on the phone, atconferences or in a more relaxed scenario with beer, tequila or champagne.I thank all my coauthors, discussion partners and all those who have commented on thepapers that have served as basis for this work. Especially, I would like to thank Ed Clarkewhose support and suggestions helped me so much, not only for this thesis.Many thanks to J�urgen Jaap and Martin Trampler for their patience and assistence when-ever I had a problem with our computer system, UNIX or LATEX, to Rita Sommerwithout her help I would not have survived in the german bureaucracy jungle and toAlexandra Schubert for all the time she spended for copying papers for me.Even though research on parallel systems is nice, I am lucky that there is a life outsidemy o�ce. Special thanks to my best friends Hans Helm, Mark Schad, Petra Gramlichand Petra Bullerkotte for being there whenever I need them, listening to my problemsand bearing me even when I am in a bad mood. It might be a strange combination tobe a vegetarian and smoker and being addicted in doing sports. However, in the pastfew years, the \Squash Lagune" turned out to be my second home. Many thanks to allmy friends there; especially to Thomas Schmidt who never gave up in trying to teach meplaying squash and Heike Stecher and Anne Luck for giving outstanding \power hours".This thesis is dedicated to my parents who supported me in all areas of life, my sisterGerda and our dog Mausi, the only creature where I am de�nitely sure that she alwayslooks forward to see me. 3

4

Contents
1 Introduction 111.1 Veri�cation methods . 121.1.1 Transition systems . 131.1.2 Specifying parallel systems with process calculi 141.1.3 The temporal logical approach . 161.1.4 State explosion problem . 171.2 Probabilistic systems . 171.2.1 Modelling probabilistic behaviour 181.2.2 The process calculus approach for probabilistic systems 221.2.3 Probabilistic temporal logic . 241.3 The topics of this thesis . 261.3.1 Related work . 271.3.2 How to read this thesis . 272 Preliminaries 292.1 Sets, relations, partitions and functions . 292.2 Distributions . 303 Modelling probabilistic behaviour 333.1 Fully probabilistic systems . 343.2 Concurrent probabilistic systems . 383.2.1 Paths in concurrent probabilistic systems 403.2.2 Adversaries of concurrent probabilistic systems 413.2.3 Fairness of non-deterministic choice 453.3 Labelled probabilistic systems . 473.3.1 Action-labelled probabilistic systems 475

6 CONTENTS3.3.2 Proposition-labelled probabilistic systems 523.4 Bisimulation and simulation . 533.4.1 Bisimulation . 543.4.2 Simulation . 563.5 Probabilistic processes . 613.6 Related models . 623.7 Proofs . 643.7.1 Probabilistic reachability analysis 643.7.2 Bisimulation and simulation in image-�nite systems 684 Probabilistic process calculi 714.1 PCCS : an asynchronous probabilistic calculus 744.2 PSCCS : a synchronous probabilistic calculus 794.3 PLSCCS : a lazy synchronous calculus . 835 Denotational models 895.1 Denotational models: concurrent case . 915.1.1 The domain IP . 925.1.2 The semantic domain ID . 945.1.3 The semantic domain IM . 965.1.4 Denotational semantics on IM and ID 995.1.5 A few remarks about probabilistic powerdomains 1035.2 Denotational models: fully probabilistic case 1045.3 Proofs . 1055.3.1 The partial order �sim on Distr(D) 1055.3.2 The domain ID . 1105.3.3 The metric probabilistic powerdomains of evaluations 1165.3.4 The domain IM . 1225.3.5 Full abstraction . 1256 Deciding bisimilarity and similarity 1296.1 Computing the bisimulation equivalence classes 1306.1.1 The fully probabilistic case . 1316.1.2 The concurrent case . 131

CONTENTS 76.2 Computing the simulation preorder . 1436.2.1 The test whether � �R �0 . 1436.2.2 The concurrent case . 1466.2.3 The fully probabilistic case . 1516.3 Proofs . 1537 Weak bisimulation 1597.1 Weak and branching bisimulation . 1617.1.1 Weak bisimulation . 1617.1.2 Branching bisimulation . 1627.2 Decidability of weak bisimulation equivalence 1647.2.1 The algorithm . 1657.2.2 Time complexity . 1697.3 Connection to other equivalences . 1717.4 Compositionality . 1747.5 Proofs . 1777.5.1 Weak and branching bisimulation equivalence 1777.5.2 � and the testing equivalences =ste and �0 1868 Fairness of probabilistic choice 1938.1 P-fairness for fully probabilistic systems 1948.2 P-fairness for concurrent probabilistic systems 1999 Verifying temporal properties 2059.1 The logic PCTL� . 2079.1.1 Interpretation over fully probabilistic systems 2099.1.2 Interpretation over concurrent probabilistic systems 2109.1.3 The sublogics PCTL and LTL . 2119.1.4 Related logics . 2139.1.5 PCTL� equivalence and bisimulation equivalence 2149.2 Model checking algorithms for PCTL� . 2149.3 Model checking for PCTL . 2169.3.1 Next step . 2189.3.2 Bounded until . 219

8 CONTENTS9.3.3 Unbounded until . 2209.3.4 The connection between j=, j=fair , j=sfair and j=Wfair 2309.3.5 Complexity of PCTL model checking 2319.4 Model checking for LTL . 2349.5 Proofs . 2419.5.1 State and total fairness . 2419.5.2 Correctness of the PCTL model checking algorithm 2439.5.3 Correctness of the LTL model checking algorithm 25210 Symbolic model checking 25510.1 The algebraic mu-calculus . 25910.1.1 Syntax of the algebraic mu-calculus 26010.1.2 Semantics of the algebraic mu-calculus 26210.1.3 Fixed point operators . 27010.2 The algebraic mu-calculus as a speci�cation language 27510.2.1 The relational mu-calculus . 27510.2.2 The modal mu-calculus . 27610.2.3 The logic PCTL . 27910.2.4 Word level CTL . 28310.3 A \compiler" for the algebraic mu-calculus 28510.3.1 The mixed calculus . 28610.3.2 Inference from the algebraic to the mixed calculus 28710.3.3 Computing the semantics of the mixed calculus 29010.4 Symbolic model checking for probabilistic processes 29510.4.1 Representing probabilistic systems by MTBDDs 29510.4.2 Symbolic model checking for PCTL 29710.4.3 Deciding bisimulation equivalence 30011 Concluding remarks 30512 Appendix 30712.1 Preliminaries for the denotational models 30712.1.1 Basic notions of domain theory . 30712.1.2 Metric spaces . 310

CONTENTS 912.1.3 Categorical methods for solving domain equations 31112.1.4 Evaluations . 31312.2 Ordered balanced trees . 31412.3 Multiterminal binary decision diagrams . 315

10 CONTENTS

Chapter 1
Introduction
Parallel systems (such as operating systems, telecommunication systems, aircraft con-trolling systems, banking systems, etc.) arise in many industrial applications. For ap-plications where errors might be expensive and lead to dangerous or even catastrophalsituations a precise analysis of the possible system behaviours is an important task. Thequality of a parallel system depends on several properties, typically classi�ed into safetyproperties which state that \nothing bad happens" (e.g. mutual exclusion, deadlock free-dom or the computation of su�ciently exact numerical values) and liveness or progressproperties which assert that \something good will eventually happen" (e.g. termination,starvation freedom) [OwLa82]. In realistic applications, not only the functionality of aparallel system is important, also quantitative aspects (such as time or probabilities) playa crucial role. For instance, in practice, it is useless to establish a property like \eachrequest will eventually be answered" as there is no bound on how much time will passbetween a request and the response. Typically, one aims at a property like \each requestwill eventually be answered within the next 5 seconds". Whether or not a property ofthis type can be established not only depends on the design of the system but also onthe reliability of the interface with the environment or the resources that the system uses.For instance, if the response is transmitted via an uncertain medium that might loosemessages a property as above can never hold. However, the cases where a physical errorhappens might be rare. If the failure rates are known (or can be estimated by experimen-tal results), it makes sense to reason about the frequencies for certain events, i.e. to dealwith quantitative properties like \there is a 95% chance that the request will be answeredwithin the next 5 seconds".Traditionally, the modelling of parallel systems focusses on the functional behaviour butabstracts from quantitative aspects like time, performance or informations about the fre-quency of certain system behaviours. In this thesis, we shrink our attention to probabilis-tic phenomena and consider methods for specifying and validating probabilistic systems,i.e. parallel systems where probabilities are used e.g. to model uncertainties or randomizedbehaviour. 11

12 CHAPTER 1. INTRODUCTION1.1 Veri�cation methodsWe �rst give a brief summary over the general techniques for analyzing parallel sys-tems. These techniques are commonly used for reasoning about the functional behaviour.Suitable adaptions of these methods can be used to treat various types of quantitativebehaviour; in particular, they can be applied to analyze probabilistic systems.A widespread technique for analyzing the properties of a program is testing which means toobserve the program during the execution with certain well-chosen inputs and to comparethe reaction with the desired behaviour. Since testing covers only a (small) subset of thepossible instances of system behaviours it can only detect the presence of errors but not theabsence of errors. In this thesis, we consider the complementary technique: veri�cationwhich aims at a formal proof for the correctness of a program.1 This is typically achievedeither by deductive methods or by model checking. The deductive methods are based ona manual composition of a program and a correctness proof using axioms and inferencerules for an appropriate speci�cation formalism. In general, these methods require userintervention to a large degree and are very time consuming. Model checking means analgorithmic veri�cation method that takes (an abstract description of) a program and itsspeci�cation as its input and returns the answer \yes" or \no" depending on whether ornot the program meets the speci�cation [ClEm81, QuSi82, CES83]. Thus, the methodsbased on model checking automate the task of validating programs; and hence, theyare user independent to a large extent. While the deductive methods are applicable tosystems of arbitrary size (even in�nite systems), the model checking approach is (in mostcases) limited to �nite-state systems.2 Nevertheless, a large class of parallel processes thatappear in realistic applications can be described { with the help of several abstractiontechniques { by a system with a �nite state space.3Speci�cation formalisms: Any veri�cation method requires a precise description of thedesirable system behaviour by a formal speci�cation. Two general frameworks to specifythe required properties can be identi�ed:� the speci�cation by a model that tells how the system should behave,� the formalization of the desirable properties by formulas of some logic.The �rst framework is based on a homogenous technique where the program and speci-�cation are described in the same formalism and compared via an implementation rela-tion, i.e. a binary relation on the objects of that formalism (the \models"). The logicalframework focusses on a heterogenous technique where di�erent formalisms are used torepresent the program and the speci�cation. The program is described by a model (as inthe homogenous approach) while the speci�cation is a formula of some program logic.Branching time versus linear time:4 Both the homogenous and the heterogenous1While testing is performed by exercising the (real) implementation the veri�cation methods workwith an abstraction (a model) of the program. Hence, the veri�cation methods can only assure that theabstract model ful�lls the required properties; thus, they can only be as good as the abstraction is.2This observation is clear from the fact that a wide range of veri�cation problems for systems of arbi-trary size is undecidable (consider e.g. the halting problem); and hence, cannot be solved automatically.3The bene�ts of the model checking approach have been documented from the reports on implementedtools, see e.g. [CPS90, McMil92, HoPe94, CCM+95, Camp96, HHW97, LPY97, HarG98].4A detailed discussion about the branching time and linear time view can be found in [Lamp80,

1.1. VERIFICATION METHODS 13framework reason about the \behaviours" of parallel systems. In the linear time view,the behaviour is determined by the possible executions ignoring the possible branchesin the intermediate states. The branching time view takes the branching structure (thepossible steps) of the intermediate states into account and observes a process by meansof a \push-button-experiment".51.1.1 Transition systemsModels describe an abstraction of a system by representing the states and the pos-sible transitions between them. One of the standard models are transition systems[Kell76, Plot81] that describe the system behaviour by a directed graph. The nodes rep-resent the states; edges stand for the possible state changes (transitions). The branches(edges) in a state (node) represent the possible steps in that state.6 The executions (se-quences of states) are given by the paths through this graph. In the literature, severaltypes of transition systems are proposed. For instance, the states can be labelled by as-sertions (e.g. propositional or �rst order logical formulas that state something about thevalues of the program and control variables), the transitions can be equipped with actionnames or boolean guards. In transition systems, asynchronous parallelism is modelled byinterleaving and fairness. The use of interleaving can be motivated by the observation thatthe e�ect of the parallel execution akb of two \independent" actions a and b (each of themon its own processor) is the same as if a and b are executed in any order on one processor.Hence, from the interleaving point of view, we have the \equality" akb = a; b + b; a.7 Ins0s1 s2s3
�� ���� �� �� ���� ��

a ab bQQQQQQs������+QQQQQQs ������+Figure 1.1: akb = a; b + b; aother words, interleaving reduces parallelism to the non-deterministic choice that decideswhich subprocess performs the next step. One might think of this choice to be resolved bythe \environment" (e.g. another program that runs in parallel or a user) whose decisionsare (in some appropriate sense) fair with any subprocess. This kind of fairness is oftencalled process fairness. Intuitively, process fairness rules out the pathological possibilitythat some subprocess is permanently denied to perform the next step. In the literature,various types of fairness are considered.8 All fairness notions have in common that theyEmHa86, dBdRR88].5For this, the possible steps in a state are viewed as buttons. The observer selects one of these buttons,the system executes the corresponding step and the \push-button-experiment" restarts in the new state.6In the classical approach, the branches stand for non-deterministic alternatives. When dealing withprobabilistic phenomena, the branches can also stand for the alternatives of a probabilistic choice.7Here, ; denotes sequential composition and + non-deterministic choice.8For a survey of fairness notions see e.g. [LSP81, QuSi83, Fran88, Kwia89].

14 CHAPTER 1. INTRODUCTIONmake restrictions concerning the non-deterministic choices in the in�nite executions (in-�nite paths in the transition system). They cannot a�ect the safety properties but mightbe essential for establishing liveness properties.1.1.2 Specifying parallel systems with process calculiHomogenous techniques are mostly used in the context with composition operators pro-vided by some process calculus (also often called process algebra). Process calculi arespeci�cation languages that describe the reactive behaviour of parallel systems. Themain ingedrients of such process calculi are operators for modelling parallel compositionk, non-deterministic choice +, sequential composition ; and recursion.9 The main dis-tinction mark for the process calculi proposed in the literature is the type of parallelism.Some are asynchronous calculi, such as Milner's CCS [Miln80], Hoare's CSP [Hoar85] orBergstra & Klop's ACP [BeKl84], where the components work time-independently andcommunicate via certain channels. Others, such as Milner's SCCS [Miln83] or ESTEREL[BeGon92], are based on synchronous parallelism where the steps of the parallel compo-sition are composed by \one-time-steps" of its subprocesses. The \one-time-steps" caneither by single atomic steps (as in the case of SCCS) or sequences of atomic steps (as inthe case of ESTEREL).Implementation relations: Typically, process algebras are supplied with an opera-tional semantics based on transition systems10 together with an implementation relation,a binary relation on transition systems that formalizes what is meant for a program tocorrectly implement another one. The implementation relation makes it possible to com-pare a program (the implementation) with its speci�cation. For this, the implementationP and the speci�cation Q are described by terms of the process algebra and P is said tobe correct with respect to the speci�cation Q i� P�implQ for the chosen implementationrelation �impl .11 Process algebras equipped with a congruence (i.e. an implementation re-lation �impl that is preserved by the composition operators of the calculus) play a crucialrole for the design and analysis of parallel systems. Congruences are useful for the designby stepwise re�nement since they allow the replacement of the modules P1; : : : ;Pn of a\higher-level" process P by \lower-level" modules Q1; : : : ;Qn (provided that Qi�implPi,i = 1; : : : ; n). Moreover, congruences can serve as basis for modular veri�cation, i.e. theseparate veri�cation of the program modules from which the correctness of the composedprocess is derived using just the correctness of the modules but not any other knowledgeabout the modules. Typically, such implementation relations are either equivalences orpreorders.129To reason about quantitative properties (e.g. time or probabilities), such calculi can be extendede.g. by operators that specify timeouts or delays or a probabilistic choice operator [GJS90, HaJo90,NRS+90, Hans91, Yi91]. Further references to probabilistic process calculi are given in Section 1.2, page22.10Often, the terms of a process algebra are identi�ed with the associated transition systems. In par-ticular, the composition operators of the process algebra can also be viewed as operators for composingtransition systems.11Thus, veri�cation amounts showing that P�implQ.12Recall that a preorder is a re
exive and transitive relation. Both re
exity and transitivity seem tobe natural conditions that a relation which formalizes what is meant by \a process implements anotherone" should have.

1.1. VERIFICATION METHODS 15� The equivalences can be interpreted in such a way that equivalent programs exhibitthe same \behaviour" with respect to an appropriate notion of behaviour.� In most cases, the use of preorders is motivated by the assumption that the speci-�cation just tells which \behaviours" are allowed (but does not prescribe the exactbehaviour)13 but they can also serve as basis to compare the quantitive behaviour oftwo systems, e.g. if they yield notions of \faster than" or \more reliable".Among the implementation relation that have proved most useful are bisimulation [Miln80,Park81, Miln89] and simulation [Miln89, AbLa88, Jons91, LyVa91] relations, trace equiva-lence [Hoar85], failure equivalence [BHR84] and testing preorders [dNHe83]. Bisimulationand simulation are based on the branching time view and establish a step-by-step corre-spondence between two systems. As a classical representative for the linear time relations,trace equivalence establishs a correspondence between the executions, but abstracts fromthe possible branches in the intermediate states. The basic idea behind the testing pre-orders is to de�ne the process behaviour by means of its ability to pass tests. The testsare special programs (described in terms of the underlying process calculus) that are ex-ecuted in parallel with the given process. Especially the equivalences that are preservedby the composition operators of the underlying process calculus (i.e. congruences) areof great importance for the analysis since they can be used to reduce the state spaceby abstraction. For this, equivalent states are identi�ed and replaced by a single state.The resulting quotient space might be much smaller14 and may even be �nite for in�nitesystems.Strong and weak relations: Weak implementation relations are those that abstractfrom internal computations while the strong implementation relations do not. Beingsensitive with respect to internal steps, in general, strong relations can only be establishedfor systems on the same level of abstraction (e.g. two implementations) while the weakrelations are appropriate to compare systems on di�erent levels of abstraction (e.g. animplementation and its speci�cation).Denotational semantics: Because of its declarative nature, the above mentioned oper-ational semantics (which assigns to each term of the process calculus a transition system)is often the one that a designer has in mind. While the operational semantics focusseson the stepwise behaviour the main concepts of denotational semantics are composition-ality and the use of �xed point equations for modelling recursion.15 In many cases, theuse of �xed point theory requires methods of several mathematical disciplines (e.g. topol-ogy, domain theory, category theory) and lead to a semantics that is hard to understandfor a non-mathematician. However, the denotational approach provides a much moreelegant technique to de�ne the meanings of recursive (or repetitive) programs. Often,denotational semantics are used to obtain a characterization of the implementation re-lation associated with the operational semantics by means of a full abstraction result.Full abstraction means that the denotational semantics of a program contains exactly theinformation that is relevant for the chosen implementation relation (but abstracts fromall other details about the program). Full abstraction results can serve as basis for ver-13In this case, the use of preorders can be viewed as a proof technique for establishing safety properties.14See e.g. [CGT+96] for an expressive example.15The �xed point equations re
ect our intuition that a recursive procedure and their body have thesame behaviour.

16 CHAPTER 1. INTRODUCTIONi�cation methods16 or just help for a better understanding of the operational semanticsand the implementation relation. Moreover, being compositional, denotational semanticsallow for proofs by structural induction which is often a useful concept to establish a linkbetween several speci�cation formalisms (e.g. some kind of logic or operational models).171.1.3 The temporal logical approachIn the logical framework where the speci�cation is a formula (or the conjunction of for-mulas) and the system is described by a model (e.g. a transition system) veri�cationamouts showing that the formula � evaluates to true when interpreted over the system.In the literature, several logics are proposed to reason about parallel systems, such asdynamic [Prat76], temporal [Pnue77] or modal [HeMi85, Koze85] logic. In this thesis,we concentrate on the use of propositional temporal logic with future temporal modalitieslike \eventually" 3 or \always" 2. We brie
y sketch the basic ideas where we mainlyconcentrate on those aspects that are relevant for the results of this thesis. Further detailscan be found e.g. in [Emer90, MaPn92, CGL93, Lamp94, MaPn95].Linear time logic LTL: In the linear time approach, formulas describe properties ofexecutions. Linear time formulas are built from atomic propositions (that make assertionsabout the states, e.g. about the current values of the program or control variables), theusual boolean combinators _, ^, : and temporal operators. For instance, if crit1, crit2are atomic propositions stating that certain subprocesse P1 and P2 are in their criticalsection then 2(:crit 1 ^ :crit2) stands for the safety property stating mutual exclusion.To reason about quantitative aspects, e.g. time, special modalities like \sometimes withinthe next k steps" 3�k can be used, see e.g. [HaJo89, ACD90].18 For example, the formula2(request ! 3�5response) might be interpreted as the liveness property stating that anyrequest will answered within the next 5 time units. Linear time formulas are interpretedover the executions (i.e. the paths in a transition system). For a process, a linear timeformula is viewed to be ful�lled if it holds even in a worst case (but realistic) scenario,i.e. if it holds for all \possible" executions. In general, not all executions are viewed tobe possible, but only those that obey certain fairness conditions.Branching time logic CTL: Branching time logics allow quanti�cation over the possiblefutures which leads to formulas stating e.g. the existence or non-existence of an executionwith a certain property.19 Computation tree logic CTL introduced by Clarke & Emerson[ClEm81] is the classical representative for branching time logics. CTL distinguishes be-tween state and path formulas. The state formulas subsume the propositional connectives16It should be pointed out that the denotational approach can also be of importance for other practicalapplications. Especially in the �eld of sequential programs (but also for other types of programs), theprocedural nature of denotational semantics can serve as a basis for a compiler. See e.g. [BCH98].17For example, in this thesis, we apply the denotational framework for showing that two implementationrelations coincide for a certain kind of processes.18The interpretation of a \step" depends on the underlying system. A step might be one unit oftime or { if the system under consideration arises from the asynchronous parallel composition of severalsubsystems { one can think of a step as the time taken by the slowest component to perform an atomicaction.19Here, we assume the traditional (non-probabilistic) approach. In a probabilistic scenario, branchingtime formulas might also reason about the probability of certain events. See Section 1.2.3.

1.2. PROBABILISTIC SYSTEMS 17and basic temporal operators of the form \a path quanti�er followed by a single temporalmodality" where the path quanti�ers are 8 or 9 that range over all paths (executions)and the temporal modalities are as in linear time logic.20 The logic CTL� [EmHa86] ex-tends CTL by allowing arbitrary linear time formulas to serve as path formulas; thus, itsubsumes LTL and CTL.Model checking: For �nite systems, model checking algorithms are developed for bothlinear and branching time logic. While CTL model checking can be done in polynomialtime (even in time linear in the size of the system and in the length of the formula [CES83])model checking for LTL and CTL� is PSPACE -complete [SiCl86] and can be done in timeexponential in the length of the formula and linear in the size of the system [LiPn85].21On the basis of decision procedures for the satis�ability problem of (linear or branchingtime) temporal logic, the task for synthezising parallel systems from a given temporallogical speci�cation can be automated, see e.g. [EmCl82, MaWo84, AtEm89, PnRo89].1.1.4 State explosion problemThe size (number of states in the transition system) of a parallel system P = P1k : : : kPngrows exponentially in the number n of subprocesses. This explains why any algorith-mic veri�cation method that works with an explicit representation of transition sys-tems (e.g. by adjacency lists) fails for systems with very much components. In thelast decade, several methods have been developed to attack the \state explosion prob-lem". Some are based on a symbolic representation of the system using binary de-cison diagrams [BCM+90, McMil92], others are based on the concept of partial or-der reduction [Pele93, Valm94, Gode94]. The basis idea behind the BDD-based ap-proach goes back to Ken McMillan who proposed to handle very large systems by rep-resenting their transition relation implicitly by an ordered BDD [Brya86]. The BDD-approach has proved to be very successful for various types of veri�cation problems forparallel systems, including the veri�cation against branching and linear time temporallogical speci�cations and establishing a branching time relation between two systems[BCM+90, McMil92, EFT93, CGL93, CGH94]. Partial order reduction is based on theobservation that the interleaved execution of independent actions allows one to inves-tigate only a representative fragment of the state space. It is applicable for provinglinear time temporal properties and for the process algebraic approach.22 Both tech-niques have been implemented in tools and successfully applied to very large systems, seee.g. [McMil92, HoPe94, Camp96, GPS96].1.2 Probabilistic systemsIn the literature, a variety of extensions of the above mentioned veri�cation methods areproposed that are appropriate to reason about quantitative aspects, e.g. for verifying real-20To handle fairness the semantics of CTL has to be modi�ed by taking 8 and 9 as quanti�ers thatrange over the fair executions [EmLei85].21See [VaWo86, CGH94, GPV+95] for other LTL model checking algorithms.22More details about the partial order approach can be found in several papers in the proceedings[PPH96].

18 CHAPTER 1. INTRODUCTIONtime conditions, for performance analysis or for computing the probabilities for certainsystem behaviours. In this thesis, we concentrate on probabilistic phenomena and considerparallel systems with probabilities for the state transitions (in the sequel called probabilis-tic systems or probabilistic processes).23 There are several situations where probabilisticaspects have to be taken into account. The ones that we have in mind when speakingabout a probabilistic system are the following two:� To get a realistic model of a parallel system that reacts on the stimuli of the environ-ment, one has to take into consideration the interfaces with the environment. Theseare often based on physical processes that are probabilistic in nature.� The system (or one or more of its subsystems) might be based on a randomizedalgorithm, i.e. uses the concept of randomization (\tossing a fair coin").In the former case, probabilities are used to model uncertainties (e.g. the failure rate ofan unreliable medium that transmits messages). In the second case, the probabilitiesare determined by the frequencies of the possible outcomes of a probabilistic choice.The bene�ts of randomization are clear from the literature.24 Randomization has beenshown to be a elegant technique that might lead to simpler and more e�cient algorithmsthan their non-randomized counterparts. Moreover, as observed by Lehmann & Rabin[LeRa81], in the �eld of parallel algorithms, the use of randomization makes it possibleto solve problems that are not solvable with deterministic algorithms.Probabilistic choice: The characteristic feature of probabilistic systems is that theywork with the concept of probabilistic choice. This refers to any activity that choosesbetween several alternative behaviours where the frequencies of the possible outcomes ofthat choice are given by probabilities (i.e. values in the unit interval [0; 1] that sum upto 1). The interpretation of this probabilistic choice depends on the concrete process.As mentioned above, the probabilities might be obtained from failure rates of certainunreliable resources or might stem from a \truly randomized" action like \tossing a faircoin". In any case, probabilistic choice can be speci�ed by a term of the formrandom(p1 : P1; : : : ; pl : Pl) often written as [p1]P1 � : : :� [pl]Plthat we interpret as the process that chooses randomly to behave as one of the processes Pi.Here, p1; : : : ; pl 2 [0; 1] such that p1+ : : :+ pl = 1. Assuming internal probabilistic choice(which is resolved independent on the environment), the value pi denotes the probabilitythat the process Pi is selected. This stands in contrast to external probabilistic choicewhich assumes that the environment determines which of the processes P1; : : : ;Pl areenabled. For this, let us assume that P1; : : : ;Pk are available while Pk+1; : : : ;Pl are not.Then, the external probabilistic choice selects one of the processes P1; : : : ;Pk accordingto the conditional probabilities pip1+:::+pk , i = 1; : : : ; k.1.2.1 Modelling probabilistic behaviourMost of the models that are used for the representation of probabilistic systems areextensions of transition systems but there are also other models such as \true concurrency"23In this chapter, we use the notions \system" and \process" as synonyms.24See e.g. the papers by Rabin [Rabi76a, Rabi76b, Rabi80], the survey papers [Karp91, GSB94] or thebooks [MoRa95, Lync95].

1.2. PROBABILISTIC SYSTEMS 19models (e.g. event structures with probabilities [KLL94, Kato96]). In this thesis, weconcentrate on the use of probabilistic transition systems. To reason about probabilities,several extensions of transition systems have been proposed.25 They all have in common,that they endow the transitions with probabilities in an appropriate way. The resultingmodels can be classi�ed with respect to their treatment of non-determinism.Fully probabilistic models: Several authors consider models based on Markov chains(MCs) where the concept of non-determinsm is replaced by probabilistic choice, e.g. \gen-erative transition systems" [vGSST90], \sequential Markov chains" [LeSh82, HaSh84,Vard85, CoYa88, CoYa95] or \fully probabilistic automata" [SeLy94, Sega95a]. In thesemodels, each state s is associated with a probabilistic choice; that is, the transitions arelabelled by probabilities (values in the unit interval), such that, for each state s, theprobabilities for the outgoing transitions sum up to 1.26Example 1.2.1 [Simple communication protocol: the sender] We consider a sim-ple communication protocol similar to that in [HaJo94]. The system consists of twoenitities: a sender that works with an unreliable medium which might loose messagesand a receiver. The sender, having produced a message, transmits the message to themedium, which in turn tries to deliver the message to the receiver. With probability1/100, the messages gets lost and the medium retries to deliver the message. With prob-ability 99/100, the message is delivered correctly, in which case the sender waits for theacknowledgement by the receiver and then returns to the initial state. For simplicity, weassume that the acknowledgement cannot be corrupted or lost. We describe the behaviourof the sender by the following Markov chain.We use the following four states:� sinit : the state in which the sender produces amessage and passes the message to the medium� sdel : the state in which the medium tries to de-liver the message� slost : the state reached when the message is lost� swait : the state reached when the message is de-livered correctly and in which the system waitsfor the acknowledgement by the receiver.
sinitsdel slostswait

11 0:99 0:01 1�� �

�� �
 �� �

�� �
?����	

'-
JJJJ HHjJJJJHHY

For instance, the transition swait ! sinit stands for the case where the sender gets theacknowledgement of the receipt of the message; sdel ! slost for the case where the mediumlooses the messages.Probabilistic models with non-determinism: On the other hand, there is a vari-ety of models based on Markov decision processes (MDPs) which allow for both prob-abilistic and non-deterministic branching. For the MDP-based models, there are dif-ferent ways of associating probabilities to the transitions. One possibility is to dis-25The \probabilistic automaton" �a la Rabin [Rabi63] (that were introduced as language acceptors) canbe viewed as a precursor of this approach.26Of course, there might also be terminal states without any outgoing transitions. Moreover, manyauthors allow for \substochastic states" where the probabilities of the outgoing transitions sum up to avalue p 2]0; 1[. In this case, the remaining value 1� p can be interpreted as the probability for deadlock.

20 CHAPTER 1. INTRODUCTIONtinguish between probabilistic and non-probabilistic states.27 Representatives of suchmodels are \concurrent Markov chains" [Vard85, CoYa88, CoYa95] and \alternating sys-tems" [HaJo90, Hans91].28 Another possibility is to allow each state to behave non-deterministically where each of the non-deterministic alternatives is associated with aprobabilistic choice. Examples for such systems are the models (just called \probabilisticprograms") considered in [HSP83, Pnue83, PnZu86a, PnZu86b, PnZu93], the \proba-bilistic automaton" of [SeLy94, Sega95a], \probabilistic non-deterministic systems" of[BidAl95, dAlf97a, dAlf97b] and \real-time probabilistic programs" of [ACD91a].Example 1.2.2 [Simple communication protocol: Sender k Receiver] We con-sider a variant of the simple communication protocol of Example 1.2.1 (page 19) wherewe specify the behaviour of the parallel composition of the sender and the receiver bya probabilistic system with non-determinism.29 For simplicity, we assume that both thesender and the receiver work with mailing boxes that cannot hold more than one messageat any time. Thus, if the sender has produced a message m then the next message cannotbe produced before m is delivered correctly; similarly, the medium cannot be activiatedas long as there is an unread message in the mailing box of the receiver (i.e. as long asthe acknowledgement for the last message is not yet arrived).We use the following four states:� sinit : the state in which the sender producesa message and passes the message to themedium� sdel : the state in which the medium tries todeliver the message� sok : the state reached when the message isdelivered correctly� sack : the state in which the receiver \con-sumes" the message (i.e. reads and works upthe message and acknowledges the receipt).

sinitsdel soksack 0:990:01
�� �
�� �
 �� �
�� �

u
?
? ����	@@@@@

'- $�
&��� -

The state sack is reached in the case where the sender has already produced the nextmessage while there is still an unread message in the mailing box of the receiver. Thus,the only possible step in sack is the one where the receiver \consumes" the message andacknowledges the receipt. In state sok , the sender and the receiver can work in parallel (si-multaneously): the sender may produce the next message while the receiver may consumethe last message. The parallelism in state sok is described by interleaving, i.e. the non-deterministic choice that decides which process performs the next step: either the senderproduces the next message or the receiver consumes the last message. The interleaving27Probabilistic states are those where a probabilistic choice is resolved while non-probabilistic statesbehave purely non-probabilistic, possibly non-deterministic.28The idea of separating the probabilistic branches from non-probabilistic activities is also realizedin the \strati�ed transition systems" of [vGSST90]. These are introduced as operational model for alanguage with probabilistic choice but lacks for non-deterministic choice. Thus, in the strati�ed systemsof [vGSST90], non-determinism is not present. However, non-determinism could be easily added to thelanguage and the model.29We use the model where any state is associated with a set of non-deterministic alternatives and whereeach of these alternatives is represented by a probabilistic choice.

1.2. PROBABILISTIC SYSTEMS 21soksack sinitsdel
�
 �	�
 �	 �
 �	�
 �	

produce produceconsume consumeQQQQQQs������+QQQQQQs ������+Figure 1.2: The \diamond" obtained by interleavingof the actions produce and consume in state sok leads to the classical \diamond" shownin Figure 1.2 stating that the e�ect of the parallel execution of produce and consume isthe same as if produce and consume are executed in any order: in either case, we reachthe state sdel .Of course, the classi�cation MC-based versus MDP-based models is too coarse to captureall models proposed in the literature. Several authors introduced models that can beclassi�ed between MCs and MDPs such as \reactive systems" [LaSk89, vGSST90] or\probabilistic I/O automaton" [WSS94].Internal vs external probabilistic choice: The formal de�nition of these modelsdoes not depend on whether internal or external probabilistic choice is assumed. Thedi�erence between internal and external probabilistic choice becomes visible in the contextof composition operators of a process calculus. Especially the restriction operator (thatspeci�es the processes or actions that are enabled in a certain state) is a�ected from thechosen type of probabilistic choice.Specifying probabilistic systems: Which of these models should be used depends onthe concrete application. Roughly speaking, the models based on MCs are suitable toformalize the behaviour of sequential randomized algorithms or processes of probabilisticcalculi with synchronous parallel composition or probabilistic shu�e operators while themodels based on MDPs can be used to describe the behaviour of distributed randomizedalgorithms or processes of an asynchronuous probabilistic calculus.The need of non-determinism: When modelling distributed randomized algorithmsor asynchronous probabilistic systems by MDP-based models, non-determinism is usedto model interleaving (cf. Example 1.2.2, page 20). As observed by several other au-thors, e.g. [JHY94, JoYi95, Sega95a], there are also other situations where the conceptof non-determinism might be helpful. The non-determinism might be useful to representunderspeci�cation which can be (totally or partly) resolved in further re�nement steps(cf. [JoYi95]). This situation is well-known in the design of (sequential or distributed)algorithms. For example, in a high-level design one might use a statement like\choose some index i 2 f1; : : : ; ng and put x := a[i]"(e.g. in a high-level description of Quicksort the Pivot element might be chosen by astatement like that) while in the implementation one works e.g. with the assignment x :=a[1] (or a randomized assignment x := random(a[1]; : : : ; a[n])). Another example is that

22 CHAPTER 1. INTRODUCTION\non-determinism can be used to specify the allowed probabilities of failure of a mediumwhere a re�nement step is used to decrease the set of allowed failure rates [JoLa91]"(where we quote from [JoYi95]). Second, also observed in [JoYi95], non-determinism canbe used to represent incomplete information on the parameters of system behaviour suchas Milner's weather conditions [Miln89].Example 1.2.3 [Roulette player] Figure 1.3 (page 22) shows the \one-day-behaviour"of an addicted roulette player. For simplicity, we assume that he is arbitrary rich andalways chooses the simple risk \red" or \black" and that there is no limit on the allowedstake.30 When entering the casino, the roulette player starts playing with the stake 1$.Whenever he looses the last game, he doubles the stake for the next game. On the otherhand, if he has won the last game, he decides non-deterministically to continue playing (inwhich case he restarts with the stake 1$) or to leave the casino with one last game where herisks all his money. Here, the non-deterministic choice is used to describe the incompleteinformation about the \environment". The choice in state swon between staying in orleaving the casino might be dependent on the well-being of the roulette player or on themood of his wife or on other unknown factors.
sinit splay swonslost ssadshappy�� �
 �� �
 �� �
�� �
 �� �

�� �
uu 12121212stake := 1$ stake := 2*stake
stake := 1$ stake := all- - -�?�6 �����*HHHHHj �����*HHHHHj

Figure 1.3: The \one-day-behaviour" of the roulette player1.2.2 The process calculus approach for probabilistic systemsIn the literature, a variety of probabilistic process calculi are proposed. They either re-place the non-deterministic choice operator by a probabilistic choice operator or allowfor both non-deterministic and probabilistic choice. See e.g. [GJS90, JoSm90, vGSST90,Toft90, LaSk92, Toft94] for synchronous and [HaJo90, Hans91, YiLa92, Yi94, Lowe93b,Seid95, BaKw97, Norm97] for asynchronous process calculi and [BBS92, SCV92, N�udF95,GLN+97, dAHK98] for calculi with probabilistic shu�e operators.31 Some of these cal-culi can be used to reason about priorities [SmSt90, Toft94, Lowe95]. Typically, suchprocess calculi are supplied with an operational semantics based on (some kind of) prob-abilistic transition systems. In absence of non-determinism, the calculi with synchronousparallelism or a probabilistic shu�e operator can be described by a fully probabilistic(MC-based) system [GJS90, vGSST90, BBS92, LaSk92]; but also other operational se-mantics (e.g. based on the reactive or strati�ed view) are possible [vGSST90, Toft94].30Moreover, we neglect the possible outcome \Zero" (where the bank gets all stakes) and suppose thatthe probability for winning a game is 1=2.31The probabilistic shu�e operators describe the interleaved execution of two processes with respectto a �xed scheduler that decides randomly which process performs the next step where the underlyingrandom choice depends on the local states of the processes.

1.2. PROBABILISTIC SYSTEMS 23The operational semantics of probabilistic calculi that allow for non-deterministic choiceand/or deal with asynchronous parallelism can be de�ned by means of MDP-based mod-els (probabilistic transition systems with non-determinism), see e.g. [HaJo90, Hans91,YiLa92, Yi94, BaKw97].Implementation relations for probabilistic processes: Several implementation re-lations for probabilistic processes are proposed, such as trace, failure and ready equiva-lence [JoSm90], bisimulation [LaSk89, HaJo90, Hans91, SeLy94, BaHe97]32, simulation-like preorders [JoLa91, Yi94, SeLy94, Sega95a] and various types of testing preorders[Chri90a, Chri90b, CSZ92, YiLa92, Chri93, YCDS94, JHY94, JoYi95, N�udF95, Sega96,Norm97, KwNo98a, KwNo98b].Veri�cation methods: Even though many implementation relations for probabilis-tic systems have been introduced, corresponding veri�cation methods (i.e. methods forshowing that one process implements another one with respect to an appropriate imple-mentation relation) are relatively rare. For fully probabilistic systems (the MC-basedmodels), both axiomatic [GJS90, JoSm90, LaSk92, BBS92] and algorithmic [Chri90a,ChCh91, HuTi92, Chri93, BaHe97] methods have been developed. All the above men-tioned algorithmic methods run in polynomial time. Especially in the case of trace andfailure equivalence [HuTi92], this fact is of interest since decidability of the correspondingrelations for non-probabilistic systems is PSPACE -complete [KaSm83]. In the case of(strong or weak) bisimulation or simulation, the time complexities are polynomial in thenon-probabilistic [KaSm83, PaTa87, BoSm87, GroVa90, HHK95] as well as the proba-bilistic [HuTi92, BaHe97] case. For the models with non-determinism (the MDP-basedmodels), veri�cation methods for the branching time relations (bisimulation and simu-lation) are proposed so far (see [HaJo90, Hans91, Yi94, Toft94] for axiomatizations and[Bai96, PSS98] for algorithmic veri�cation methods) while { as far as the author knows{ the literature lacks for methods for other implementation relations (such as testingequivalence �a la [JoYi95] or any weak linear time relation).Denotational semantics: The work by Kozen [Koze79] on denotational semantics forsequential programs with random assignment and while-loops can be seen as a precursorof the denotational approach. Jones & Plotkin [JoPl89, Jone90] introduce the probabilis-tic powerdomain of evaluations to provide a denotational semantics for a programminglanguage with while-loops and a probabilistic concurrency operator. Roughly speak-ing, for semantical purposes, evaluations are used to decorate sets of behaviours withprobabilities rather than single behaviours. The concept of evaluations is often used indenotational semantics for randomized programs; e.g. for probabilistic predicate trans-formers [Jone90, MMS96, HMS97] but also in the �eld of probabilistic process algebras.Evaluations are used in [MMS+94] to give a failure/divergence semantics for CSP withprobabilistic choice and in [BaKw97] to obtain denotational semantics for a probabilisticextension of CCS that are shown to be fully abstract with respect to bisimulation andsimulation. Other denotational characterizations for probabilistic variants of CSP (thatdo not use evaluations) are proposed by Lowe [Lowe93a, Lowe93b, Lowe95] and Seidel[Seid95]. Denotational models and related full abstraction results for certain types oftesting preorders are presented by Christo� [Chri90a, Chri90b], Jonsson & Yi [JoYi95]32See also [dViRu97, BDE+97, DEP98] where bisimulation equivalence for \continuous" probabilisticsystems are introduced.

24 CHAPTER 1. INTRODUCTIONand Kwiatkoswka & Norman [KwNo96, Norm97, KwNo98a, KwNo98b]. [Hart98] presentsseveral denotational semantics for a CCS -like language with probabilistic choice and dis-cusses the use of internal or external probabilistic and non-deterministic choice. Theabove mentioned semantics for the asynchronous calculi are all based on the interleavingview. A denotational \true concurrency" semantics for a variant of LOTOS with timeand probabilities by means of event structures is given by Katoen [Kato96].1.2.3 Probabilistic temporal logicSeveral authors proposed extensions of program logics to reason about qualitative orquantitative temporal properties of probabilistic systems. In this introduction, we onlyexplain the main ideas behind the temporal logical framework.33 Qualitative propertiesassert that a certain event ' holds with probability 0 or 1 while quantitive propertiesguarantee that the probability for a certain event ' meets given lower or upper bounds.34In most applications, the quantitive properties deal with an upper bound � for some small� and assert that the probability for a \bad event" is su�ciently small (i.e. < � or � �) oruse a lower bound 1 � � and state that a certain safety or liveness condition is satis�edwith some su�ciently large probability (i.e. with a probability in the interval]1� �; 1] or[1� �; 1]).35 In the temporal logical framework, the event ' describes a property for theexecutions and is speci�ed by a path formula built from standard temporal operators like3, 2 and 3�k (see Section 1.1.3, page 16).Linear time logics: The linear time framework (see e.g. [Vard85, VaWo86, PnZu86a,PnZu86b, CoYa88, PnZu93, CoYa95]), uses classical \non-probabilistic" linear time tem-poral logics (where formulas are path formulas) with an interpretation over the states ofa probabilistic systems. The truth value of a formula ' in a state s is a value ps(') in theinterval [0,1] which can be viewed as the probability that ' holds for an execution startingin s. Satisfaction of a quantitative linear time speci�cation (consisting of a formula ' anda lower or upper bound for the \acceptable" probabilities) means that the truth valueps(') meets the given bound.36Branching time logics: In contrast to these Fuzzy logic like interpretations of lineartime formulas (with truth values in the unit interval), the branching time frameworkdeals with state formulas that might hold for a state or not (i.e. that are equipped withan interpretation over the states of a probabilistic system by the usual truth values 0or 1). [LeSh82, HaSh84, ACD91b] propose branching time logics for specifying qualita-tive temporal properties by using state formula that assert that a certain event holdswith probability 1. Branching time logics that allow to express quantitative properties33For other program logics for specifying probabilistic systems see e.g. [Feld83, FeHa84, Koze85] fordynamic and [LaSk89, LaSk92, ChCh92, Chri93, HuKw97, MoMcI97, McIv98, HuKw98] for modal logics.34In fully probabilistic systems, there is a natural probability measure on the executions. This isdi�erent in probabilistic transition systems with non-determinism where it makes no sense to speakabout probabilities unless the non-determinism is resolved. However, the \probability" for an eventcan be de�ned as the minimal or maximal probability measures for this event ranging over the possibleresolutions of the non-deterministic choices.35Clearly, the qualitative properties can be viewed as special instances of the quantitive properties; wejust have to deal with � = 0.36In particular, satisfaction of a qualitative linear time speci�cations means that ps(') is 0 or 1.

1.2. PROBABILISTIC SYSTEMS 25(see e.g. [HaJo89, Hans91, HaJo94, SeLy94, ASB+95, BidAl95, dAlf97a]) integrate thelower/upper bounds for the acceptable probabilities into the syntax and use formulase.g. of the form Prob�p(') that state that the probability for the event ' is at least p.Veri�cation methods: Proving the correctness of a probabilistic process against qual-itative properties expressed in the temporal logical framework amounts showing thatthe given event ' holds with probability 0 or 1. For �nite systems, it has been re-alized that this is completely independent on the precise transition probabilities andjust depends on the \topology" of the underlying directed graph. This observation was�rst made by Hart, Sharir & Pnueli [HSP83] for proving termination with probabil-ity 1 and later used in several veri�cation methods for establishing qualitative tempo-ral properties; see e.g. [LeSh82, Pnue83, HaSh84, PnZu86a] for deductive methods and[Vard85, VaWo86, PnZu86b, CoYa88, ACD91a, ACD91b, PnZu93, CoYa95] for algorith-mic methods. Establishing quantitative temporal properties requires the computationof the exact probabilities for the given event '; see e.g. [LSS94, PoSe95, Sega95a] forproof rules, [CoYa88, HaJo94, ASB+95, CoYa95, IyNa96] for algorithmic methods forfully probabilistic systems and [CoYa90, Hans91, BidAl95, dAlf97a, dAlf97b] for algorith-mic methods for probabilistic systems with non-determinism. The main concepts for thehandling of formulas involving the \eventually operator" 3 is the use of linear equationsystems in the case of fully probabilistic systems [CoYa88, HaJo94] and linear optimizationproblems in the case of probabilistic systems with non-determinism [CoYa90, BidAl95].The time complexities of the model checking algorithms for branching time logics are poly-nomial [HaJo94, BidAl95]. For linear time logic, model checking is PSPACE -complete inthe case of fully probabilistic systems and complete for double exponential time in thecase of probabilistic systems with non-determinism [Vard85, CoYa95].Fairness: For non-probabilistic parallel systems, it is well-known that fairness assump-tions about the resolutions of the non-deterministic choices might be essential for provingcertain liveness properties. Clearly, this observation carries over to probabilistic systemswith non-determinism and concerns qualitative as well as quantitative properties. As anexample, consider the randomized dining philosophers [LeRa81]: when two philosophersare simultaneously ready to
ip a fair coin in order to decide which fork to pick up, onecan think of this as two probability distributions, each respectively with probability 12 ofobtaining heads or tails, enabled in the same state. If the scheduler never selects a givenphilosopher for execution even though he is ready to proceed (e.g. to
ip the coin) the runthus produced would be unfair, and as a result one could not guarantee the qualitativeproperty that asserts lack of starvation. As an example for a situation where fairnessassumptions are essential for establishing quantitative properties, consider a communica-tion protocol which attempts to deliver a message to the recipient if one is received on theinput channel from the environment, and loops back to the initial state otherwise. In arealistic scenario, the outcome of the delivery is probabilistic, and will result in a messagebeing delivered correctly with some suitably high probability, say 0.999, or an error statebeing reached if a fault has occurred in the transmitting medium. Then, the property\the message is eventually delivered with probability 0.9" can only be established on con-dition that the protocol does not loop back to the initial state forever. Hence, also in theprobabilistic case, it is desirable to have methods for proving (quantitative or qualitative)temporal properties under fairness constraints. Establishing temporal properties underfairness constraints (for a probabilistic system with non-determinism) amounts showing

26 CHAPTER 1. INTRODUCTIONthat an event ' holds with some su�ciently small or large probability (or with probability0 or 1 in the case of a qualitative property), provided that the non-deterministic choicesare resolved in a fair manner.Even though the veri�cation of qualitative properties under fairness assumptions is well-understood (see e.g. [HSP83, Vard85, PnZu86b, PnZu93] for algorithmic methods) onlya few research has been done so far in the �eld of veri�cation methods for establishingquantitative properties under fairness constraints. [LSS94, PoSe95, Sega95a] present proofrules for establishing quantitative (timed) progress properties for randomized distributedsystems which can be combined with several notions of fairness. As far as the authorknows, [BaKw98, dAlf97a] are the �rst attempts to formulate algorithmic methods forverifying quantitative properties of probabilistic systems with non-determinism whichtake fairness into account.1.3 The topics of this thesisThis thesis investigates several aspects of formal reasoning about probabilistic systems.37(I) The process algebra approach: We consider asynchronous and synchronousprobabilistic process calculi, operational and denotational semantics for them andhomogenous algorithmic veri�cation methods. The main contributions are:� denotational characterizations of bisimulation and simulation (Chapter 5),� algorithms for establishing a branching time relation (bisimulation or simula-tion) between probabilistic systems with non-determinism (Chapter 6),� the de�nition of weak bisimulation for fully probabilistic systems together witha corresponding veri�cation algorithm (Chapter 7) and the de�nition of a lazysynchronous parallel composition operator that preserves weak bisimulationequivalence (Section 4.3).(II) The temporal logic approach: We consider the linear and branching time frame-work for establishing qualitative and quantitative temporal properties. The maincontributions are:� a technique for proving qualitative linear time properties with well-known non-probabilistic methods (Chapter 8),� algorithms for establishing quantitive temporal properties of a probabilistic sys-tem with non-determinism and fairness by means of a model checking algorithmfor a probabilistic temporal logic PCTL� with a satisfaction relation that in-volves fairness of non-deterministic choice (Chapter 9).(III) Symbolic veri�cation: Chapter 10 presents veri�cation algorithms for probabilis-tic systems that use multi-terminal BDDs (MTBDDs) as data structure. The mainidea is the development of a \language" for manipulating MTBDDs in which sev-eral veri�cation problems for probabilistic systems can be embedded. This yieldssymbolic model checking algorithms for PCTL (interpreted over fully probabilistic37Most results are published with coauthors. The corresponding reference can be found in the intro-duction of each chapter.

1.3. THE TOPICS OF THIS THESIS 27systems or probabilistic systems with non-determinism and fairness) and MTBDD-based methods for checking strong and weak bisimulation equivalence for fully prob-abilistic systems.1.3.1 Related workIn the literature, a lot of work has been done in the �eld of formal methods for probabilisticsystems; see the references mentioned before.38 In the authors opinion, it would make littlesense to list all related work here and to explain in which way this thesis is related. This isdone in the respective chapter. At this place, the author just wants to refer to the thesis'[Chri90a, Jone90, Seid92, Hans91, Chri93, Lowe93a, Sega95a, dAlf97a, Norm97, HarG98]that are all about speci�cation formalisms and/or veri�cation methods of probabilisticsystems and hence related to this thesis at a large degree.39 Especially the excellent workby Hans Hansson [Hans91], Roberto Segala [Sega95a] and Luca deAlfaro [dAlf97a] (andseveral papers that they wrote with coauthors) had great in
uence on the developmentof this thesis.40� The model for concurrent probabilistic systems that we use here essentially agreeswith the one of [Sega95a, dAlf97a] and is a variant of the one of [Hans91].� The process calculus PCCS of Chapter 4 is a variant of the process calculus (alsocalled PCCS) introduced by Hansson & Jonsson [HaJo90].� The bisimulation equivalence and the simulation preorder that we consider in Chap-ters 5 and 6 were introduced by Segala & Lynch [SeLy94].� The main concepts of the logic PCTL� that we consider in Chapter 9 are taken frompapers by each of the three, namely [HaJo89, Hans91, HaJo94, SeLy94, BidAl95,dAlf97a, dAlf97b]. Moreover, the idea of using !-automaton for our PCTL� modelchecking algorithm was suggested by Luca deAlfaro.� The symbolic PCTL model checking algorithm of Chapter 10 take the methods ofHansson & Jonsson [HaJo94] and Bianco & deAlfaro [BidAl95] as basis.1.3.2 How to read this thesisChapter 2 collects our notations concerning sets, relations, functions and distributions.The reader is not supposed to read this chapter but he/she should keep in mind thathe/she has a fair chance to �nd the explanations for our notations in Chapter 2. Chapter3 serves as basis for all other chapters because it introduces (and tries to motivate) themodels and explains the notations that are used in almost all parts of this thesis. Areader not familiar with probabilistic systems should read this chapter �rst while a reader38Clearly, also any work on formal methods to reason about other quantitative aspects is relatedto the topic of that thesis. In particular, the �eld of performance analysis, see e.g. [Herz90, GHR93,GiHi94, Hill94, Pria96, dAKB98, BeGor98, Herm98, HHM98], (where continuous time Markov chainsand stochastic Petri nets [Moll82, MBC84] belong to the standard models) is close to the approach here.39This list of thesis' might be far from being complete. It contains only those thesis' that treatprobabilistic systems as their main topic and that had in
uences to this thesis.40It should be pointed out that each of the three thesis' also considers real-time aspects while thisthesis does not.

28 CHAPTER 1. INTRODUCTIONwho is familiar with probabilistic processes might skip this chapter keeping in mind thatthe notations speci�c to this thesis can be found there. To support a reader who is onlyinterested in certain parts of this thesis the author tried to make the remaining chaptersas independent as possible. In those cases where a result of one chapter is used in anotherchapter the reader will �nd a (page) reference. The appendix (Chapter 12) recalls somede�nitions/concepts presented somewhere in the literature; the notations introduced thereare always used in connection with a reference to the relevant part of Chapter 12.Proofs: For the sake of readability, in most chapters the main results are presentedwithout proofs (but with a page reference to the place where the proof can be found).The proofs are given in the last section of the respective chapter.41 A reader not interestedin the theoretical development of the results might skip the appended \proof-sections".Examples: The main concepts are illustrated by simple toy examples. These are eitherabstract examples (without any concrete meaning) or extremely simpli�ed examples witha realistic background. Examples of the former type should just demonstrate a certaintechnique. Although unrealistic, examples of the latter type should give some insightshow to apply the proposed framework in realistic situations.The symbols and c: We use the symbol to denote the end of a proof, remark orexample. Some proofs are devided into subclaims. The symbol c denotes the end of theproof of such a subclaim.Background: Even not necessary, some familiarity with the basic concepts of formalmethods for parallel systems might be helpful. Elementary notions of several mathemati-cal disciplines (such as numerical analysis, linear algebra, probability and measure theory,topology and graph theory) are used without any explanation. However, a reader not fa-miliar with them (but interested in the topics of this thesis) should not immediately giveup to read this thesis; an intuitive understanding of e.g. the notion \probability" or theknowledge what a linear equation system or optimization problem is should be su�cientto understand the main ideas. We do not recall the basic notions of the above men-tioned mathematical disciplines here and refer to any standard book about the respectivediscipline.42

41In a few cases, the proof of a certain theorem is given in the \proof-section" of another chapter. Thisis only done in those cases where a simple proof can be derived from the results of a further chapter.42For instance, see [Halm50, Rudi66, Fell68, GrWe86] for measure and probability theory, [Dugu66,Suth77, Enge89] for topology and [Even79, Goul88] for graph theory. Basic knowledge about the theoryof Markov (decision) processes, see e.g. [Derm70, Ross83, Pute94], might be helpful but is not necessary.

Chapter 2PreliminariesIn this chapter, we brie
y explain some notations that are used throughout the thesis.For a �rst reading, the reader might skip this chapter, but should keep in mind that ournotations concerning sets, relations, partitions, functions and distributions are explainedhere.2.1 Sets, relations, partitions and functionsSets: For X to be a set, 2X is the powerset of X. idX denotes the identity on X, i.e. thefunction idX : X ! X, idX(x) = x for all x 2 X. The characteristic function of a subsetX 0 of X is the boolean-valued function X ! f0; 1g, x 7! 1 i� x 2 X 0. If X is �nitethen jXj denotes the number of elements of X. If X is in�nite then we put jXj =1.]denotes disjoint union.Relations: Let R, R1, R2 be binary relations on X. We also write x1Rx2 to denotethat (x1; x2) 2 R. We de�ne R�1 = f(x2; x1) 2 X �X : (x1; x2) 2 Rg and R1 � R2 =f(x1; x2) 2 X �X : 9 x 2 X ((x1; x) 2 R1 ^ (x; x2) 2 R2)g. We often write R1R2 ratherthan R1 �R2. R� denotes the transitive, re
exive closure of R.Equivalences and partitions: If R is an equivalence relation on a set X then X=Rdenotes the quotient space (i.e. the set of equivalence classes) and, for x 2 X, [x]R theequivalence class of x with respect to R. A partition of X is a set X consisting of pairwisedisjoint nonempty subsets of X such that SB2X B = X. We often refer to the elementsof a partition as blocks. Clearly, for each equivalence relation R on X, the quotient spaceX=R is a partition of X. Vice versa, each partition of X induces an equivalence relationon X: For X to be a partition of X, RX denotes the induced equivalence relation, i.e. RXconsists of all pairs (x1; x2) 2 X � X where x1, x2 2 B for some B 2 X . We oftenwrite [x]X (instead of [x]RX) to denote the unique block B 2 X that contains x. Apartition X is called �ner than a partition X 0 (and X 0 is called coarser than X) i� theinduced equivalence relation RX is �ner than RX 0 (i.e. i� each B 2 X is contained in someB0 2 X 0). We say X is strictly �ner than X 0 (or X 0 strictly coarser than X) i� X is �nerthan X 0 and X 6= X 0.Functions: For X and Y to be sets, X ! Y denotes the function space of all functionsfromX to Y . If f : X ! Y is a function and X 0 � X then f jX0 denotes the restriction of f29

30 CHAPTER 2. PRELIMINARIESon X 0, i.e. f jX0 denotes the function f jX0 : X 0 ! Y which is given by f jX0(x) = f(x). ForY 0 � Y , f�1(Y 0) denotes the inverse image of Y 0 under f , i.e. f�1(Y 0) = fx 2 X : f(x) 2Y 0g. For y 2 Y , we put f�1(y) = f�1(fyg). Similarly, for X 0 � X, f(X 0) denotes theimage of X 0 under f , i.e. f(X 0) = ff(x) : x 2 X 0g. We de�ne Range(f) = f(X) to denotethe range (image) of f . g � f denotes the usual function composition, i.e. if g : Y ! Zand f : X ! Y are functions then g � f : X ! Z is given by (g � f)(x) = g(f(x)). Iff : X ! X is a function then f 0 = idX and, for n = 0; 1; 2; : : :, fn+1 = f � fn.2.2 DistributionsDistributions: Let X be a set. A distribution on X is a function � : X ! [0; 1] suchthat fx 2 X : �(s) > 0g is countable and Px2X �(x) = 1. If x 2 X then �1x denotes theunique distribution on X with �1x(x) = 1. Supp(�) denotes the support of �, i.e. the setof elements x 2 X with �(x) > 0. For ; 6= A � S, we write �[A] to denote Px2A �(x).In particular, �[;] = 0. Distr(X) denotes the collection of all distributions on X.The composition � � �: Let �, � be distributions on X and Y respectively. Thecomposition ��� is the distribution on X�Y which is given by (���)(x; y) = �(x) ��(y).Weight functions (cf. [SeLy94, Sega95a]): Let �, � distributions be on X and Yrespectively and R � X � Y . A weight function for (�; �) with respect to R is a functionweight : X � Y ! [0; 1] which satis�es:1. weight(x; y) 6= 0 for at most countably many (x; y) 2 X � Y .2. For all x 2 X, y 2 Y :Xy2Y weight(x; y) = �(x); Xx2X weight(x; y) = �(y)3. If weight(x; y) > 0 then (x; y) 2 R.We write � �R � if there exists a weight function for (�; �) with respect to R.1 Clearly,if R1 � R2 then each weight function with respect to R1 is also a weight function withrespect to R2. Hence, � �R1 � implies � �R2 �.Remark 2.2.1 Let �X , �Y and �Z be distributions on X, Y , Z respectively, and letRX;Y � X � Y , RY;Z � Y � Z and weightX;Y : X � Y ! [0; 1] a weight function for(�X ; �Y) with respect to RX;Y , weightY;Z : Y � Z ! [0; 1] a weight function for (�Y ; �Z)with respect to RY;Z . Then, weightX;Z : X � Z ! [0; 1],weightX;Z(x; z) = Xy2Supp(�Y) weightX;Y (x; y) � weightY;Z(y; z)�Y (y) ;is a weight function for (�X ; �Z) with respect to RX;Y �RY;Z . Thus, if �X �RX;Y �Y and�Y �RY;Z �Z then �X �R �Z where R = RX;Y � RY;Z. In particular, if X is a set and1Intuitively, the weight function weight shows how to split the probabilities �(x) and �(y) such thatthe relation R is preserved: if �(x), �(y) > 0 then we \combine" the weight(x; y)=�(x)-part of x withthe weight(x; y)=�(y)-part of y. Then, the whole of each x 2 Supp(�) is combined with certain parts ofelements y 2 Supp(�) where (x; y) 2 R.

2.2. DISTRIBUTIONS 31R � X � X is a transitive relation then �R is a transitive relation on Distr(X). Fromthis, if R is a preorder on X then �R is a preorder on Distr(X).Remark 2.2.2 Let R � X � Y and � 2 Distr(X), �0 2 Distr(Y) such that � �R �0.Then, �0 �R�1 �.The function Distr(f): For f : X ! Y to be a function, the function Distr(f) :Distr(X)! Distr(Y) is given by Distr(f)(�)(y) = �[f�1(y)].Remark 2.2.3 Let f : X ! Y be a function. Then,weight : X � Y ! [0; 1]; weight(x; y) = (�(x) : if f(x) = y0 : otherwiseis a weight function for (�;Distr(f)(�)) with respect to R = f(x; f(x)) : x 2 Xg. Thus,� �R Distr(f)(�).

32 CHAPTER 2. PRELIMINARIES

Chapter 3Modelling probabilistic behaviour
In this chapter we introduce the models for probabilistic systems (together with somerelated notations) that are used throughout the thesis. We shrink our attention to thosemodels that are extensions of (non-probabilistic) transition systems which have been es-tablished as one of the standard models for non-probabilistic systems.The main distinctive mark for the probabilistic models proposed in the literature is thetreatment of non-determinism. On the one hand, there are various extensions of Markovchains (MCs) that allow for probabilistic (but not for non-deterministic) choice; thesecan be used to analyze the behaviour of sequential randomized algorithms or processes ofa calculus with synchronous parallel composition. On the other hand, there are severalextensions of Markov decision processes (MDPs) that are suitable to specify both prob-abilistic and non-deterministic behaviour; these are suitable to describe the behaviour ofdistributed randomized algorithms or processes of a calculus with asynchronous parallelcomposition.The formal de�nition of a model for probabilistic systems does not depend on whether in-ternal or external probabilistic choice is assumed.1 Internal probabilistic choice is resolvedindependent on the environment while the resolution of an external probabilistic choicedepends on the processes/actions that are enabled in a certain state.2 In this thesis, weassume internal probabilistic choice. This will only be important in Chapter 4 where theprocess algebra approach is considered.Organization of that chapter: In the �rst three sections we give the formal de�nitionsof the models that we use in that thesis. We start with the basic models without anylabellings where Section 3.1 deals with the MC-based models (called fully probabilisticsystems) and Section 3.2 with the MDP-based models (called concurrent probabilisticsystems). These \stripped" models are extended in Section 3.3 by action labels for thetransitions and by proposition labels for the states. In Section 3.4, we recall the de�nitionof probabilistic bisimulation �a la Larsen & Skou [LaSk89] and probabilistic simulation asintroduced by Segala & Lynch [SeLy94]. In the remainder of the thesis, we distinguishbetween \systems" and \processes". The notion \system" is used to describe a structure1See page 18 for the motivation behind internal and external probabilistic choice.2The underlying type of probabilistic choice in
uences the semantics of the composition operators ofa process calculus; in particular, the restriction operator. See Remark 4.2.4 (page 81).33

34 CHAPTER 3. MODELLING PROBABILISTIC BEHAVIOURconsisting of a state space and a transition relation (possibly extended by certain labels)while a \process" denotes a \pointed system" (i.e. a system with an initial state). Thiswill be explained in Section 3.5. In Section 3.6, we sketch how our models �t into thehierarchy of models studied in the literature.3.1 Fully probabilistic systemsThis section introduces the basic concepts for the MC-based models. We follow thenotations of Segala & Lynch [SeLy94, Sega95a] and use the adjective \fully probabilistic".De�nition 3.1.1 [Fully probabilitistic systems] A fully probabilistic system is a tu-ple S = (S;P) where S is a set of states and P : S � S ! [0; 1] is a function (called thetransition probability function) such that, for all s 2 S, P(s; t) > 0 for at most countablymany t 2 S and Pt2S P(s; t) 2 f0; 1g.Example 3.1.2 [Simple communication protocol: the sender] The behaviour ofthe sender in the simple communication protocol of Example 1.2.1 (page 19) can beformalized by the fully probabilistic system (S;P) where S = fsinit ; sdel ; slost ; swaitg andP(sinit ; sdel) = P(slost ; sdel) = P(swait ; sinit) = 1, P(sdel ; sinit) = 0:01, P(sdel ; swait) = 0:99and P(�) = 0 in all other cases.Let S = (S;P) be a fully probabilistic system. S is said to be �nite i� S is �nite. For�nite systems, we also refer to P as the transition probability matrix. If C � S and s 2 Sthen we put P(s; C) = Pt2C P(s; t). A state s of S is called terminal i� P(s; S) = 0.An execution fragment or �nite path in S is a nonempty �nite \sequence" � = s0 ! s1 !: : :! sk where k � 0, s0; s1; : : : ; sk 2 S and P(si; si+1) > 0, i = 0; 1; : : : ; k � 1.� j�j denotes the length of �, i.e. we put j�j = k.� �rst(�) denotes the �rst state of �, i.e. �rst(�) = s0.� last(�) denotes the last state of �, i.e. last(�) = sk.� �(i) denotes the (i+ 1)-st state of �, i.e. �(i) = si, i = 0; 1; : : : ; k,� �(i) denotes the i-th pre�x of �, i.e. �(i) = s0 ! s1 ! : : :! si, i = 0; 1; : : : ; k.If i > k = j�j then we put �(i) = �.� If k = j�j = 0 then we put P(�) = 1. For k � 1, we de�neP(�) = P(s0; s1) �P(s1; s2) � : : : �P(sk�1; sk):� � is called maximal i� last(�) is terminal.A state t is called reachable from s if there exists a �nite path � with �rst(�) = s andlast(�) = t.Example 3.1.3 The system in Example 1.2.1 (page 19) has no �nite maximal executionfragment as there are no terminal states. � = sinit ! sdel ! slost ! sdel ! swait is anexecution fragment (�nite path) with j�j = 4, �rst(�) = sinit , last(�) = swait , �(2) = slost ,�(2) = sinit ! sdel ! slost and P(�) = 1 � 0:01 � 1 � 0:99 = 0:0099.

3.1. FULLY PROBABILISTIC SYSTEMS 35An execution or fulpath is either a maximal execution fragment or an in�nite \sequence"� = s0 ! s1 ! s2 ! : : : where s0; s1; : : : 2 S and P(si�1; si) > 0, i = 1; 2; : : :. For �to be an in�nite execution, �(i), �(i) and �rst(�) are de�ned as for execution fragments.For in�nite executions we put j�j =1 and de�neinf (�) = fs 2 S : �(i) = s for in�nitely many indices i � 0g:If � is a �nite path then we put inf (�) = ;. A path denotes a �nite path or a fulpath.� PathSful denotes the set of fulpaths in S,� PathSful(s) the set of fulpaths starting in s,� PathS�n the set of �nite paths in S,� PathS�n(s) the set of �nite paths starting in s,� ReachS(s) denotes the set of states which are reachable from s.If the underlying fully probabilistic system S is clear from the context we abbreviatePathSful to Path ful , PathSful(s) to Path ful(s), PathS�n to Path�n , PathS�n(s) to Path�n(s) andReachS(s) to Reach(s).� If � is a set of fulpaths in S and s 2 S then �(s) = � \ Path ful(s).� If � is a set of �nite paths then �(s) = � \ Path�n(s).�pre�x denotes the pre�x relation on paths, i.e. if
1,
2 are (�nite or in�nite) paths then
1 �pre�x
2 i�
1 is a pre�x of
2 (i�
1 =
2 or
1 =
(k)2 for some k). <pre�x denotes theproper pre�x relation on paths, i.e. � <pre�x
 i� � =
(i) for some i < j
j.Let � = s0 ! : : :! sk be a �nite path and
 = t0 ! t1 ! : : : a (�nite or in�nite) path.If last(�) = �rst(
) (i.e. sk = t0) then we de�ne � �
 to be the path s0 ! : : : ! sk !t1 ! t2 ! : : : that arises by appending
 at the end of � where the last state of � andthe �rst state of
 are identi�ed. We de�ne:� � " denotes the basic cylinder induced by �, i.e. � " = f� 2 Path ful(s) : � �pre�x �g :� � "�n = f�0 2 Path�n(s) : � �pre�x �0g :� � # = f�0 2 Path�n(s) : �0 �pre�x �g :� For � to be a set of �nite paths,� " = [�2� � "; � # = [�2� � #; � "�n = [�2� � "�n :For each state s, P induces a probability space on Path ful(s) as follows. We de�neSigmaFieldS(s) to be the smallest sigma-�eld on Path ful(s) which contains all basic cylin-ders � " where � ranges over all �nite paths starting in s (i.e. � 2 Path�n(s)). The prob-ability measure Prob on SigmaFieldS(s) is the unique measure with Prob (� ") = P(�):Lemma 3.1.4 Let (S;P) be a fully probabilistic system and � � Path�n such that �,�0 2 �, � 6= �0 implies � 6�pre�x �0. Then, for all s 2 S,Prob (�(s) ") = X�2�(s) P(�):

36 CHAPTER 3. MODELLING PROBABILISTIC BEHAVIOURProof: easy veri�cation. Uses the fact that � ", � 2 �, are pairwise disjoint.We now turn our attention how to compute the probabilities to reach a state of a certainset S2 via a path leading through states of a certain set S1 only. More precisely, weconsider a fully probabilistic system (S;P) and two subsets S1, S2 of S. Let � � Path�nbe the set of all �nite paths � such that� �(i) 2 S1 n S2, i = 0; 1; : : : ; j�j � 1,� last(�) 2 S2.and let � = � ". Then, our aim is to compute the probabilities Prob(�(s)).Lemma 3.1.5 Let (S;P) be a fully probabilistic system and let S1, S2, � and � as above.For all s 2 S, X�2�(s) P(�) = Prob(�(s)):Proof: follows immediately from Lemma 3.1.4 (page 35).The following result characterizes the probabilities Prob(�(s)) as the least �xed point ofa certain monotonic operator on the function space S 7! [0; 1].Theorem 3.1.6 Let (S;P) be a fully probabilistic system and let S1, S2, � and � asabove. Then, p : S ! [0; 1], p(s) = Prob (�(s)),is the least �xed point of the operator F : (S ! [0; 1]) ! (S ! [0; 1]) which is given byF (f)(s) = 1 if s 2 S2, F (f)(s) = 0 if s 2 S n (S1 [S2) and, if s 2 S1 n S2,F (f)(s) = Xt2S P(s; t) � f(t):Proof: see Section 3.7, Corollary 3.7.2 (page 65).Proposition 3.1.7 (cf. [CoYa88, HaJo94, CoYa95]) Let (S;P) be a �nite fully prob-abilistic system and let S1, S2, �, � and p be as in Theorem 3.1.6. Moreover, letSNO = fs 2 S : �(s) = ;g, SYES a subset of S with S2 � SYES � fs 2 S : �(s) "= Path ful (s)g and S? = S n (SNO [SYES). Then, p is the unique �xed point of theoperator F 0 : (S ! [0; 1])! (S ! [0; 1]) which is given byF 0(f)(s) = 8><>: F (f)(s) : if s 2 S?1 : if s 2 SYES0 : if s 2 SNO .Here, F is as in Theorem 3.1.6 (page 36).Proof: The claim is a slight generalization of the results established in [CoYa88,HaJo94, CoYa95] and can be shown in a similar way.Remark 3.1.8 [Computing the probabilities p(s)] If S is �nite then Theorem 3.1.6(page 36) yields that the probabilities p(s) = Prob(�(s) ") can be obtained by iteration:

3.1. FULLY PROBABILISTIC SYSTEMS 37We take pn(s) = 1 if s 2 S2 and pn(s) = 0 if s 2 S n (S1 [S2), n = 0; 1; 2; : : :. Fors 2 S1 n S2, we de�ne p0(s) = 0 and, for n = 0; 1; 2; : : :,pn+1(s) = Xt2S P(s; t) � pn(t):Then, limpn(s) = p(s) for all s 2 S. This iterative method can be reformulated as follows.Let pn be the vector (pn(s))s2S and let Q be the matrix (qs;t)s;t2S whereqs;t = 8><>: P(s; t) : if s 2 S1 n S21 : if s = t 2 S20 : otherwise.Then, pn = Q � pn�1 = Q2 � pn�2 = : : : = Qn � p0: In particular, the vector p = (p(s))s2Sis given by p = limi!1 Q2ip0where the matrices Q2i are obtained by iterative squaring (i.e. by successively computingQ2i+1 = Q2i �Q2i, i = 0; 1; 2; : : :). Another possibility (used in [CoYa88, HaJo94, CoYa95])for computing the function p(�) is based on Proposition 3.1.7 (page 36). First, one com-putes the sets SNO and SYES by a graph analysis. Second, one solves the regular linearequation system x = A � x + b (or equivalently, (I�A) � x = b) where b = (bs)s2S? withbs = P(s; SYES), x = (xs)s2S?, A = (P(s; t))s;t2S? and I the jS?j � jS?j-identity matrix.Example 3.1.9 For the simple communication protocol of Example 1.2.1 (page 19) wecompute the probabilities that the message is eventually delivered correctly by takingS1 = S, S2 = fswaitg = SYES , SNO = ; and solving the linear equation systemxinit = 1 � xdel ; xlost = 1 � xdel ; xdel = 1100 � xlost + 99100which yields xinit = xlost = xdel = 1.In the following lemma, we give a graph-theoretical criteria for Prob(�(s)) = 1 wherewe assume that S1 = S and S2 = U . In that case, Prob(�(s)) is the probability for the\progress property" stating that, from state s, the system will eventually reach a U -state.Lemma 3.1.10 Let (S;P) be a �nite fully probabilistic system and U � S. Let � and� be as in Theorem 3.1.6 (page 36) where S1 = S and S2 = U . Let s 2 S and T =flast(�) : � 2 Path�n(s); � =2 � "�ng. Then, we have:�(t) 6= ; for all states t 2 T i� Prob(�(s)) = 1.Proof: see Section 9.5, Corollary 9.5.5 (page 242).Lemma 3.1.10 yields that whether or not a qualitative progress property of the type \withprobability 1, the system will eventually reach a U -state" holds does not depend on theexact probabilities but only the topology of the underlying directed graph.3Example 3.1.11 In Example 3.1.9 (page 37), we computed the probabilities x� = 1 forthe states of the communication protocol of Example 1.2.1 (page 19) to reach the stateswait by solving a linear equation system. Alternatively, we could apply Lemma 3.1.10.3This result is not surprising since a similar result for concurrent systems was established by Hart,Sharir & Pnueli [HSP83] (see Chapter 9, page 227).

38 CHAPTER 3. MODELLING PROBABILISTIC BEHAVIOURDe�nition 3.1.12 [Boundedness, cf. [LeSh82, HaSh84, LaSk89]] A fully probabilis-tic system (S;P) is called bounded i� there exists a real number c with 0 < c < 1 suchthat, for all s, t 2 S, if P(s; t) > 0 then P(s; t) � c.Clearly, each �nite fully probabilistic system is bounded. Moreover, whenever (S;P) isbounded and s a state in S then there are only �nitely many states t where P(s; t) > 0.I.e. in bounded systems, the set of (immediate) successors of a state is always �nite.3.2 Concurrent probabilistic systemsThe concept of non-determinism is necessary to describe the interleaving behaviour of par-allel (non-probabilistic or probabilistic) systems whose components work asynchronously.In this section we present the basic concepts of the MDP-based models that allow for bothprobabilistic and non-deterministic branching. Thus, the MDP-based models are suitableto specify the interleaving behaviour of randomized distributed systems (cf. Example1.2.2, page 20); but they are also appropriate for all other situations where the conceptof non-determinism might be useful, e.g. to represent underspeci�cation or incompleteinformation about the environment [JHY94, JoYi95, Sega95a] (cf. Example 1.2.3, page22).Like the models considered e.g. in [HSP83, PnZu93, SeLy94, Sega95a, BidAl95, dAlf97a],our basic model { called \concurrent probabilistic systems" { assigns to each state aset of non-deterministic alternatives where each of them stands for a randomized stepof the system. On the other hand, there are models, e.g. those considered in [Vard85,Hans91, CoYa95], that capture the branching structure of the purely probabilistic choicesand distinguish between probabilistic and non-probabilistic states. These two kinds ofMDP-based models have equivalent \power". We de�ne the models of the latter type asspecial instances of our basic model. Vice versa, we brie
y explain how the behaviourof a system described by our basic model can be speci�ed by a model that distinguishesbetween probabilistic and non-probabilistic states.De�nition 3.2.1 [Concurrent probabilistic system] A concurrent probabilistic sys-tem is a pair S = (S; Steps) where S is a set of states and Steps a function which assignsto each state s 2 S a set Steps(s) of distributions on S.4Let S = (S; Steps) be a concurrent probabilistic system. A state s is called terminal i�Steps(s) = ;. S is called �nite i� S and Ss2S Steps(s) are �nite. We write s �! � i�s 2 S and � 2 Steps(s) and refer to s �! � as a transition or a step of s. If � is ofthe form �1t then we also write s ! t rather than s ! �1t . Intuitively, Steps representsthe non-deterministic alternatives in each state: given a state s 2 S, a scheduler choosessome transition s �! � which represents a randomized step of the system, i.e. if s �! �is the chosen step then, with probability �(t), the system reachs the state t afterwards.We depict concurrent probabilistic systems as follows. We use circles for the states. Thicklines stand for the outgoing transitions from a state. The thick line corresponding to atransition s �! � is directed and ends in a small circle that represents the probabilistic4For the de�nition of a \distribution" and related notations, see Section 2.2, page 30.

3.2. CONCURRENT PROBABILISTIC SYSTEMS 39
s1 s2 sk

s
: : :�k kk
ks?������+ QQQQQQs�����p2p1 pk t

ssk
k
1?? or tskk?Figure 3.1: Pictures for the transition s �! �choice. The picture on the left of Figure 3.1 stands for a step s �! � where Supp(�) =fs1; : : : ; skg and �(si) = pi > 0, i = 1; : : : ; k. Transitions of the form s �! �1t are depictas shown in the pictures on the right.Example 3.2.2 The picture on the right shows asimple example for a concurrent probabilistic sys-tem where non-deterministic choice is present onlyin state s. The states t and u are \deterministic"in the sense that t and u have unique successorstates (as Steps(�) consists of a single distributionof the form �1x for some state x). The state v isterminal (as Steps(v) = ;). t u vs
l l llt12 12�@@R��	 ����	 @@@@R' -

����Further examples for concurrent probabilistic systems are given in the introduction: thesimple communication protocol SenderkReceiver of Example 1.2.2 (page 20) and theroulette player of Example 1.2.3 (page 22).5Some MDP-based models (such as strati�ed transition systems [vGSST90], the alternat-ing model [HaJo89, Hans91] or concurrent Markov chains [Vard85, CoYa88]) capture thebranching structure of the purely probabilistic choices and distinguish between proba-bilistic and non-probabilistic states. The behaviour in a probabilistic state is \purelyprobabilistic" which is described by a distribution on the state space while the behaviourin each other state s is \purely non-probabilistic" in the sense that none of the possiblesteps in s is randomized, i.e. Steps(s) consists of distributions �1t , t 2 S. Formally, thesemodels can be de�ned as special instances of concurrent probabilistic systems. We followthe notations of [vGSST90] and use the adjective \strati�ed" for these models.6De�nition 3.2.3 [Strati�ed system] A strati�ed system is a concurrent probabilisticsystem (S; Steps) such that for all s 2 S:Steps(s) � f�1t : t 2 Sg or jSteps(s)j = 1.Let (S; Steps) be a strati�ed system. A state s is called probabilistic i� Steps(s) = f�gfor some distribution � =2 f�1t : t 2 Sg. Otherwise, s is called non-probabilistic. Notethat the system behaviour in a non-probabilistic state s might be non-deterministic (if5Note that in the simple communication protocol of Example 1.2.2 (page 20), the states sinit , sdeland sack behave deterministically. Formally, the \non-deterministic" alternatives in these states canbe described by singleton sets consisting of a distribution that returns the probability 1 for the uniquesuccessor state.6See Section 3.6 (page 62) for the exact relation between our notion of a strati�ed system and theoriginal notion by van Glabbeek et al [vGSST90].

40 CHAPTER 3. MODELLING PROBABILISTIC BEHAVIOURjSteps(s)j � 2) or deterministic (if jSteps(s)j = 1, in which case Steps(s) = f�1tg for somestate t) or s might be terminal (if Steps(s) = ;).Notation 3.2.4 [Strati�ed transition probabilities] Let (S; Steps) be a strati�ed sys-tem. Then, the transition probability function P : S � S ! [0; 1] is given byP(s; t) = 8><>: �(t) : if s is probabilistic and Steps(s) = f�g1 : if s is non-probabilistic and s �! t0 : otherwise.We de�ned strati�ed systems as special instances of concurrent probabilistic systems.Nevertheless, the strati�ed view is as powerful as the concept of concurrent probabilisticsystems where each state change involves the resolution of a non-deterministic choice(the choice for some � 2 Steps(�)) and a probabilistic choice (the randomized choicecorresponding to the chosen distribution �). If we devide these two choices into two\steps" then the behaviour of a concurrent probabilistic system can be described by astrati�ed system. Intuitively, in the strati�ed view, the small circle in the picture of atransition s �! � is viewed as a state where the system performs a randomized step.Formally, if S = (S; Steps) is a concurrent probabilistic system then S can be identi�edwith the strati�ed system S 0 = (S 0; Steps 0) where S 0 = S [f(s; �) : s 2 S; � 2 Steps(s)g,Steps 0(s) = f�1(s;�) : � 2 Steps(s)g and Steps 0(s; �) = f�g. Of course, the resulting systemS 0 can be simpli�ed by removing states of the form (s; �1t).7Example 3.2.5 The system of Example 3.2.2(page 39) can be modelled by the strati�ed sys-tem shown on the right. The state w representsthe probabilistic choice that is resolved when instate s the transition � is selected; i.e. w standsfor the auxiliary state (s; �). The states (t; �1s),(u; �1u), (s; �1v) and (v; �1v) are omitted. t u vswm m mmm12 12@@@R���	 ����	 @@@@R' -
����3.2.1 Paths in concurrent probabilistic systemsExecution sequences (or paths) arise by resolving both the non-deterministic and proba-bilistic choices. Formally, an execution fragment or �nite path in a concurrent probabilisticsystem S = (S; Steps) is a nonempty �nite \sequence" � = s0 �1! s1 �2! s2 : : : �k! sk wherek � 0 and si 2 S, �i 2 Steps(si�1), �i(si) > 0, i = 1; 2; : : : ; k.8 � is called maximal i� skis terminal. An execution or fulpath is either a maximal execution fragment or an in�nite\sequence" � = s0 �1! s1 �2! s2 �3! : : : where s0; s1; s2; : : : 2 S and �i 2 Steps(si�1),�i(si) > 0, i = 1; 2; : : :. We use similar notations as in the fully probabilistic case (seepage 34): If
 is a (�nite or in�nite) path in S then
(i) (the (i + 1)-st state of
),
(i)(the i-th pre�x of
), j
j (the length of
), �rst(
) (the �rst state of
) and inf (
) (theset of states that occur in�nitely often in
) are de�ned as in the fully probabilistic case.7Distributions of the form �1t do not really represent randomized steps as they yield a unique nextstate.8Note that we write s ! � to denote that � is a possible step in s (i.e. � 2 Steps(s)) and s �! t todenote that � is a possible step of s which leads (with non-zero probability) to the state t.

3.2. CONCURRENT PROBABILISTIC SYSTEMS 41Similarly, for � to be a �nite path, last(�) denotes the last state of �, � " the set of allfulpaths where � is a pre�x, � "�n the set of �nite paths �0 where � is a pre�x of �0 and� # the set of �nite paths �0 where �0 is a pre�x of �. The pre�x relation �pre�x , theproper pre�x relation <pre�x , � ", � #, � "�n and \path concatenation" � �
 are de�nedas in the fully probabilistic case (see page 35). Moreover, for
 = s0 �1! s1 �2! s2 �3! : : :to be a (�nite or in�nite) path in S and i < j
j, we putstep(
; i) = �i+1:A state t is called reachable from s if there exists a �nite path � with �rst(�) = s andlast(�) = t. ReachS(s) denotes the set of states which are reachable from s.Example 3.2.6 For the system in Example 3.2.2 (page 39), � = s �! t �1s! s �1v! v is afulpath with �rst(�) = �(0) = s, last(�) = �(3) = v, �(1) = t, �(2) = s, step(�; 0) = �,step(�; 1) = �1s, step(�; 2) = �1v and j�j = 3. We have:�(2) = s �! t �1s! s; �(2) � �s �! t� = �(2) �! t = s �! t �1s! s �! tMoreover, � � v = �.9 The states s, t, u, v are reachable from s and t while only v isreachable from v, only u is reachable from u.PathSful denotes the set of all fulpaths in S, PathS�n the set of all �nite paths in S, andPathSful(s) the set of fulpaths � with �rst(�) = s. When it is clear from the contextwhat S is we abbreviate PathSful by Path ful , and similarly, PathS�n by Path�n , PathSful(s)by Path ful(s), and ReachS(s) by Reach(s). As in the fully probabilistic case, if � is a setof fulpaths in S and s 2 S then �(s) = � \ Path ful(s); if � is a set of �nite paths then�(s) = � \ Path�n(s).3.2.2 Adversaries of concurrent probabilistic systemsWe split a concurrent probabilistic system S = (S; Steps) into its computation trees (calledexecution trees in [HSP83] and maximal resolutions in [JoLa91]), with each componentdescribed as a fully probabilistic system. The computation trees arise by resolving thenon-deterministic choices (but not the probabilistic choices). It is convenient to supposethat the \environment" (called adversary in [SeLy94, Sega95a], policy in the theory ofMDPs, scheduler in [Vard85]) decides { based on the past history of the system { which ofthe possible steps to perform next. We follow the notations of [SeLy94, Sega95a] and usethe word \adversary" to denote the instance that resolves the non-deterministic choices.109Here, the state v stands for a �nite path of length 0.10We only consider deterministic adversaries, i.e. those that schedule a unique next step. The notion ofrandomization of adversaries or probabilistic adversaries has been investigated in [HSP83] and [SeLy94,Sega95a], where it is shown that the probability of a measurable set � with respect to a randomizedadversary is a convex combination of the measure of � with respect to non-randomized adversaries, andhence lies between the minimal and maximal measure of � with respect to non-randomized adversaries.Since we are only interested in the maximal and minimal measures, we shall not need the randomizedadversaries.

42 CHAPTER 3. MODELLING PROBABILISTIC BEHAVIOURDe�nition 3.2.7 [Adversary, simple adversary] Let S = (S; Steps) be a concurrentprobabilistic system. An adversary of S is a function A : Path�n ! Distr(S) such thatA(�) 2 Steps(last(�)) for all � 2 Path�n . An adversary A of S is called simple i� forevery state s 2 S there exists �s 2 Steps(s) with A(�) = �last(�) for all � 2 Path�nwhere last(�) = s.AdvS denotes the set of all adversaries of S and AdvSsimple the set of simple adversaries.When clear from the context we write Adv and Adv simple rather than AdvS and AdvSsimple .An adversary chooses for every �nite path � in S an outgoing transition from last(�).Simple adversaries resolve the non-determinism by selecting for every state a next stepwhich is executed whenever the state s is reached { independent of the past history.11Example 3.2.8 The system of Figure 3.2.2 (page 39) has exactly two simple adversariesA, B. These are given by A(s) = �, B(s) = �1v. Note that the other states do not behavenon-deterministically because there is at most one outgoing transition.Given an adversary A, the \behaviour" of S under A can be described by a bounded fullyprobabilistic system SA.Notation 3.2.9 [The fully probabilistic system SA] If A 2 Adv thenSA = �PathS�n ;PA�is the fully probabilistic system where PA is given by PA(�; � A(�)�! s) = A(�)(s) andPA(�) = 0 in all other cases.Note that, in general, SA is in�nite even if S is �nite. If A a simple adversary then SAcan be identi�ed with the fully probabilistic system (S;A) where A(s; t) = A(s)(t) forall s, t 2 S. For S to be �nite and A 2 Adv simple , the associated fully probabilisticsystem SA = (S;A) is �nite. For an adversary A of a concurrent probabilistic systemS = (S; Steps) and � to be an execution fragment, we de�ne:� PathAful denotes the set of all paths � 2 Path ful with step(�; i) = A(�(i)) for all i � 0.� PathA�n is the set of all �nite paths � 2 Path�n with step(�; i) = A(�(i)) for all i < j�j.� � "A= f� 2 PathAful : � �pre�x �g and � "A�n= f�0 2 PathA�n : � �pre�x �0g� If � is a set of fulpaths in S then �A = � \ PathAful .� If � is a set of �nite paths in S then�A = � \ PathA�n ; � "A= [�2� � "A; � "A�n= [�2� � "A�n :� ReachA(s) = flast(�) : � 2 PathA�n(s)gNote that, in the notations introduced on page 41, PathAful(s) = Path ful(s) \ PathAful ,PathA�n(s) = Path�n(s) \ PathA�n , �A(s) = � \ PathAful(s) and �A(s) = � \ PathA�n(s).11In some sense, simple adversaries are extremely unfair and would be ruled out for practical purposes.We need them only for the sake of convenience.

3.2. CONCURRENT PROBABILISTIC SYSTEMS 43We identify each (�nite or in�nite) path
 = �0 ! �1 ! : : : in SA which starts in a states0 2 S (i.e. �0 = s0 is a path of length 0) with the path last(�0) A(�0)�! last(�1) A(�1)�! : : :in S. Vice versa, if
 2 PathAful [PathA�n then we identify
 with the path
(0) !
(1) !
(2) ! : : : in SA. This yields a one-to-one correspondence between the paths
 2 PathA�n(s) [PathAful(s) and the paths in SA that start in s. Hence, the probabilitymeasure Prob on PathSAful (s) (de�ned as in Section 3.1 on page 35) turns PathAful(s) into aprobability space. If � � Path ful(s) and �A is measurable then we refer to Prob(�A) asthe measure of � with respect to A.Example 3.2.10 For the system of Example 3.2.2 (page 39) and the �nite path � ofExample 3.2.6 (page 41), we have � 2 PathA�n(s) for each adversary A withA(s) = � and A�s �! t �1s! s� = �1v.Moreover, for each such adversary A, the probability measure of � "A is 1=2.Theorem 3.2.11 Let (S; Steps) be a concurrent probabilistic system, S1, S2 � S and let� be the set of �nite paths � such that �(i) 2 S1, i = 0; 1; : : : ; j�j � 1, and last(�) 2 S2.For s 2 S and A 2 Adv, letpmin(s) = infA2Adv Prob ��A(s) "A� ; pmax (s) = supA2Adv Prob ��A(s) "A� :Then, pmin and pmax are the least �xed points of the operatorsFmin , Fmax : (S ! [0; 1])! (S ! [0; 1])that are de�ned as follows. If s 2 S2 then F (f)(s) = 1. If s 2 S n (S1 [S2) thenF (f)(s) = 0. If s 2 S1 n S2 thenFmin(f)(s) = min (Xt2S �(t) � f(t) : � 2 Steps(s)) ;Fmax (f)(s) = max (Xt2S �(t) � f(t) : � 2 Steps(s)) :Proof: see Section 3.7, Corollary 3.7.4 (page 67).Remark 3.2.12 [Computing the probabilities pmin(s) and pmax (s)] Theorem 3.2.11yields that the values p�(s) can be approximated with the following iterative method. Weput p�n(s) = 1 if s 2 S2 and p�n(s) = 0 if s 2 S n (S1 [S2), n = 0; 1; 2; : : :. For s 2 S1 n S2,we de�ne p�0(s) = 0 and, for n = 0; 1; 2; : : :,pminn+1(s) = min (Xt2S �(t) � pminn (t) : � 2 Steps(s)) ;pmaxn+1(s) = max (Xt2S �(t) � pminn (t) : � 2 Steps(s)) :Then, limp�n(s) = p�(s) for all s 2 S. As proposed by [CoYa90, BidAl95], for S tobe �nite, the values p�(s) can also be computed by solving linear optimization problems

44 CHAPTER 3. MODELLING PROBABILISTIC BEHAVIOURwhich can be solved in polynomial time with well-known methods of linear programming[Derm70, Bert87, Schr87].Computation of pmax (s): Let S n (S1 [S2) � SNO � fs 2 S : �(s) = ;g andS? = S n (SNO [S2). We de�ne ys = 1 if s 2 S2 and ys = 0 if s 2 SNO . For eachstate s 2 S?, we choose a variable ys. Then, the vector (pmax (s))s2S? is the uniquesolution of the linear minimization problem 0 � ys � 1 andys � Xt2S �(t) � yt; � 2 Steps(s)where Ps2S? ys is minimal.Computation of pmin(s): Let SNO = fs 2 S : �(s) = ;g and S? = S n (SNO [S2). Wede�ne ys = 1 if s 2 S2 and ys = 0 if s 2 SNO . Then, the vector (pmin(s))s2S? is the uniquesolution of the linear maximization problem 0 � ys � 1 andys � Xt2S �(t) � yt; � 2 Steps(s)where Ps2S? ys is maximal.The set fs 2 S : �(s) = ;g can be obtained by a reachability analysis in the underlyingdirected graph. Note that for the computation of the values pmin(s) it is essential that wedeal with SNO = fs 2 S : �(s) = ;g (rather than e.g. SNO = S n (S1[S2) as it is possiblefor computing pmax (�)). For instance, for the system (fsg; Steps) where Steps(s) = f�1sgand S1 = fsg, S2 = ; we have � = ; (and hence pmin(s) = 0) while the optimizationproblem 0 � ys � 1 and ys � Xt2S �(t) � yt; � 2 Steps(s)where Pt yt is maximal yields ys = 1 (because we just deal with the inequation ys �Pt �1s(t) � yt = ys).Example 3.2.13 We consider the concurrent probabilistic system of Example 1.2.3 onpage 22 (see Figure 1.3, page 22) that describes the one-day-behaviour of the rouletteplayer. The maximal/minimal probabilities to reach the state shappy (i.e. the state wherethe roulette player leaves the casino winning the last game) can be computed by takingS1 = ; and S2 = fshappyg. By Theorem 3.2.11 (page 43), p� : S ! [0; 1] is the leastfunction S ! [0; 1] that satis�es p�(shappy) = 1, p�(ssad) = 0 andp�(sinit) = p�(splay) = p�(slost) = 12 � p�(swon) + 12 � p�(slost);pmin(swon) = minnpmin(splay); 12o ; pmax (swon) = maxnpmax (splay); 12o :Thus, pmin(s) = 0 for all s 2 S n fshappyg and pmax (s) = 1=2 for all s 2 S n fshappy ; ssadg.Note that the minimal probabilities pmin(s) = 0 are obtained by the simple adversary Athat always chooses the transition swon �! splay (i.e. the pathological adversary whichforces the roulette player to stay forever in the casino). For any other adversary A, theprobability for sinit to reach shappy is the maximal probability pmax (sinit) = 1=2.

3.2. CONCURRENT PROBABILISTIC SYSTEMS 453.2.3 Fairness of non-deterministic choiceIn the veri�cation of non-probabilistic concurrent systems, it is well-known that certainliveness properties can only be established when appropriate fairness assumptions aboutthe resolution of the non-deterministic choices are made. Clearly, this also holds for con-current probabilistic processes as they also allow for non-deterministic choice. Thus, as inthe non-probabilistic case, certain (qualitative or quantitative) liveness properties cannotbe established unless fairness of non-deterministic choice is imposed. For instance, forthe roulette player of Example 1.2.3 on page 22 (see Figure 1.3, page 22) the quantitativeliveness property stating that there is a 50% chance for the roulette player to leave thecasino while winning the last game (i.e. eventually to reach the state shappy) can only beestablished when fairness in the state swon is assumed (see Example 3.2.13, page 44).Fairness of non-deterministic choice (i.e. fairness of adversaries) of concurrent probabilis-tic systems was �rst introduced by Hart, Sharir & Pnueli [HSP83] and later consideredby Vardi [Vard85] and several other authors. Fairness of non-deterministic choice requiresthat { in some sense { the environment (the adversary) resolves the non-deterministicchoices in a fair manner. [HSP83] de�nes two types of fairness for adversaries: an ad-versary is strictly fair i� each of its fulpaths is fair, and it is fair if almost all executionsequences are fair (i.e. if the measure of its fair fulpaths is 1) where fairness of a fulpath canbe de�ned as in the non-probabilistic case. [HSP83] deals with concurrent probabilisticsystems which arise by the interleaving of sequential probabilistic processes and de�nes afulpath � to be fair i� each sequential process is activated in�nitely often in � (i.e. [HSP83]deals with \process fairness"). [Vard85] deals with \concurrent Markov chains" (strati�edsystems, see De�nition 3.2.3, page 39) { which distinguish between non-deterministic andprobabilistic states { and de�nes a fulpath � to be fair if all possible successor states of anon-deterministic state, in which fairness is required and which occur in�nitely often in�, also occur in�nitely often.In this section, we follow the approachs of [HSP83, Vard85] and de�ne fairness of ad-versaries. We adapt Vardi's notion of fairness to our model for concurrent probabilisticprocesses { which does not distinguish between non-deterministic and probabilistic states{ and de�ne an execution sequence � to be fair if none of the non-deterministic alterna-tives in a state occurring in�nitely often in � is refused continuously. Moreover, we de�neW -fairness for a set W of states in which fairness is required.12De�nition 3.2.14 [Fairness for fulpaths] Let S = (S; Steps) be a concurrent proba-bilistic system and � a fulpath in S. � is called fair i� either � is �nite or, for eachs 2 inf (�) and each � 2 Steps(s), there are in�nitely many indices i with �(i) = s andstep(�; i) = �.Remark 3.2.15 [Process fairness �a la [HSP83]] Our notion of fairness of a fulpath isstronger than fairness of fulpaths in [HSP83]. In [HSP83] \process fairness" is considered,in the sense that all sequential processes (whose composition is the concurrent probabilisticsystem under consideration) are activated in�nitely many times in fair fulpaths �. If Sis a concurrent probabilistic system which arises through the interleaving of sequential12An alternative notion of fairness for concurrent probabilistic systems and a discussion about therelation to our notion is presented in [dAlf97a].

46 CHAPTER 3. MODELLING PROBABILISTIC BEHAVIOURprocesses without shared variables then fairness in the sense of De�nition 3.2.14 (page 45)implies fairness in the sense of [HSP83]; to see this suppose that there are k sequentialprobabilistic processes P1; : : : ;Pk where each of them is described by a Markov chainSi = (Si;Pi), i = 1; : : : ; k, and that S = (S; Steps) where S = S1 � : : : � Sk andSteps(s1; : : : ; sk) = f�i(s1;:::;sk) : i = 1; : : : ; kg where�i(s1;:::;sk)(t1; : : : ; tk) = (Pi(si; ti) : if tj = sj, j = 1; : : : ; k, i 6= j0 : otherwise.Then, whenever � is a fulpath in S that is fair in the sense of De�nition 3.2.14 (page 45)then � is fair in the sense of [HSP83], which requires that for each i 2 f1; : : : ; kg thereare in�nitely many indices j � 0 with step(�; j) = �i�(j).Notation 3.2.16 [The set Fair of all fair fulpaths] FairS (or shortly Fair) denotesthe set of fair fulpaths in S.As in [HSP83] we consider two kinds of fairness for adversaries: strictly fair adversaries,where all fulpaths are fair, and fair adversaries, where the set of fair paths has probability1, i.e. where almost all fulpaths are fair.De�nition 3.2.17 [(Strict) fairness of adversaries, cf. [HSP83, Vard85]] Let S bea concurrent probabilistic system and F an adversary for S. F is called� strictly fair i� PathFful � Fair,� fair i� Prob(FairF (s)) = 1 for all states s in S.AdvSsfair denotes the set of strictly fair adversaries, AdvSfair the set of fair adversaries.Clearly, strictly fair adversaries are fair. If F is a fair adversary then for each � 2 PathF�nthere exists � 2 FairF where � is a pre�x of �. This re
ects \liveness" in the sense ofAlpern & Schneider [AlSch84] which states that every �nite computation can be extendedto an in�nite (fair) computation.Example 3.2.18 For the system of Example 3.2.2 (page 39), the fulpath�0 = s �! t �1s! s �! t �1s! s �! : : :is not fair since s 2 inf (�0) and �1v 2 Steps(s) n fstep(�0; i) : i � 0g. Every other fulpath� 2 Path ful(s) is fair (as it \ends" in v or u). Thus,Fair(s) = Path ful(s) n f�0g:The simple adversary B with B(s) = �1v is strictly fair since �0 =2 PathBful . The simpleadversary A with A(s) = � is not strictly fair since �0 2 PathAful(s). Nevertheless, A is fair.To see this, consider the set � of all fulpaths � 2 Path ful where �(i) 2 fu; vg for some i.Then, �A(x) = FairA(x) for all states x and Prob(FairA(u)) = Prob(FairA(v)) = 1,Prob �FairA(s)� = 1Xi=0 12 � �12�i = 1and Prob �FairA(t)� = Prob �t �1s! � : � 2 FairA(s)� = 1. Hence, A is fair.

3.3. LABELLED PROBABILISTIC SYSTEMS 47Following Vardi [Vard85], the above de�nition of fair fulpaths or fair adversaries canbe weakened by requiring fairness with respect to the non-deterministic choices only incertain states rather than in all states.De�nition 3.2.19 [W -Fairness of fulpaths] Let S = (S; Steps) be a concurrent prob-abilistic system and W � S. A fulpath � in S is called W -fair i�, for all s 2 inf (�) \Wand all � 2 Steps(s), there are in�nitely many indices j � 0 with step(�; j) = �.Fairness with respect to W = S (in the sense of De�nition 3.2.19) is weaker than fairnessof a fulpath in the sense of De�nition 3.2.14 (page 45).13 Vardi's notion of fairness ofadversaries adapted to our model for concurrent probabilistic systems is the following.De�nition 3.2.20 [W -Fairness of adversaries, cf. [Vard85]] Let S and W be asbefore. An adversary F is calledW -fair i�, for all s 2 S, the measure of the set of fulpaths� 2 PathFful(s) which are W -fair is 1. AdvSW fair denotes the set of W -fair adversaries.When clear from the context, we write Adv sfair , Adv fair or AdvW fair rather than AdvSsfair ,AdvSfair or AdvSW fair . Clearly, Adv sfair � Adv fair � AdvW fair :3.3 Labelled probabilistic systemsFormal reasoning about the behaviour of programs requires additional informations aboutthe states and/or the transitions. In the literature two kinds of labellings have been es-tablished: one uses atomic propositions (or, more general, �rst order logical formulas) aslabels for the states, the other uses action labels for the transitions. Models based onthe former type of labellings are often called Kripke structures and used in the context oftemporal logic speci�cations while the models based on the latter type of labellings areoften called labelled transition systems and used in the context of process algebras andimplementation relations. Several authors proposed transformation techniques betweenproposition-labelled and action-labelled systems, see e.g. [JHP89, dNVa90]. Even thoughthey are originally formulated for non-probabilistic systems they can also be applied inthe probabilistic case. We follow these standard approachs and use action labels for thetransitions in Chapters 4, 5, 6 and 7 where we work with process calculi and implemen-tation relations and proposition labels for the states in Chapter 9 where we deal withtemporal logic speci�cations.3.3.1 Action-labelled probabilistic systemsIn the action-labelled approach one usually deals with a set Act of abstract action symbols.Each action symbol a represents an activity of the program that is viewed to be \atomic"in the sense that it cannot be interleaved by actions of programs which run in parallel.Typical examples are communication actions like sending or receiving a message along acertain channel.13Note that in De�nition 3.2.19 we do not require that step(�; j) = � and �(j) = s.

48 CHAPTER 3. MODELLING PROBABILISTIC BEHAVIOURsinitsdel slostswait
send !, 1ack?, 1 � , 0:99� , 0:01� , 1�� �

�� �
 �� �

�� �
?����	

'-
JJJJ HHjJJJJHHY

Figure 3.2: The sender with action labelsIn (non-probabilistic) labelled transition systems, the possible steps in the states are de-scribed by a transition relation �! � S �Act �S (where Act stands for the underlyingset of actions), i.e. the state changes are associated with action labels. Intuitively, s a�!tasserts that, in state s, it is possible to perform the action a and to reach state t after-wards. Hence, for �xed state s, the set f(a; t) : s a�!tg represents the non-deterministicalternatives in state s. This can be adapted for probabilistic systems as follows: Inthe concurrent case, the transitions are associated with action labels (i.e. one deals withSteps(s) to be a set of pairs (a; �) where a is an action label and � a distribution on thestate space.) In the fully probabilistic case, the arguments of the transition probabilityfunction P are extended by an action (i.e. one deals with the probabilities P(s; a; t) forstate s to perform the action a and to reach t afterwards).The action set Act : Throughout all sections, Act stands for a nonempty set of actions.For L � Act , L� denotes the set of �nite sequences over L. The empty sequence is denotedby ". L+ denotes the set of �nite nonempty sequences over Act , i.e. L+ = L� n f"g. InChapters 4 and 5, we assume that Act contains a special symbol � . Intuitively, � stands forany \internal" activity of the system which is invisible for an observer (or the environmentof the system). We refer to � as the internal action. The other actions are called visible.We use greek letters �; �; : : : to denote visible actions and arabic letters a; b; : : : to rangeover all actions.De�nition 3.3.1 [Action-labelled fully probabilistic systems] An action-labelledfully probabilistic system is a tuple (S;Act ;P) consisting of a set S of states, a nonemptyset Act of actions and a transition probability function P : S � Act � S ! [0; 1] suchthat, for each s 2 S, P(s; a; t) > 0 for at most countably many pairs (a; t) 2 Act � S andPa;t P(s; a; t) 2 f0; 1g.Example 3.3.2 [The sender with action labels] Figure 3.2 (page 48) shows an action-labelled extension of the simple communication protocol of Example 1.2.1 (page 19). Weuse the visible actions send ! (an output action by which the sender passes the messageto the medium) and ack? (an input action which stands for the receipt of the acknowl-edgement). The other steps are supposed to be invisible and thus labelled by the specialaction symbol � .Let (S;Act ;P) be an action-labelled fully probabilistic system. For s 2 S, C � S, a 2 Act

3.3. LABELLED PROBABILISTIC SYSTEMS 49and L � Act , we de�neP(s; a; C) = Xt2C P(s; a; t); P(s; a) = P(s; a; S); P(s; L) = Xa2L P(s; a):An execution fragment or �nite path is a �nite \sequence" � = s0 a1! s1 a2! s2 a2! : : : ak!sk such that s0; s1; : : : ; sk 2 S, a1; : : : ; ak 2 Act and P(si�1; ai; si) > 0, i = 1; : : : ; k.Maximality, �(i), �(i), �rst(�), last(�), j�j, P(�), � " are de�ned as in the unlabelledcase (see page 34 �). If � is as above then we put trace(�) = a1a2 : : : ak: An executionor fulpath in (S;Act ;P) is either a maximal execution fragment or an in�nite \sequence"� = s0 a1! s1 a2! s2 a2! : : : where s0; s1; : : : ;2 S, a1; a2; : : : 2 Act and P(si�1; ai; si) > 0,i = 1; 2; : : :. As before, a path denotes an execution fragment or execution. For � to bean in�nite path, �(i), �(i), �rst(�) and j�j are de�ned in the obvious way.Example 3.3.3 For the system of Figure 3.2 (page 48),� = sinit send !�! sdel ��! slost ��! sdel ��! slost ��! : : :is an execution (fulpath) with �(2) = sinit send !�! sdel ��! slost , �rst(�) = sinit , �(3) = sdel ,P(�(4)) = 1 � 0:01 � 1 � 0:01 = 0:0001 and trace(�(4)) = send ! � � � .The probabilities Prob(s;
; C): The sigma-�eld SigmaField(s) and the probabilitymeasure Prob are de�ned as in the unlabelled case (Section 3.1, page 35). For s 2 S,
 � Act� and C � S, we de�ne Prob(s;
; C) to be the probability for s to reach Cvia an execution fragment that is labelled by some string of
. The formal de�nition ofProb(s;
; C) is as follows. Let Path�n(s;
; C) be the set of �nite paths � 2 Path�n(s)trace(�) 2
 and last(�) 2 C. Let Path ful(s;
; C) = S�2Path�n (s;
;C) � ", Path ful(s;
)= Path ful(s;
; S) and Path ful(s;
; t) = Path ful(s;
; ftg). We de�ne Prob(s;
; C) =Prob(Path ful(s;
; C)), Prob(s;
; t) = Prob(s;
; ftg) and Prob(s;
) = Prob(s;
; S).Proposition 3.3.4 Let (S;Act ;P) be an action-labelled fully probabilistic system andC � S. The function S� 2Act� ! [0; 1], (s;
) 7! Prob(s;
; C), is the least �xed point ofthe operator F : �S � 2Act� ! [0; 1]� ! �S � 2Act� ! [0; 1]� which is de�ned as follows.F (f)(s;
) = 1 if s 2 C and " 2
. If s =2 C or " =2
 thenF (f)(s;
) = X(a;t)2Act�S P(s; a; t) � f(t;
=a; C)where
=a = fx : ax 2
g.14 If S is �nite and SNO = fs 2 S : Path ful(s;
; C) = ;g,SYES = C if " 2
, SYES = ; if " =2
 and S? = S n (SNO [SYES) then the function(s;
) 7! Prob(s;
; C) is the unique �xed point of the operator F 0 : �S � 2Act� ! [0; 1]�!�S � 2Act� ! [0; 1]� which is de�ned by:F 0(f)(s;
) = 8><>: F (f)(s;
) : if s 2 S?1 : if s 2 SYES0 : if s 2 SNOwhere F is de�ned as above.14Recall that " denotes the empty word in Act�.

50 CHAPTER 3. MODELLING PROBABILISTIC BEHAVIOURProof: easy veri�cation. Uses Theorem 3.1.6 (page 36).The probabilities Prob(s; � �; C) and Prob(s; � ��� �; C): In what follows, we identifya regular expression (e.g. � �, � �� or � ��� �) with the corresponding set of traces. Forinstance, Prob(s; � �; t) denotes the probability to reach t from s via internal actions,Prob(s; a1a2 : : : ak) stands for the probability for s to perform the trace a1a2 : : : ak. Clearly,for �nite action-labelled fully probabilistic systems and regular expressions of the form� �, � �� and � ��� �, the second part of Proposition 3.3.4 yields that the probabilitiesProb(s;
; C) can be computed by a reachability analysis in the underlying directed graph(which yields SNO and S?) and solving a linear equation system.Example 3.3.5 Consider the simple communication protocol of Example 3.3.2 on page48 (Figure 3.2, page 48). The probability Prob(sinit ; � � send ! � �; swait) can be computedby solving the linear equation system:xinit = 1 � ydelydel = 0:01 � ylost + 0:99 � ywaitylost = 1 � ydel ; ywait = 1(Here, y� = Prob(s�; � �; swait).) We get Prob(sinit ; � � send ! � �; swait) = xinit = 1.Next we extend concurrent probabilistic systems by action labels. For this, each transitionin the system is associated with an action label. I.e. we deal with a function Steps thatassigns to each state s a set of pairs (a; �) where a is an action and � a distribution on thestate space. Thus, action-labelled concurrent probabilistic systems are associated with atransition relation �! � S � Act �Distr(S).De�nition 3.3.6 [Action-labelled concurrent probabilistic system] An action- la-belled concurrent probabilistic system is a tuple (S;Act ; Steps) where S is a set of states,Act a nonempty set of actions and Steps : S ! 2Act�Distr(S) a function which assigns toeach state s a set Steps(s) of pairs (a; �) 2 Act �Distr(S).Let S = (S;Act ; Steps) be an action-labelled concurrent probabilistic system. S is called�nite i� S, Act and Ss2S Steps(s) are �nite. We write s a�!� i� s 2 S, a 2 Act and(a; �) 2 Steps(s) and refer to s a�!� as a transition or a step of s. If � is of the form �1tthen we also write s a�!t rather than s a�!�1t . As in the unlabelled case, for each state s,the elements of Steps(s) represent the non-deterministic alternatives in the state s. Givena state s, an adversary chooses some outgoing transition s a�!�. Then, the action a isperformed and the next state is chosen randomly according to the distribution �.Example 3.3.7 [The communication protocol with action labels] The simple com-munication protocol of Example 1.2.2 (page 20) can be extended by action labels as shownin Figure 3.3 on page 51. Here, we assume Act = fproduce; consume; tryg where producestands for the action by which the sender generates a message and passes the message tothe medium, consume for the action by which the receiver reads and works up the messageand acknowledges the receipt while try represents the actions by which the medium triesto deliver the message.Paths and adversaries of action-labelled concurrent probabilistic systems are de�ned asin the unlabelled case (see Sections 3.2.1 and 3.2.2) where the action labels are added.

3.3. LABELLED PROBABILISTIC SYSTEMS 51sinitsdel soksack 0:990:01
�� �
�� �
 �� �
�� �

u
produce

produceconsume
consumetry?? ����	@@@@@

'- $�
&��� -

Figure 3.3: The simple communication protocol with action labelsFor instance, a path is of the form s0 a1;�1�! s1 a2;�2�! : : :, adversaries are functions thattake a �nite path � as their input and return a step of the last state of �, i.e. a pairA(�) = (a; �) 2 Steps(last(�)).Non-probabilistic labelled transition systems (where the transition relation�! is a subsetof S�Act�S) arise as special cases of action-labelled concurrent probabilitistic systems byidentifying each \non-probabilistic transition" s a�!t with the \probabilistic transition"s a�!�1t . I.e. the non-probabilistic labelled transition system (S;Act ;�!) corresponds tothe probabilistic system (S;Act ; Steps) where Steps(s) = n(a; �1t) : s a�!to.Let S = (S;Act ; Steps) be an action-labelled concurrent probabilistic system.Notation 3.3.8 [The sets Stepsa(s) and act(s)] For s 2 S and a 2 Act, letStepsa(s) = f� : s a�!�g, act(s) = fa 2 Act : Stepsa(s) 6= ;g.De�nition 3.3.9 [Finitely branching, image-�nite systems] S is called� �nitely branching i�, for each s 2 S, Steps(s) is �nite,� image-�nite i�, for each s 2 S and a 2 Act, Stepsa(s) is �nite.De�nition 3.3.10 [Reactive systems, cf. [LaSk89, vGSST90]] S is called reactivei�, for each s 2 S and a 2 Act, jStepsa(s)j � 1.The use of reactive systems is motivated by the assumption that the system \reacts" onthe stimuli of the environment which o�ers the communication on certain actions. Thechoice between several (di�erent) actions is not under the control of the system (hence,no probabilistic assumptions are { or can be { made about the resolution of the choicebetween the actions) while the choice between the several branches of the same actionis resolved randomly according to a certain distribution. For further details about thereactive view see [LaSk89, vGSST90].In what follows, we often describe reactive systems as tuples (S;Act ;P) where P : S �Act � S ! [0; 1] returns the probability P(s; a; t) for the transition s a�!t (if it exists).

52 CHAPTER 3. MODELLING PROBABILISTIC BEHAVIOURNotation 3.3.11 [Reactive transition probabilities] If S is reactive then the inducedtransition probability function P is given by P(s; a; t) = 0 if Stepsa(s) = ; and P(s; a; t) =�(t) if Stepsa(s) = f�g.For the extension of strati�ed systems (De�nition 3.2.3, page 39) by action labels we makethe requirement that the transition of the probabilistic states are labelled by a specialaction symbol arandom that stands for any activity that resolves a probabilistic choice(e.g. \tossing a fair coin").De�nition 3.3.12 [Action labels in strati�ed systems] An action-labelled strati�edsystem is an action-labelled concurrent probabilistic system (S;Act ; Steps) such that Actcontains the special action arandom and, for all s 2 S:� either arandom =2 act(s) and Steps(s) � f(a; �1t) : t 2 S; a 2 Actg� or farandomg = act(s) and jSteps(s)j = 1.Thus, for any probabilistic state s of an action-labelled strati�ed system, Steps(s) =f(arandom ; �)g for some distribution �.3.3.2 Proposition-labelled probabilistic systemsIn the proposition-labelled approach, a state is viewed as a function which assigns valuesto the program and control variables. In many applications, it su�ces to abstract fromthe exact values of certain (or all) variables and just to work with assertions about thevalues of certain variables. Typically, these assertions are formulated in a �rst order orpropositional logical framework. For instance, we can use atomic propositions of the formax=v which states that the current value of variable x is v or ax<v which states that thecurrent value of variable x is less than v. In many applications, it su�ces to use a �nitenonempty set AP of atomic propositions and to deal with a labelling function L : S ! 2APthat assigns to each state s the set L(s) of atomic propositions that are satis�ed in s.De�nition 3.3.13 [Proposition-labelled probabilistic systems] A proposition-la-belled probabilistic system is a tuple (S;AP ;L) consisting of a (fully or concurrent)probabilistic system S, a �nite nonempty set AP of atomic propositions and a labellingfunction L : S ! 2AP which assigns to each state s 2 S a set L(s) of atomic propositions.Example 3.3.14 [Sock selection problem] We brie
y explain how to use proposition-labelled probabilistic systems to specify the behaviour of randomized algorithms. Weconsider the \sock-selection problem" of [GSB94]. The starting point is a dresser drawerwith 2n socks, n read socks and n blue socks. The problem is to extract a matchingpair of socks (i.e. two red socks or two blue socks) where it is not allowed to have athand more than two socks at any time and where a sock, once extracted from the drawer,cannot be put back in the drawer. The randomized method of [GSB94] can be sketched asfollows. We extract the �rst two socks. If we do not have a matching pair then we chooserandomly one of the two socks, threw it away and replace it by the next sock from thedrawer. We proceed in this way until we have a matching pair or no more socks are in thedrawer. As shown in [GSB94], the expected number of socks that have to be extracted

3.4. BISIMULATION AND SIMULATION 53from the drawer until a matching pair is obtained is approximately 4. Nevertheless,there is a small chance that the algorithm fails (i.e. does not return a matching pair ofsocks). This can be seen by analyzing the induced Markov chain: Given a �xed sequencesock1; sock2; : : : ; sock2n of socks that represents the order in which the socks are extractedfrom the drawer the behaviour of the algorithm can be described by a fully probabilisticsystem. We use the state space S = fred ; blueg � fred ; blueg � f0; 1; : : : ; 2n � 2g wherethe �rst two components stand for the colors of the two socks we have in hand while thelast component is the number of socks that are still in the drawer. The terminal statesare those states hc1; c2; ki where either c1 = c2 (the states where we have a matching pair)or k = 0 (the states where the drawer is empty). If c1 6= c2 and k � 1 then we have thetransition probabilitiesP(hc1; c2; ki; hc; c2; k � 1i) = P(hc1; c2; ki; hc1; c; k � 1i) = 12where c = color(sock2n�k) is the color of sock2n�k. Figure 3.4 (page 53) shows the fullyprobabilistic system that we obtain for n = 2 and the sequence red ; blue; red ; blue. Forred ; blue; 2red ; blue; 1 red ; red ; 1blue; blue; 0red ; blue; 0
�� �
�� �
 �� �
�� �
�� �

12 1212 12
@@@@R����	@@@@R����	Figure 3.4: The fully probabilistic system for n = 2 and the sequence red ; blue; red ; blueanalyzing the correctness of the algorithm one might use a single atomic propositionsuccess that characterizes the successful states (i.e. the states where a matching pair isfound). Hence, we deal with the labelling function L where success 2 L(hc1; c2; ki) i�c1 = c2. Using Theorem 3.1.6 (page 36) or Proposition 3.1.7 (page 36), it can be shownthat the probability to reach a success-labelled state from hc1; c2; ki (where c1 6= c2) is1 � 1=2k. By considering the initial state sinit = hcolor(sock1); color(sock2); 2n � 2i weobtain that the probability to get a matching pair is 1� 1=22n�2.3.4 Bisimulation and simulationBisimulation equivalence [Miln80, Park81] is one of the standard concepts to obtain anatural notion of \process equality", i.e. a notion of \behaves like". While bisimulationis \bi-directed" and asserts that each step of one process can be simulated by a step ofthe other process, simulation is \uni-directed" and states that for each step of the �rstprocess (the \implementation") there is a corresponding one of the second process (the\speci�cation").In this section, we recall the de�nition of bisimulation equivalence as introduced byLarsen & Skou [LaSk89] for reactive systems (and its modi�cations for action-labelled

54 CHAPTER 3. MODELLING PROBABILISTIC BEHAVIOURconcurrent probabilistic systems [SeLy94] and for action-labelled fully probabilistic sys-tems [vGSST90]). Section 3.4.2 presents the notion of a simulation �a la Segala & Lynch[SeLy94] for action-labelled concurrent probabilistic systems. Moreover, we show how toadapt this notion of a simulation for fully probabilistic systems with action labels.153.4.1 BisimulationIn [LaSk89], Larsen & Skou introduce probabilistic bisimulation for reactive systems asan elegant extension of bisimulation for non-probabilistic systems [Miln80, Park81]. VanGlabbeek et al [vGSST90] reformulate probabilistic bisimulation for action-labelled fullyprobabilistic; Segala & Lynch [SeLy94] for action-labelled concurrent systems (which {when applied to reactive systems { yields the original de�nition by Larsen & Skou).De�nition 3.4.1 [Bisimulation (fully probabilistic case), cf. [vGSST90]] A bi-simulation on an action-labelled fully probabilistic system (S;Act ;P) is an equivalencerelation R on S such that P(s; a; C) = P(s0; a; C) for all (s; s0) 2 R, all a 2 Act andC 2 S=R.De�nition 3.4.2 [Bisimulation (concurrent case), cf. [SeLy94]] A bisimulation onan action-labelled concurrent probabilistic system (S;Act ; Steps) is an equivalence relationR on S such that for all (s; s0) 2 R:If s a�!� then there is a transition s0 a�!�0 with �[C] = �0[C] for all C 2 S=R.De�nition 3.4.3 [Bisimulation equivalence �] Two states s1 and s2 of an action-labelled (fully or concurrent) probabilistic system are called bisimilar (denoted by s1 � s2)i� there exists a bisimulation which contains (s1; s2).Clearly, the above notion of a bisimulation equivalence applied to a non-probabilisticsystem (S;Act ;�!) (identi�ed with the concurrent probabilistic system (S;Act ; Steps)where Stepsa(s) = f�1t : s a�!tg) coincides with the classical bisimulation equivalence�a la [Miln80, Park81].16 Jonsson & Larsen [JoLa91] give an alternative description ofbisimulation for fully probabilistic systems with proposition labels which is based onweight functions for distributions.17 The following proposition reformulates this result(Theorem 4.6 in [JoLa91]) for concurrent probabilistic systems with action labels. Asimilar observation was made by de Vink & Rutten [dViRu97] for reactive systems (usinga categorical characterization of what we call weight functions).Proposition 3.4.4 Let (S;Act ; Steps) be an action-labelled concurrent probabilistic sys-tem and s, s0 2 S. Then, s and s0 are bisimilar i� there exists a binary relation R on Ssuch that (s; s0) 2 R and, for all (t; t0) 2 R:1815Bisimulation equivalence and the simulation preorder can also be de�ned for proposition-labelledprobabilistic systems (see e.g. [JoLa91, ASB+95]). These de�nitions are omitted here.16This simple observation should not be confused with the more delicate result by Bloom & Meyer[BlMe89] who have shown that any �nitely branching non-probabilistic action-labelled transition systemcan be decorated with probabilities such that the resulting system is a reactive system with the samebisimulation equivalence classes.17See Section 2.2, page 30, for the de�nition of weight functions.18Recall that � �R �0 i� there exists a weight function for (�; �0) with respect to R (see Section 2.2,page 30).

3.4. BISIMULATION AND SIMULATION 55

ut v1 v2
s a, �s

kk k k
k

u0t0 v0
s0a, �0s
kk k
k

b b? ?
?

?
?����	 @@@@R? ����� AAAAU12 18 38 12 12

Figure 3.5: s � s0� If t a�!� then there exists t0 a�!�0 with � �R �0.� If t0 a�!�0 then there exists t a�!� with � �R �0.Proof: easy veri�cation. Uses similar arguments to those in [JoLa91, dViRu97].Proposition 3.4.4 yields that two states s, s0 are bisimilar i� for each transition s a�!� ofs there is a transition s0 a�!�0 where � �� �0. In that case, the weight function weight for(�; �0) with respect to � shows how to combine parts of bisimilar states that are reachedby s and s0 respectively via that transitions.Example 3.4.5 The states s and s0 in the action-labelled concurrent probabilistic systemshown in Figure 3.5 on page 55 are bisimilar. A weight function for (�; �0) with respectto � can be obtained as follows. Clearly, t � t0 and v1, v2 � v0. Hence, t and t0 can becombined as well as v1, v2 and v0. t v1 v2t0 v0��0weight 12 18 38� - � -�-Thus, weight(t; t0) = 1=2, weight(v1; v0) = 1=8, weight(v2; v0) = 3=8 (and weight(x; y) = 0in all other cases) yields a weight function for (�; �0) with respect to �.Remark 3.4.6 The \inference" from concurrent probabilistic systems to strati�ed sys-tems sketched on page 40 can be extended for the action labelled case. For this, we asso-ciate with each action-labelled concurrent system S = (S;Act ; Steps) the action-labelledstrati�ed system S 0 = (S 0;Act ; Steps 0) whereS 0 = S [f(s; �) : s 2 S; � 2 Stepsa(s) for some a 2 Actg,Steps 0(s) = f(a; �1(s;�)) : (a; �) 2 Steps(s)g and Steps 0(s; �) = f(arandom ; �)g.It is easy to see that this inference preserves bisimulation equivalence; i.e., if s, s0 2 Sthen s and s0 are bisimilar as states of S i� s and s0 are bisimilar as states of S 0.The result of Milner [Miln89] that in every image-�nite (non-probabilistic) labelled tran-sition system bisimulation can be approximated by \�nitary bisimulation" carries over tothe probabilistic case.

56 CHAPTER 3. MODELLING PROBABILISTIC BEHAVIOURDe�nition 3.4.7 [The relations �n] Let (S;Act ; Steps) be an action-labelled concur-rent probabilistic system. We de�ne inductively equivalence relations �n on S. We set�0 = S � S and, for n = 0; 1; 2; : : :, s �n+1 s0 i�:� If s a�!� then there is a transition s0 a�!�0 with �[C] = �0[C] for all C 2 S= �n.� If s0 a�!�0 then there is a transition s a�!� with �[C] = �0[C] for all C 2 S= �n.Lemma 3.4.8 Let (S;Act ; Steps) be an image-�nite action-labelled concurrent probabilis-tic system and s, s0 2 S. Then, s � s0 i� s �n s0 for all n � 0.Proof: see Section 3.7, Lemma 3.7.5 (page 68).Lemma 3.4.8 can be adapted for the fully probabilistic case. In that case, no furtherassumptions (like image-�niteness) are needed. We state (without proof) that, whenevers, s0 are states of an action-labelled fully probabilistic system then s � s0 i� s �n s0 forall n � 0. Here, s �0 s0 for all states s, s0 and s �n+1 s0 i� P(s; a; C) = P(s0; a; C) for alla 2 Act and C 2 S= �n.3.4.2 SimulationSimulation can be viewed as \uni-directional bisimulation" in the sense that a process P 0\simulates" another process P if each step of P can be \simulated" by a step of P 0. Inthat case, P can be viewed as an \implementation" of P 0 as each step of P is \allowed"by the \speci�cation" P 0. The de�nition of a simulation for concurrent probabilisticsystems with action labels by Segala & Lynch is based on that idea: the notion of asimulation is derived from the characterization of bisimulation in Proposition 3.4.4 (page54) by dropping the symmetry (cf. De�nition 3.4.9). At the end of this section, we showhow this de�nition of a simulation can be modi�ed for the fully probabilistic case. Theresulting simulation preorder on action-labelled fully probabilistic systems can be viewedas an adaption of the \satisfaction relation" proposed by Jonsson & Larsen [JoLa91] thatwork with fully probabilistic systems and proposition labels.De�nition 3.4.9 [Simulation (concurrent case), cf. [SeLy94]] Let (S;Act ; Steps)be an action-labelled concurrent probabilistic system. A simulation for (S;Act ; Steps) isa subset R of S � S such that for all (s; s0) 2 R:If s a�!� then there exists a transition s0 a�!�0 with � �R �0.We say s implements s0 and s0 simulates s (denoted by s vsim s0) i� there exists a simu-lation which contains (s; s0). s, s0 are called similar (denoted by s1 �sim s2) i� s vsim s0and s0 vsim s.In the non-probabilistic case, the above notion of a simulation agrees with Milner's notionof a simulation [Miln89]. Note that in the non-probabilistic case, s vsim s0 i� the functionweight with weight(u; u0) = 0 if (u; u0) 6= (s; s0) and weight(s; s0) = 1 is a weight functionfor (�1s; �1s0) with respect to vsim. Hence, if (S;Act ;�!) is a non-probabilistic labelledtransition system (i.e. S is a set of states and �! a subset of S�Act�S) and R � S�Sthen R is a simulation in the sense of De�nition 3.4.9 (i.e. R is a simulation for the inducedprobabilistic transition system (S;Act ; Steps) where Steps(s) = f(a; �1t) : s a�!tg) if andonly if R is a simulation in the sense of Milner.

3.4. BISIMULATION AND SIMULATION 57Example 3.4.10 Consider the transition system of Figure 3.6 (page 57). Clearly, u vsim
vt u

s
v0t0 u0

s0
kk k

k
kk k

ka, � a, �0
b b

s s
?

? ?
?

����	 @@@@R ����	 @@@@R13 23 12 12
Figure 3.6: s vsim s0u0 and u; t vsim t0. A weight function for (�; �0) with respect to vsim can be obtainedby combining certain parts of t (of u) with certain parts of t0 (of u0 and t0). Theweight function weight for (�; �0) with respect to vsim is given by: weight(t; t0) = 1=3,weight(u; t0) = 1=6, weight(u; u0) = 1=2.t ut0 u0��0weight 13 16 12� -� -� -We obtain s vsim s0.Remark 3.4.11 [Alternative simulation-like preorders] There are simpler possibil-ities to drop the symmetry from the de�nition of bisimulation equivalence thus yieldingalternative de�nitions of a simulation preorder that do not use weight functions. One pos-sibility is to consider the downward closure t #R of all elements t 2 S and to (re-)de�nethe relation �R on Distr(S) by:� �0R �0 i� �[t #R] � �0[t #R] for all t 2 S.Another possibility is to deal with the upward closures t "R. Both possibilities yield apreorder that is strictly coarser than the simulation preorder �a la [SeLy94]. We argue thatnone of these relations can be viewed as a probabilistic counterpart to Milner's simulationpreorder.We de�ne a #-simulation to be a binary relation R on S such that for all (s; s0) 2 Rand s a�!� there exists s0 a�!�0 with �[t #R] � �0[t #R] for all t 2 S. Here, t #R= fu 2S : (u; t) 2 Rg. Similarly, a "-simulation is a binary relation R on S such that for all(s; s0) 2 R and s a�!� there exists s0 a�!�0 with �[t "R] � �0[t "R] for all t 2 S wheret "R= fu 2 S : (t; u) 2 Rg. We de�ne s v# s0 (s v" s0) i� (s; s0) 2 R for some #-simulation("-simulation). Using the results of Chapter 5 (Lemma 5.3.11 on page 113) we obtainthat, for (S;Act ; Steps) to be �nite, the simulation preorder vsim is a #-simulation and a"-simulation. Thus, s vsim s0 implies s v# s0 and s v" s0.

58 CHAPTER 3. MODELLING PROBABILISTIC BEHAVIOUR

u vt w
s a, �t

m mm m
m

u0 v0t0 w0
s0a, �0t

m mm m
m

b c cb
? ?

? ?����� AAAAU
����� AAAAU ����� AAAAU12 12 12 12
Figure 3.7: s v# s0 and s 6vsim s0In the system of Figure 3.7 (page 58) we have s v# s0 but s 6vsim s0. From the branchingtime view, the process on left (i.e. the process with initial state s) should not be consideredto be an implemention of the process on the right (i.e. the process with initial state s0)as s can reach a state where both actions c and b can be performed while s0 cannot. Inthe system of Figure 3.8 (page 58) we have s v" s0 but s 6vsim s0. In our opinion, theprocess on the right (the process with initial state s0) cannot be viewed as a simulationof the process on the left (the process with initial state s) since s reachs a non-terminalstate after performing a with probability 1, while s0 can reach a terminal state (w0) after

u0 v0t0 w0
s0a, �0t

m mm m
m

u1 v1x y
s

tu2 v2
a, �t

m mm m
m

mm m b cb cb c
??

? ? ����� AAAAU ����� AAAAU
����	 @@@@R? ����� AAAAU23 1313 13 13
Figure 3.8: s v" s0 and s 6vsim s0performing a with non-zero probability.19De�nition 3.4.12 [The relations vn] Let (S;Act ; Steps) be an action-labelled concur-rent probabilistic system. By induction on n we de�ne relations vn � S � S:� s v0 s0 for all states s, s0 2 S� s vn+1 s0 i� whenever s a�!� then there exists a transition s0 a�!�0 and a weightfunction weight for (�; �0) with respect to vn (i.e. � �vn �0).Similarly to Lemma 3.4.8 (page 56) we obtain the following.19Even the relation v" \ v# is coarser than vsim. In the system of Figure 3.8, we add a transitionw0 a�!�1w0 and obtain s 6vsim s0 while (s v" s0) ^ (s v# s0).

3.4. BISIMULATION AND SIMULATION 59Lemma 3.4.13 Let (S;Act ; Steps) be an image-�nite action-labelled concurrent proba-bilistic system and s, s0 2 S. Then, s vsim s0 i� s vn s0 for all n � 0.Proof: see Section 3.7, Lemma 3.7.6 (page 68).The following lemma shows that vsim is a preorder and its kernel �sim is coarser thanbisimulation equivalence.Lemma 3.4.14 Let (S;Act ; Steps) be an action-labelled concurrent probabilistic systemand s; s0; s00; s1; s01; s2; s02 2 S. Then:(a) s � s0 =) s �sim s0(b) s vsim s0, s0 vsim s00 =) s vsim s00(c) s1 vsim s2, s1 � s01, s2 � s02 =) s01 vsim s02Proof: (a) follows immediately by the de�nition of a simulation and Proposition 3.4.4(page 54). (c) follows by (a) and (b). The transitivity of vsim (item (b)) can be derivedfrom Remark 2.2.1 (page 30).By part (a) of Lemma 3.4.14, bisimulation equivalence � is �ner than simulation equiva-lence �sim. As in the non-probabilistic case, simulation equivalence �sim does not coincidewith bisimulation equivalence �. For instance, for the non-probabilistic system of Figure3.9 (page 59) we have s �sim s0 but s 6� s0. In the case of reactive systems, simulation andbisimulation equivalence coincide. This result can be viewed as the probabilistic counter-s tvu s0t0v0
k kkk kkka a a aa? ??���	 @@@R

Figure 3.9: s �sim s0 but s 6� s0part to the well-known result that simulation equivalence and bisimulation equivalenceare the same for deterministic (non-probabilistic) transition systems.20Theorem 3.4.15 Let (S;Act ; Steps) be a reactive action-labelled concurrent probabilisticsystem and s, s0 2 S. Then, s �sim s0 i� s � s0.Proof: see Section 5.3.1, Thoerem 5.3.6 (page 110).We adapt the de�nition of the simulation preorder �a la Segala & Lynch [SeLy94] (De�ni-tion 3.4.9, page 56) for action-labelled fully probabilistic systems. The resulting de�nitionof the simulation preorder on fully probabilistic systems with action labels (De�nition3.4.17, page 60) can be viewed as the action-labelled counterpart to the de�nition of the\satisfaction relation" for fully probabilistic systems with proposition labels by Jonsson& Larsen (cf. De�nition 4.3 in [JoLa91]). In the sequel, S = (S;Act ;P) denotes anaction-labelled fully probabilistic system.20Recall that a non-probabilistic action-labelled transition system is called deterministic i�, for eachstate s and action a, there is at most one transition s a�!t.

60 CHAPTER 3. MODELLING PROBABILISTIC BEHAVIOURDe�nition 3.4.16 [Weight functions in fully probabilistic systems] Let s, s0 2 Sand R � S � S. If s is non-terminal then a weight function for (s; s0) with respect to Ris a function weight : S � Act � S ! [0; 1] such that for all a 2 Act and t, t0 2 S:1. If weight(t; a; t0) > 0 then (t; t0) 2 R.2. Xu02S weight(t; a; u0) = P(s; a; t); Xu2S weight(u; a; t0) = P(s0; a; t0):We write s vR s0 i� either s is terminal or there exists a weight function for (s; s0) withrespect to R.In particular, if s is non-terminal and s vR s0 then s0 is non-terminal. Suppose s and s0to be non-terminal and let � and �0 be the induced distributions on Act �S, i.e. �(a; t) =P(s; a; t) and �0(a; t0) = P(s0; a; t0). If s vR s0 then the weight function weight for (s; s0)induces a weight function weight0 : (Act � S)� (Act � S)! [0; 1],weight0(ha; ti; ha; t0i) = weight(t; a; t0)for (�; �0) with R0 = f(ha; ti; ha; t0i : a 2 Act ; (t; t0) 2 Rg. Vice versa, if � �R0 �0 (whereR0 is as before) then s vR s0.De�nition 3.4.17 [Simulation (fully probabilistic case)] A simulation for S is abinary relation R on S such that s vR s0 for all (s; s0) 2 R. We say s implements s0 ands0 simulates s (denoted by s vsim s0) i� there exists a simulation that contains (s; s0).Example 3.4.18 Consider the action-labelled fully probabilistic system of Figure 3.10on page 60. The relation R = f (s; s0); (t; t0); (u; u0); (v; u0); (w;w0) g is a simulationas e.g. weight(t; a; t0) = weight(v; b; u0) = weight(u; b; u0) = 1=3 (and weight(�) = 0 in allst v uw
s0t0 u0w0

�
�	�
�	 �
�	 �
�	�
�	
�
�	�
�	 �
�	�
�	

����	 @@@@R ����	 @@@@R? ? ?
a, 13 b, 13b; 13 a, 13 b, 23c, 1 c, 1

Figure 3.10: s vsim s0other cases) is a weight function for (s; s0) with respect to R. Hence, s vsim s0.As in Lemma 3.4.14 (page 59) it can be shown that vsim is transitive; as in Lemma3.4.13 (page 59), it can be shown that v can be approximated by the \�nitary" relationvn. More precisely, if s, s0 are states of an action-labelled fully probabilistic system thens vsim s0 i� s vn s0 for all n � 0.21 Similarly to Theorem 3.4.15 (page 59) we obtain that,21Here, the relationsvn are de�ned as follows. Let R0 = S�S and Rn+1 = vRn (where vRn is de�nedas in De�nition 3.4.16, page 60). Then, s vn s0 i� (s; s0) 2 Rn.

3.5. PROBABILISTIC PROCESSES 61for action-labelled fully probabilistic systems, bisimulation equivalence and simulationequivalence are the same. This result can be viewed as the action-labelled counterpartto Theorem 4.6 of [JoLa91] which considers fully probabilistic systems with propositionlabels and characterizes bisimulation equivalence for them in terms of weight functions.Theorem 3.4.19 (cf. Theorem 4.6 in [JoLa91]) Let (S;Act ;P) be an action-labelledfully probabilistic system and s, s0 2 S. Then,s � s0 i� s �sim s0.Proof: see Section 5.3, Theorem 5.3.7 (page 110).3.5 Probabilistic processesThe behaviour of a probabilistic process can be described by \pointed probabilistic sys-tems", i.e. a probabilistic system together with a speci�ed state, the initial state. Alter-natively, we could deal with a distribution for the initial states in the fully probabilisticcase and a set of initial states in the concurrent case (as done e.g. in [CoYa95, JoYi95,Sega95a]).De�nition 3.5.1 [Probabilistic processes] A probabilistic process is a tuple P =(S; sinit) consisting of a (fully or concurrent) probabilistic system S with state space Sand an initial state sinit 2 S.For instance, a fully probabilistic process is a tuple P = (S;P; sinit) consisting of afully probabilistic system (S;P) and an initial state sinit 2 S. Probabilistic processesare extended by action or proposition labels in the obvious way. E.g. an action-labelledconcurrent probabilistic process is a tuple (S;Act ; Steps; sinit) consisting of an action-labelled concurrent probabilistic transition system (S;Act ; Steps) and an initial statesinit 2 S. Bisimulation equivalence and the simulation preorder are adapted for prob-abilistic processes as follows. We consider the probabilistic system that arises by takingthe disjoint union of the two underlying probabilistic systems and compare the initialstates in the composed system. For instance, let P = (S; sinit) and P 0 = (S 0; s0init) betwo action-labelled concurrent probabilistic processes where S = (S;Act ; Steps), S 0 =(S 0;Act 0; Steps 0) are the underlying systems. Then, P and P 0 are said to be bisimilar(written P � P 0) i� sinit and s0init are bisimilar as states of the composed system S]S 0 =(S] S 0;Act [Act 0; Steps) where Steps(s) = Steps(s) if s 2 S and Steps(s) = Steps 0(s) ifs 2 S 0.22 Similarly, we de�ne bisimulation equivalence (also denoted �) for action-labelledfully probabilistic processes, the simulation preorder vsim, simulation equivalence �simand the relations �n and vn for action-labelled probabilistic processes. Here, in the fullyprobabilistic case, the composed system S] S 0 is de�ned as follows. If S = (S;Act ;P)and S 0 = (S 0;Act 0;P0) then S] S = (S] S 0;Act [Act 0;P) where P(s; a; t) = P(s; a; t) if(s; a; t) 2 S�Act�S, P(s; a; t) = P0(s; a; t) if (s; a; t) 2 S 0�Act 0�S 0 and P(s; a; t) = 0 inall other cases. Clearly, the results of Section 3.3.1 carry over to the pointed case. That is,22Here, each distribution � on S is identi�ed with the distribution � : S] S0 ! [0; 1], �(t) = �(t) ift 2 S and �(t) = 0 if t0 2 S0. In the same way, each distribution �0 on S0 is viewed as a distribution onS] S0.

62 CHAPTER 3. MODELLING PROBABILISTIC BEHAVIOURin the fully and concurrent case, vsim is a preorder on the collection of all action-labelled(fully or concurrent) probabilistic processes.� In the fully probabilistic case: P � P 0 i� P �sim P 0.� In the concurrent case: � is strictly �ner than �sim. And:(a) If P and P 0 are image-�nite then(i) P � P 0 i� P �n P 0 for all n � 0(ii) P vsim P 0 i� P vn P 0 for all n � 0.(b) If P and P 0 are reactive then P � P 0 i� P �sim P 0.3.6 Related modelsWe brie
y explain the relation of our models to those proposed in the literature. First weobserve that in contrast to some authors we require that, in the fully probabilistic case,the probabilities of the outgoing transitions of a non-terminal state s sum up to one. Inthose models that allow for substochastic states (i.e. states s where PtP(s; t) 2]0; 1[orPa;tP(s; a; t) 2]0; 1[for action-labelled systems) the value�(s) = 1 � Xt P(s; t)(or, when dealing with action labels, �(s) = 1 � Pa;t P(s; a; t)) can be viewed as theprobability for the system to \halt" in s. Depending on the system under consideration,this \halting" might be interpreted as well-termination, deadlock or divergence. In ourfully probabilistic model (which does not allow for substochastic states), we assume that\halting" is described by special state transitions. For instance, in absence of actionlabels, one can use an auxiliary terminal state 0 and the probabilistic state transitionsP(s; 0) = �(s) to formalize \halting". Using action labels, one might deal with suchan auxiliary state 0 and a special action symbol, e.g. 0, and the transition probabilitiesP(s; 0; 0) = �(s).We now brie
y sketch how our models are related to the models considered in the literaturewhere we ignore the di�erences arising from the use of sets of initial states or distributionsfor the initial states (rather than dealing with a single initial state as we do) and/orallowing substochastic states.In the notations of [vGSST90], fully probabilistic processes with action labels are calledgenerative processes.23 They also agree with the fully probabilistic automaton of Segala[Sega95a]. In the concurrent case, our action-labelled processes coincide with the simpleprobabilistic automaton of Segala & Lynch [SeLy94, Sega95a].The alternating model of Hansson & Jonsson [HaJo90, Hans91] can be obtained fromaction-labelled strati�ed processes (in the sense of De�nition 3.3.12 on page 52) by re-moving the action symbol arandom from the steps of the probabilistic states. The strati�edmodel of [vGSST90] essentially agrees with the alternating model. The main di�erence be-tween strati�ed systems �a la [vGSST90] and alternating systems �a la [HaJo90, Hans91] are23It should be noticed that this just holds for the formal de�nition of the model. The interpretation ofgenerative systems in the approach of [vGSST90] is slightly di�erent from ours since we assume internalprobabilistic choice while [vGSST90] deals with external probabilistic choice.

3.6. RELATED MODELS 63that [vGSST90] assume an external probabilistic choice while [HaJo90, Hans91] deal withinternal probabilistic choice and that, in the approach of [vGSST90], the non-probabilisticstates cannot behave non-deterministically.24 Ignoring the di�erent interpretation of theprobabilistic choice operator and allowing non-determinism in the non-probabilistic statesof a strati�ed system in the sense of [vGSST90] we obtain the alternating model; andhence, by adding the action symbol arandom , action-labelled strati�ed systems in our sense.A proposition-labelled fully probabilistic process is a sequential Markov chain in the senseof Vardi [Vard85] (or Courcoubetis & Yannakakis [CoYa88, CoYa95]) while proposition-labelled concurrent probabilistic processes agree with probabilistic non-deterministic sys-tems �a la Bianco & de Alfaro [BidAl95, dAlf97a, dAlf97b]. In essence, the concur-rent Markov chains of [Vard85, VaWo86, CoYa88, CoYa95] are the same as strati�edproposition-labelled systems.The model considered by Pnueli & Zuck [Pnue83, PnZu86a, PnZu86b, PnZu93] (justcalled probabilistic programs) can be viewed as a generalization of concurrent probabilisticsystems in our sense. In the approach of Pnueli & Zuck, each probabilistic program is as-signed a set of \commands" (called \transitions" in the approach of Pnueli & Zuck), whereeach command comm is associated with an enabling predicate (represented by a subsetEnabled(comm) of the state space S) and a set Modes(comm) = fmode1; : : : ;modekg of\modes". Each mode modei is associated with a non-zero probability and a set of possiblenext successor states. If we assume the sets of the modes to be singletons (that prescribeunique successor states), each command comm corresponds to a distribution �comm onthe state space. In that case, the probabilistic programs �a la Pnueli & Zuck specializes toconcurrent probabilistic systems in our sense where Steps(s) is given by the set of com-mands that are enabled in state s, i.e. Steps(s) = f�comm : s 2 Enabled(comm)g: If weassume that in addition the commands are associated with an action label then the modelof Pnueli & Zuck can also be viewed as a generalization of our concurrent probabilisticsystems with action labels.Remark 3.6.1 Van Glabbeek et al [vGSST90] present a hierarchy for the several action-labelled systems (reactive, generative, strati�ed) together with the corresponding type ofbisimulation equivalence. We brie
y sketch how the inferences between the models canbe reformulated for our notations.Given a generative (i.e. action-labelled fully probabilistic) system SG = (S;Act ;PG), wemay abstract from the probabilities for chosing a certain action and deal with the reactivetransition probabilitiesPR(s; a; t) = PG(s; a; t)PG(s; a) (provided that PG(s; a) > 0):In the case where PG(s; a) = 0 we put PR(s; a; t) = 0 for all states t. As shown in[vGSST90], this inference from generative systems to reactive systems preserves bisim-ulation equivalence.25 We now compare the generative and strati�ed view. Let PS =24Note that [vGSST90] considers a process calculus with synchronous parallelism and probabilisticchoice rather than non-determinism. Thus, the systems in [vGSST90] do not behave non-deterministically.25Formally, if PG and QG are generative processes and PR, QR the associated reactive processes thenPG � QG implies PR � QR while the converse does not hold.

64 CHAPTER 3. MODELLING PROBABILISTIC BEHAVIOUR(S;Act ; Steps; sinit) be an action-labelled strati�ed process where none of the non-probabilisticstates of PS behaves non-deterministically (i.e. if s is non-probabilistic then s a�!t forat most one action a and state t) as it is the case for the systems in the approach of[vGSST90]. PS can identi�ed with the generative process PG = (S;Act ;PG; sinit) wherePG(s; a; t) = 8><>: �(t) : if s a�!� and a = arandom1 : if s a�!t and a 6= arandom0 : otherwise.Given two such action-labelled strati�ed processes PS and QS where none of the non-probabilistic states behaves non-deterministically, we have(*) PS � QS i� PG � QGwhere PG and QG denote the associated generative processes.26 This should be con-trasted with the abstraction result of [vGSST90] where a di�erent inference is used. Inthe approach of [vGSST90], the \if"-part of (*) does not hold. The inference from thestrati�ed to the generative model used in [vGSST90] (adapted for our type of action-labelled strati�ed systems) removes the transitions labelled by arandom and deals with thecumulative e�ect of all probabilistic choices. Formally, if SS = (S;Act ; Steps) is an action-labelled strati�ed system as above (i.e. jSteps(s)j � 1 for all non-probabilistic states) then,in the approach of [vGSST90], the associated generative system is (S;ActG;P0G) whereActG = Act n farandomg and P0G : S � ActG � (S n Sprob) ! [0; 1] the least function suchthat P0G(s; a; t) = 8><>: Pu2S �(u) �P0G(u; a; t) : if s a�!� and a = arandom1 : if s a�!t and a 6= arandom0 : otherwise.Here, Sprob is the set of probabilistic states in SS.273.7 Proofs3.7.1 Probabilistic reachability analysisWe give the proof for Theorem 3.1.6 (page 36) and Theorem 3.2.11 (page 43) that char-acterizes the probabilities to reach certain states as least �xed points.In fully probabilistic systems, we use the following notation. If � 2 Path�n , j�j = i andP(last(�); t) > 0 then � ! t denotes the unique path
 2 Path�n with
(i) = �, j
j = i+126The underlying notion of bisimulation equivalence for PS and QS is that of De�nition 3.4.2 (page54) while for PG and QG we deal with bisimulation in the sense of De�nition 3.4.1 (page 54).27Both transformations from the strati�ed to the generative model fail when non-determinism is allowedin the non-probabilistic states, because, for those states s in which non-determinism is present, thetransition probabilitiesPG(s; �) or P0G(s; �) do not sum up to 1. Given an action-labelled strati�ed systemSS (where non-determinism is present in some non-probabilistic states), the generative (fully probabilistic)system associated by an adversary can be viewed as a re�nement of S. Here, the underlying re�nementstep just resolves the non-deterministic choices.

3.7. PROOFS 65and last(
) = t. Similarly, in concurrent probabilistic systems, we write � �! t to denotethe unique path
 2 Path�n with
(i) = �, j
j = i + 1, step(
; i) = � and last(
) = t.(Here, we assume that � 2 Path�n , j�j = i, � 2 Steps(last(�)) and t 2 Supp(�).)Proposition 3.7.1 Let (S;P) be a fully probabilistic system, � � Path�n . For � 2 �, let�(�) = f�0 2 Path�n(last(�)) : ���0 2 �g and p : Path�n ! [0; 1], p(�) = Prob(�(�) ").Then, p is the least �xed point of the operator F : (Path�n ! [0; 1])! (Path�n ! [0; 1])which is given by F (f)(�) = 1 if � 2 � andF (f)(�) = Xt2Next(�) P(last(�); t) � f(� ! t)if � =2 �. Here, Next(�) = ft 2 S : P(last(�); t) > 0g.Proof: Clearly, F is monotone and preserves in�nima and suprema. Let f be theleast �xed point of F .28 If � 2 � then the path consisting of the state last(�) belongsto �(�). Thus, �(�) " = Path�n(last(�)) and p(�) = f(�) = 1. Next we assumethat � =2 �. For t 2 Next(�), let �t(�) be the set of �nite paths last(�) ! �0 where�0 2 �(� ! t). Then, �(�) can be written as disjoint union of the sets �t(�), t 2 Next(�).As Prob(�t(�) ") = P(last(�); t) � p(� ! t) we obtain:p(�) = Xt2Next(�) Prob(�t(�) ") = Xt2Next(�) P(last(�); t) � p(� ! t) = F (p)(�):Thus, p is a �xed point of F . We conclude f(�) � p(�) for all � 2 Path�n .For k = 0; 1; 2; : : :, let �k(�) = f�0 2 �(�) : j�0j � kg and pk(�) = Prob(�k(�) "). Then,�0(�) � �1(�) � �2(�) � : : : and �(�) = S�k(�). Thus, p(�) = limpk(�). It is easy tosee that pk+1 = F (pk). By induction on k we get pk(�) � f(�) for all � 2 Path�n . Hence,p(�) � f(�). We conclude that p = f is the least �xed point of F .Corollary 3.7.2 (cf. Theorem 3.1.6, page 36) Let (S;P) be a fully probabilistic sys-tem. Let S1, S2 be subsets of S. Let � � Path�n be the set of all �nite paths � such that�(i) 2 S1 n S2, i = 0; 1; : : : ; j�j � 1, last(�) 2 S2. Let � = � ". Then,p : S ! [0; 1], p(s) = Prob (�(s)),is the least �xed point of the operator F : (S ! [0; 1]) ! (S ! [0; 1]) which is given byF (f)(s) = 1 if s 2 S2, F (f)(s) = 0 if s 2 S n (S1 [S2) and, if s 2 S1 n S2,F (f)(s) = Xt2S P(s; t) � f(t):Proof: follows immediately by Proposition 3.7.1 (page 65). Uses the fact that �(�) =�(last(�)) for each � 2 Path�n .Proposition 3.7.3 Let (S; Steps) be a concurrent probabilistic system and � � Path�n .For � 2 � and A 2 Adv, let �A(�) = f�0 2 Path�n(last(�)) : � � �0 2 �Ag andpmin(�) = infA2Adv Prob ��A(�) "A� ; pmax (�) = supA2Adv Prob ��A(�) "A� :Then, pmin and pmax are the least �xed points of the operators28The existence of a least �xed point can be shown using standard arguments of domain theory. Seee.g. Proposition 12.1.1 (page 309).

66 CHAPTER 3. MODELLING PROBABILISTIC BEHAVIOURFmin , Fmax : (Path�n ! [0; 1])! (Path�n ! [0; 1])that are de�ned as follows. If � 2 � then F (f)(�) = 1. If � =2 � thenFmin(f)(�) = min 8<: Xt2Supp(�) �(t) � f �� �! t� : � 2 Steps(last(�)) 9=; ;Fmax (f)(�) = max 8<: Xt2Supp(�) �(t) � f �� �! t� : � 2 Steps(last(�)) 9=; :Proof: Clearly, the operators F � are monotone and preserve suprema. Let f � be theleast �xed point of F �.29 For A to be an adversary, let pA : Path�n ! [0; 1] be given bypA(�) = Prob ��A(�) "A� :Claim 1: pmin = fminProof: We de�ne FA : (Path�n ! [0; 1])! (Path�n ! [0; 1]) byFA(f)(�) = Xt2Supp(A(�)) A(�)(t) � f �� A(�)�! t� :By Proposition 3.7.1 (page 65), pA = lfp(FA). For each � 2 Path�n , we choose some�� 2 Steps(last(�)) such thatfmin(�) = Xt2Supp(��) ��(t) � fmin �� ��! t� :Let A be the adversary with A(�) = ��. Then, fmin is a �xed point of FA. Thus,(1) pmin � PA(�) = lfp �FA� = � fmin .Let A 2 Adv , � 2 Path�n and � = A(�). Then,pA(�) = Xt2Supp(�) �(t) � pA �� �! t� � Xt2Supp(�) �(t) � pmin �� �! t�� min 8<: Xt2Supp(�) �(t) � pmin �� �! t� : � 2 Steps(last(�)) 9=;= Fmin(pmin)(�):Thus, pmin � Fmin(pmin). By Proposition 12.1.1 (page 309) pmin � lfp(Fmin) = fmin . By(1), we get pmin = fmin . cClaim 2: pmax = lfp(Fmax)Proof: Let � 2 Path�n . We choose some � 2 Steps(last(�)) such thatXt2Supp(�) �(t) � pmax �� �! t� = Fmax (pmax) (�):29As in Proposition 3.7.1 (page 65), the existence of a least �xed point can be derived by standardarguments of domain theory. See e.g. Proposition 12.1.1 (page 309).

3.7. PROOFS 67For each � > 0 and t 2 Supp(�), we choose some A�;t 2 Adv withpmax �� �! t� � pA�;t �� �! t� + �:Let A� be an adversary with A�(�) = � and A� �� �! �0� = A�;t �� �! �0� for each �0 2Path�n with �rst(�0) = t. Then,pA� �� �! t� = pA�;t �� �! t� � pmax �� �! t�� �:Thus, for all � > 0:pmax (�) � pA�(�) = Xt2Supp(�) �(t) � pA� �� �! t�� Xt2Supp(�) �(t) � pmax �� �! t� � � = Fmax (pmax) (�)� �:Thus, pmax � Fmax (pmax). By Proposition 12.1.1 (page 309):(2) pmax � lfp(Fmax) = fmax .Let �An (�) = f�0 2 �A(�) : j�0j � ng and pAn (�) = Prob(�An (�) "A). Then,pA(�) = limn!1 pAn (�):Moreover, pAn (�) = 1 if � 2 �. If � =2 � then pA0 (�) = 0 andpAn+1(�) = Xt2Supp(A(�)) A(�)(t) � pAn �� A(�)�! t� :By induction on n, we get pAn � fmax . Thus, pA � fmax which yieldspmax = supA2Adv pA � fmax :From (2), we get pmax = fmax . cCorollary 3.7.4 (cf. Theorem 3.2.11, page 43) Let (S; Steps) be a concurrent prob-abilistic system, S1, S2 � S and let � be the set of �nite paths � such that �(i) 2 S1,i = 0; 1; : : : ; j�j � 1, and last(�) 2 S2. For s 2 S and A 2 Adv, letpmin(s) = infA2Adv Prob ��A(s) "A� ; pmax (s) = supA2Adv Prob ��A(s) "A� :Then, pmin and pmax are the least �xed points of the operatorsFmin , Fmax : (S ! [0; 1])! (S ! [0; 1])that are de�ned as follows. If s 2 S2 then F (f)(s) = 1. If s 2 S n (S1 [S2) thenF (f)(s) = 0. If s 2 S1 n S2 thenFmin(f)(s) = min (Xt2S �(t) � f(t) : � 2 Steps(s)) ;Fmax (f)(s) = max (Xt2S �(t) � f(t) : � 2 Steps(s)) :Proof: follows immediately from Proposition 3.7.3 (page 65).

68 CHAPTER 3. MODELLING PROBABILISTIC BEHAVIOUR3.7.2 Bisimulation and simulation in image-�nite systemsWe give the proofs for Lemma 3.4.8 and Lemma 3.4.13 that show that, in image-�nitesystems, (bi-)simulation can be approximated by the �nitary relations �n and vn. Let(S;Act ; Steps) be a �xed image-�nite concurrent probabilistic system with action labelsand s, s0 2 S.Lemma 3.7.5 (cf. Lemma 3.4.8, page 56) s � s0 i� s �n s0 for all n � 0.Proof: Let �0 = Tn�0 �n. We have to show that � = �0. It is easy to see that �0 isan equivalence relation. By induction on n it can be shown that�0 ��1 ��2 � : : : ��.Hence, �0 � �. In order to show that �0 � � we prove that �0 is a bisimulation.For each n � 0 and each A 2 S= �0, there exists a unique element An 2 S= �n withA � An. Then, A0 = S � A1 � A2 � : : : and A = T An.Claim 1: If s a�!� and A 2 S= �0 then �[A] = infn�0 �[An].Proof: Since A = TAn and An � An+1 we have 1 = �[A0] � �[A1] � : : : � �[A]. We putr = infn�0 �[An]. Clearly, r � �[A]. We suppose r > �[A]. Let � = r � �[A]. Then,� > 0. There exists a �nite subset X of SnA such that �[Y] < � where Y = Sn(A[X).30For all n � 0, An = A [(Y \ An) [(X \ An): The sets A, Y \ An and X \ An arepairwise disjoint. Hence,�[An] = �[A] + �[Y \ An] + �[X \ An] < �[A] + � + �[X \ An] = r + �[X \ An]:Since r � �[An] we get X\An 6= ;. Since X is �nite and A0 � A1 � : : : we get X\A 6= ;.Contradiction!31 cClaim 2: �0 is a bisimulation.Proof: Let s �0 s0 and s a�!�. By Claim 1 it su�ces to show that there is a transitions0 a�!�0 such that �[C] = �0[C] for all n � 1 and C 2 S= �n. Since s �n s0 there existtransitions s0 a�!�0n such that �[C] = �0n[C] for all C 2 S= �n. Since (S;Act ; Steps) isimage-�nite the set f�0n : n � 0g is �nite. Hence, there exists a transition s0 a�!�0 with�0 = �0n for in�nitely many n. Let n � 1 and C 2 S= �n. There exists k � n with�0 = �0k. C is of the form C = Si2I Bi where (Bi)i2I is a family of pairwise disjointequivalence classes with respect to �k (as �k � �n). Thus, �[Bi] = �0k[Bi] = �0[Bi] forall B 2 S= �k. Then, �[C] = Pi2I �[Bi] = Pi2I �0[Bi] = �0[C]: cLemma 3.7.6 (cf. Lemma 3.4.13, page 59) s vsim s0 i� s vn s0 for all n � 0.Proof: Let v0 = T vn. By induction on n it can be shown that v0 � v1 � : : : �vsim. Hence, v0 � vsim. In order to prove that v0 � vsim we show that v0 is a simulation.Let s v0 s0 and s a�!�. There exist transitions s0 a�!�0n and weight functions weightn for(�; �0n) with respect to vn�1. Because of the image-�niteness we get that there exists atransition s0 a�!�0 such that �0 = �0n for in�nitely many n. Let An be the set of pairs(u; u0) 2 S � S with weightn(u; u0) 6= 0. Let Bk, B0k � S, be �nite sets withXs2Bk �(s) > 1� 12k ; Xs02B0k �0(s0) > 1� 12k :30This is because Pt=2A �(t) is convergent.31Note that by de�nition X is a subset of S nA.

3.7. PROOFS 69W.l.o.g. B1 � B2 � : : :, B01 � B02 � : : :. We de�ne by induction on n in�nite setsI0 � I1 � : : : of natural numbers such that the sequence (weightn(u; u0))n2Ii is convergentfor all (u; u0) 2 Bi �B0i, i � 1.We put I0 = fn : �0n = �g. Let i � 1. We suppose that Ii�1 is already de�ned. Let(u1; u01); : : : ; (uk; u0k) be the sequence of pairwise distinct pairs (u; u0) 2 Bi � B0i which donot belong toBi�1�B0i�1. For all in�nite sets J of natural numbers and each l 2 f1; : : : ; kg,there exists an in�nite subset J(l) of J such that (weightn(ul; u0l))n2J(l) is convergent.32We de�ne J1 = Ii�1(1), Jl = Jl�1(l), l = 2; : : : ; k and Ii = Jk. Then, Ii is an in�nitesubset of Ii�1 and (weightn(u; u0))n2Ii is convergent for all (u; u0) 2 Bi � B0i. We putweight : S � S ! [0; 1]; weight(u; u0) = limn!1n2Ii weightn(u; u0)if (u; u0) 2 Bi � B0i and weight(u; u0) = 0 if (u; u0) =2 Bi � B0i for all i � 1. We show thatweight is a weight function for (�; �0) with respect to v0.1. If weight(u; u0) > 0 then (u; u0) is contained in the countable set S Bi � B0i.2. Let u 2 S. We show thatPu0 weight(u; u0) = �(u). If �(u) = 0 then weightn(u; u0) =0 for all u0 2 S and n � 0. Hence, weight(u; u0) = 0 for all u0 2 S. We suppose�(u) > 0. Let i be the smallest natural number i such that 1=2i < �(u). Then,u 2 Bj for all j � i. Let A0 be a �nite subset of S. There exists some j � i such thatfu0 2 A0 : �0(u0) > 0g � B0j. Thus,Xu02A0 weight(u; u0) = limn!1n2Ij Xu02A0 weightn(u; u0) � �(u)Hence, Pu0 weight(u; u0) � �(u). In order to show that Pu0 weight(u; u0) � �(u)it is su�cient to show that for all " > 0 there exists a �nite subset A0 of S withXu02A0 weight(u; u0) � �(u)� ":Let " > 0 and j � i with 1=2j < ". For all n 2 Ij,Xu0 =2B0j weightn(u; u0) � Xu0 =2B0j �0(u0) = 1 � Xu02B0j �0(u0) < 12j < ":Hence, Xu02B0j weightn(u; u0) = �(u) � Xu0 =2B0j weightn(u; u0) > �(u)� "for all n 2 Ij. Therefore,Xu02B0j weight(u; u0) = limn!1n2Ij Xu02B0j weightn(u; u0) � �(u)� ":Similarly, it can be shown that Pu weight(u; u0) = �0(u0).3. If weight(u; u0) > 0 then (u; u0) 2 Bi � B0i for some i � 1 and weightn(u; u0) > 0 forin�nitely many n (more precisely, for almost all n 2 Ii). Hence, u vn u0 for in�nitelymany n, and therefore u v0 u0.32This is because weightn(ul; u0l) 2 [0; 1], and hence, (weightn(ul; u0l))n2J is bounded. Therefore, itcontains a convergent subsequence.

70 CHAPTER 3. MODELLING PROBABILISTIC BEHAVIOUR

Chapter 4Probabilistic process calculi
Process calculi such as Milner's CCS or SCCS [Miln80, Miln83, Miln89], Hoare's CSP[Hoar85] or Bergstra & Klop's ACP [BeKl84] can successfully serve as high-level speci�-cation languages for compositional design and analysis of parallel systems. For specifyingthe quantitative behaviour of probabilistic parallel systems, various authors proposedvariants of such process calculi. The main goal of that chapter is to present the basicconcepts of probabilistic process calculi and how to supply them with an operational se-mantics based on action-labelled probabilistic processes. We mainly concentrate on theissue of parallelism. Detailed discussions about the several types of non-deterministicand probabilistic choices and their interplay can be found e.g. in [Lowe93b, MMS+94,HMS97, HarG98, HadVi98]. Following the notations of [Lowe93b, MMS+94], we use aninternal probabilistic choice operator where the process chooses randomly which set ofevents/actions to o�er the environment and external non-determinism where the environ-ment o�ers a set of events/actions.1Synchronous parallelism: In the synchronous parallel composition of two processesP1 and P2, the components work in a time-dependent fashion; i.e., each step of the syn-chronous parallel composition is composed by the independent execution of the activitiesof P1 and P2 within one time step. The transition probabilities of the composed systemare obtained by multiplying the probabilities of the individual moves of the componentsP1 and P2. This re
ects the assumption that P1 and P2 work independently between thesynchronization points.In the literature, several types of synchronous parallel composition for probabilistic pro-cesses are proposed. [GJS90, JoSm90, vGSST90, SmSt90, LaSk92, Toft94, KwNo98b]deal with the (synchronous) product P1�P2 in the style of Milner's SCCS [Miln83] whereeach step of P1 � P2 is composed by exactly one action of P1 and P2. Other authors,e.g. [FHZ93, HarG98], focuss on the concept of a lazy (synchronous) product P1
 P2where the processes P1 and P2 have to synchronize on certain \synchronization points"but perform sequences of actions independently between these synchronization points.One side-e�ect of the use of lazy synchronous parallelism (in a non-probabilistic or prob-abilistic setting) is that the transition system representation of P1
P2 is in general much1It should be noticed that the di�erent types of probabilistic choice operators lead to di�erent restric-tion operators. See Remark 4.2.4, page 81. 71

72 CHAPTER 4. PROBABILISTIC PROCESS CALCULIsmaller than those of P1 � P2.2 In this sense, the use of the lazy product can also beviewed as an abstraction technique that attacks the state explosion problem.In most cases, in the probabilistic extensions of synchronous calculi, the concept ofnon-deterministic choice is replaced by probabilistic choice. Typically, such languages(with synchronous parallelism and probabilistic choice rather than non-determinism) areequipped with an operational semantics that uses a model based on Markov chains (suchas fully probabilistic processes with action labels) [GJS90, JoSm90, vGSST90, Toft90,LaSk92, Toft94] but { as e.g. in the case of probabilistic extensions of SCCS { such lan-guages can also be provided with operational semantics that are based on the reactiveor strati�ed view [vGSST90, Toft90, Toft94, KwNo96, Norm97, KwNo98b]. Moreover,some of these languages { together with their strati�ed semantics { can be used to reasonabout priority [SmSt90, Toft90, Toft94]. Synchronous calculi with non-deterministic andprobabilistic choice are considered e.g. in [FHZ93, Norm97, KwNo98b]. The semanticmodels of these calculi can be viewed as generalizations of the reactive model.Asynchronous parallelism: There are several probabilistic extensions of asynchronouscalculi with non-deterministic and probabilistic choice operators. The underlying (asyn-chronous) parallel operators allow communication on certain actions (e.g. communicationin the CCS -style on \complementary" actions or CSP-like communication on commonactions) but also independent evolvement of the components. The operational seman-tics of such calculi are usually given in terms of probabilistic transition systems withnon-determinism where the independent evolvement of the components is modelled byinterleaving. For instance, [HaJo90, Hans91, YiLa92, Yi94] extend Milner's CCS by aprobabilistic choice operator; probabilistic variants of Hoare's CSP are considered e.g. in[Lowe93a, Lowe93b, MMS+94, Lowe95, Seid95].Probabilistic shu�e: Baeten, Bergstra & Smolka [BBS92] introduce a modi�cationof ACP [BeKl84] which uses probabilistic choice instead of non-determinism and severaltypes of probabilistic shu�e operators (with possible communication). The probabilis-tic shu�e operators are parametrized by the probabilities for a communication and theautonomous moves of the components. The operational semantics is based on fully prob-abilistic processes with action labels. Several authors, e.g. [SCV92, N�udF95, dAHK98],took up the idea of using probability parameters that associate weights to the possiblesteps of the composition (communication on certain actions or independent evolvementof the components).3 [GLN+97] introduce the process algebra PTPA for generative (andtimed) processes in which probabilistic shu�e is modelled with the help of a normalizationfunction (rather than probability parameters). In the approach of [GLN+97], the com-ponents P1 and P2 of the probabilistic shu�e P1kAP2 must synchronize on the actionsa 2 A while the actions a =2 A are performed autonomously. The transition probabili-ties of P1kAP2 are de�ned with the help of the normalization function that sums up theprobabilities for P1 and P2 to participate in an a-step of P1kAP2 where a ranges over allpossible actions of P1kAP2.4 Both types of probabilistic shu�e (the one that use prob-ability parameters and the one that use a normalization function) can be viewed as theinterleaved execution of the two components P1 and P2 (extended by certain synchroniza-2This is because the lazy product abstracts from certain local states.3See [dAHK98] for an overview of these parametrized shu�e operators.4Similar ideas are used in the approachs of e.g. [Chri90b, CSZ92, YCDS94, NdFL95] that de�ne anotion of parallel composition PkT of a generative probabilistic process P and some kind of \test" T .

73tion mechanisms) with respect to a �xed randomized scheduler. This scheduler decidesrandomly which of the possible steps is executed next: either a synchronization action oran individual move of P1 or an individual move of P2. The probabilities of the possiblesteps are given either by the parameters of the probabilistic shu�e operator or by thenormalization function that depends on the local states of P1 and P2.Modelling asynchronicity by synchronicity: In the non-probabilistic synchronouscase (i.e. in the case of Milner's SCCS), a delay operator @ can be de�ned which makes itpossible e.g. to force a process to wait for a possible communication partner and to embedthe asynchronous calculus CCS into the synchronous calculus SCCS [Miln83]. Intuitively,@P behaves as P but it may idle for inde�nitely many time steps before performing the�rst action. Formally, @P is given by the process equation @P def= P+1; @P which statesthat @P decides non-deterministically to behave as P or to be idle in the next step. Here,+ denotes non-deterministic choice, ; sequential composition and 1 the idle action. Inabsence of a non-deterministic choice operator, the delay operator @ cannot be de�ned;hence, if non-deterministic choice is replaced by probabilistic choice (as it is the case forseveral probabilistic variants of synchronous process calculi proposed in the literature),it is no longer true that asynchronicity can be reduced to the synchronous case (at least,the author does not see how).Organization of that chapter: We study three calculi. The �rst two are standardextensions of Milner's CCS and SCCS; the third a variant of SCCS that uses a lazysynchronous parallel composition. In Section 4.1 we consider an asynchronous calculuswith CCS -like communication and non-deterministic and probabilistic choice (similarto the calculi of [HaJo90, Hans91, YiLa92]) and give an operational semantics basedon action-labelled concurrent probabilistic processes. In Sections 4.2 and 4.3, we workwith synchronous calculi with probabilistic choice (but without non-determinism) whichare supplied with an operational semantics based on generative (i.e. action-labelled fullyprobabilistic) processes. The calculus in Section 4.2, called PSCCS , is a probabilisticextension of Milner's SCCS that works with a parallel composition P1 � P2 where thecomponents P1, P2 synchronize on all actions. Basically, it agrees with the calculi studiedin [GJS90, JoSm90, vGSST90, Toft94]. In Section 4.3 we propose a probabilistic calculuswhich uses a lazy synchronous parallel composition P1
 P2 where P1 and P2 have tosynchronize on all visible actions while they evolve independently on their internal actions.Modelling recursion by declarations and process equations: For all three calculi,we model recursion by declarations. We use process variables (of some �xed set ProcVar)in the statements. The process variables can be interpreted as procedure names. Thebodies of these procedures are given by declarations. Formally, a declaration is a functiondecl that assign to each process variable Z a statement decl(Z) (that also might con-tain process variables, i.e. recursive procedure calls). A program is a pair P = hdecl ; siconsisting of a declaration decl and a statement s. The intended meaning of a programP = hdecl ; si is that the behaviour of P is given by the statement s where each occurrenceof a process variable Z in s is viewed as a recursive procedure call. This corresponds to theuse of process equations that we use in our examples. Let Z1; : : : ; Zk be pairwise distinctprocess variables and s1; : : : ; sk statements. Then, we write Zj def= sj, j = 1; : : : ; k, todenote that Zj stands for the recursive procedure whose body is given by sj. That is,we deal with the declaration decl where decl(Zj) = sj, j = 1; : : : ; k, and identify Zj with

74 CHAPTER 4. PROBABILISTIC PROCESS CALCULIthe program hdecl ; Zji. If op is a n-ary operator symbol of the underlying process cal-culus (e.g. a binary parallel composition operator k or the 1-ary (action-)pre�x operators 7! a:s) and Pi = hdecl ; sii, i = 1; : : : ; n, are programs then we write op(P1; : : : ;Pn) asshort for the program hdecl ; op(s1; : : : ; sn)i.4.1 PCCS : an asynchronous probabilistic calculusIn this section we consider a probabilistic extension of Milner's CCS [Miln89] which isbased on the calculus of [Hans91] (see also [HaJo90, YiLa92, Yi94]). The syntax of ourcalculus, called PCCS , in obtained from CCS by replacing the pre�x operator a:s by anaction-guarded probabilistic choice operatora: �Xi2I [pi]si !where pi are real numbers between 0 and 1 denoting the probability that after performinga the above process becomes si (provided that the statements si are pairwise distinct).In what follows, ProcVar is a set of process variables and Act is a �nite nonempty set ofatomic actions which contains an internal action � (representing internal computationsof a process, not visible for the environment) and which is equipped with a functionAct ! Act , a 7! a, where � = � and a = a for all a 2 Act . If L � Act then we putL = fa : a 2 Lg. For � to be a visible action, � is called the complementary action of�. Synchronization of processes is only possible by performing complementary actions �and �. The result of a synchronization is supposed to be invisible, i.e. it is described bythe internal action � .Syntax of PCCS statements: PCCS statements are built from the production systemshown in Figure 4.1 (page 74). Here, a 2 Act , Z 2 ProcVar , L is a subset of Act n f�gs ::= nil ��� Z ��� a: �Xi2I [pi]si ! ��� s1 + s2 ��� s1 k s2 ��� s n L ��� s[`]Figure 4.1: Syntax of PCCS statementswith L = L, ` : Act ! Act is a relabelling function (i.e. `(�) = `(�) for all visible actions� and `(�) = �), I is a nonempty countable indexing set and (pi)i2I a family of realnumbers pi 2]0; 1] such that Pi2I pi = 1. For �nite indexing set I = fi1; : : : ; ing, we alsowrite a: ([pi1]:si1 � : : :� [pin]sin) instead of a: (�Pi2I [pi]si). a:s stands short for a:([1]s).StmtPCCS (or shortly Stmt) denotes the set of all PCCS statements. PCCS denotes theset of all PCCS programs, i.e. all pairs P = hdecl ; si where decl is a declaration (a functiondecl : ProcVar ! StmtPCCS) and s a PCCS statement.The intended meaning of the statements is as follows. nil stands for a process whichdoes not perform any action. The idea behind action-guarded probabilistic choice is that

4.1. PCCS : AN ASYNCHRONOUS PROBABILISTIC CALCULUS 75a: (�Pi2I [pi]si) �rst performs the action a and then randomly chooses to behave as tafterwards according to the distribution � where�(t) = Xi2Isi=t pi:+ models non-deterministic choice, that is, s1 + s2 either behaves like s1 or like s2. k de-notes the parallel composition with CCS -style communication on complementary actions(i.e., in s1ks2, s1 and s2 can evolve independently but may also communicate via visibleactions � and �). The operators s 7! s n L, s 7! s[`] model restriction and relabelling:s n L behaves like s as long as s does not perform an action � 2 L. s[`] behaves like swhere each action � 2 Act is replaced by `(�).Example 4.1.1 [The controller system] We consider a simple controller system of aplant that tests certain products. There are n \testing machines" where each of themcan test a product (via an action called test). We assume that the reliability of theproduction is known: with probability 1=100 the product fails the test in which case theproduct is returned to the production department (via an action called return); withprobability 99=100 the product passes the test in which case the product is transmittedto the vending department (via an action called release). Each of the testing machinescan be speci�ed by the PCCS programTest def= test : �h 1100i return:Test � h 99100i release:Test�.Thus, the controller system (with n testing machines) is given byPn def= Testk : : : kTest| {z }n :Here, we use process equations to describe the underlying declaration as explained onpage 73.Remark 4.1.2 [PCCS �a la Hansson & Jonsson] Our language PCCS is closely relatedto the calculus (also called PCCS) of [HaJo90] (see also [Hans91, YiLa92] and the extendedversion in [Yi94]). In contrast to our approach, [HaJo90] allow for general probabilisticchoice �P[pi]si (while we use action-guarded probabilistic choice a:(�P[pi]si)). For instance,[HaJo90] allow statements like h13i a:nil� h23i b:nil which stands for a process that o�er awith probability 1=3 and b with probability 2=3 and terminates after performing a or brespectively. Thus, syntactically, our language PCCS can be viewed as a subcalculus ofthe calculus of [HaJo90]. Vice versa, using similar ideas as for the \inference" from action-labelled strati�ed systems to concurrent probabilistic systems (see Remark 3.4.6, page 55),the calculus of [HaJo90] can be embedded syntactically into ours by introducing a specialaction symbol arandom (which represents any activity that resolves the probabilistic choice,e.g. one might think of arandom to stand for \tossing a fair coin") andreplacing �Xi2I [pi]si by arandom : �Xi2I [pi]si ! :It should be noticed that the above mentioned \embeddings" are only syntactic trans-formations. Even though the intended meanings are similar the formal semantics do not

76 CHAPTER 4. PROBABILISTIC PROCESS CALCULIZ a�!decl � if decl(Z) a�!decl �a: �Xi2I [pi]si ! a�!decl � where �(s) = Xi2Isi=s pis1 + s2 a�!decl � if s1 a�!decl � or s2 a�!decl �s1 k s2 a�!decl � if one of the following three conditions is satis�ed:(i) s1 a�!decl �1 and �(s) = (�1(s01) : if s = s01 k s20 : otherwise(ii) s2 a�!decl �2 and �(s) = (�2(s02) : if s = s1 k s020 : otherwise(iii) a = � and there exists � 2 Act n f�g withs1 ��!decl �1 and s2 ��!decl �2such that �(s) = (�1(s01) � �2(s02) : if s = s01 k s020 : otherwises n L a�!decl � if s a�!decl �0, a =2 L and �(s) = (�0(s0) : if s = s0 n L0 : otherwises[`] a�!decl � if s b�!decl �0, `(b) = a and �(s) = (�0(s0) : if s = s0[`]0 : otherwiseFigure 4.2: Operational semantics of PCCScoincide since the interpretations of + and k are di�erent. While we deal with an oper-ational semantics based on concurrent probabilistic processes [HaJo90] work with an op-erational semantics based on the strati�ed (alternating) model where action-labelled andprobabilistic transitions are distinguished. In contrast to our rules for non-determinism+ or parallel composition k (which are immediate derivations of Milner's rules for + andparallel composition and in the style of Segala [Sega95a] who de�nes a CSP-like par-allel composition for concurrent probabilistic systems), the rules of [HaJo90] are basedon a higher priority for the probabilistic transitions than the action-labelled transitions.In the approach of [HaJo90], the summands s1 and s2 of the non-deterministic choices1 + s2 �rst have to perform their probabilistic transitions before the non-determinismis resolved. Similarly, by the rules of [HaJo90], the parallel composition s1ks2 cannotperform an action-labelled transition unless both components s1, s2 have resolved theirprobabilistic choices.

4.1. PCCS : AN ASYNCHRONOUS PROBABILISTIC CALCULUS 77Operational semantics for PCCS : Using the classical SOS-style �a la Plotkin [Plot81],we give an operational semantics for PCCS based on concurrent probabilistic processeswith action labels. Let decl be a declaration. We de�ne the transition relation �!decl �Stmt �Act �Distr(Stmt) to be the smallest relation satisfying the rules of Figure 4.2 onpage 76. Here, we write s a�!decl � instead of (s; a; �) 2 �!decl . The operational semanticsassigns to each PCCS program P = hdecl ; si the action-labelled concurrent probabilisticprocess O[[P]] = (Stmt ;Act ; Stepsdecl ; s) where Stepsdecl(s) = f(a; �) : s a�!decl �g.s
nil b:nil

�
�	
�
 �	 �
 �	sa23 13b?� ����	 @@@@R

s0 Znil b:nil
�
 �	 �
�	�
 �	 �
 �	s a a a23 13b
����	 @@@R"���� ����	 @@@@RFigure 4.3:Example 4.1.3 The operational semantics of the PCCS program hdecl ; si where s =a: �h 13i b:nil� h23i nil� (and where decl is an arbitrary declaration) is the process shown onthe left of Figure 4.3 (page 77). The picture on the right shows the operational semanticsO[[P0]] of the recursive program P0 = hs0; decl0i where s0 = s + Z and decl0(Z) = a:Z.Figure 4.4 (page 78) shows the semantics of the program hdecl ; (s1ks2) n Li wheres1 = �: �h14i�:nil � h 34i�:nil�, s2 = �: �h 13i �:nil � h23i�:nil� + a:niland L = f�; �; �; �g. t1k0t2 stands short for (t1kt2) n L. The a-transition of s1k0s2represents the case where the a-transition of s2 is chosen non-deterministically. Thus,s1k0s2 can make an a-move where s1 does not participate, i.e. does not change its localstate. The � -transition of s1k0s2 stands for the synchronization of � and �. For instance,with probability 14 � 13 = 112 , s1 moves to the local state �:nil and s2 to �:nil. In the globalstates s1k0nil, �:nilk0�:nil and �:nilk0�:nil no actions are possible because of the restrictionoperator while in the global states �:nilk0�:nil and �:nilk0�:nil further synchronizationstake place.In what follows, we identify each program P with its operational meaning O[[P]] and liftbisimulation equivalence � and the simulation preorder vsim to PCCS programs. Wede�ne P � P 0 i� O[[P]] � O[[P 0]] and P vsim P 0 i� O[[P]] vsim O[[P 0]]. It can easilybe shown that all operators preserve bisimilarity and the simulation preorder. Moreprecisely, if decl is a declaration then we de�ne �decl and vdeclsim as binary relation on Stmtby s �decl s0 i� hdecl ; si � hdecl ; s0i and s vdeclsim s0 i� hdecl ; si vsim hdecl ; s0i. Let� =�decl or � =vdeclsim . Then:1. If si � s0i, i 2 I, then a: (�P[pi]si) � a: (�P[pi]s0i).2. If s1 � s01 and s2 � s02 then s1 + s2 � s01 + s02.3. If s1 � s01 and s2 � s02 then s1ks2 � s01ks02.4. If s � s0 then s[`] � s0[`].

78 CHAPTER 4. PROBABILISTIC PROCESS CALCULI

�:nil k0 �:nil
s1 k0 s2 s1 k0 nil�:nil k0 �:nil�:nil k0 �:nil �:nil k0 �:nilnil k0 nil

�� ��
�� �� �� ���� ���� ���� ���� ��

t a
��

�112 16 1214 ��������� HHHHHHHj
&- %�

��������� HHHHHHHHj? -
Figure 4.4: Example for the operational semantics of a parallel PCCS program5. If s � s0 then s n L � s0 n L.6. Z � decl(Z)Similarly, it can be shown that the weak and branching bisimulation equivalences ofSegala & Lynch [SeLy94] are preserved by all operators with the exception of the non-deterministic choice operator +. The fact that these relations are congruences with respectto the parallel composition k can be derived from the results of [Sega95a].5Example 4.1.4 [Simpli�ed representation of the controller system] We considerthe controller system of Example 4.1.1 on page 75. The state space of O[[Pn]] consists of3n states (as each of the n components Test is described by three states). In order to geta \simpler" description of the behaviour of Pn with a smaller state space (whose size isnot exponential in the number of testing machines) one can use counters ctest , creturn andcrelease where the value of the counter ca gives rise about the number of testing machinesthat are in the local state where the action a has to be performed next. That is, weconsider the PCCS program P 0n def= P(n; 0; 0) whereP(m; k; l) def= Test(m; k; l) + Return(m; k; l) + Release(m; k; l)andTest(m; k; l) def= 8>><>>: test : �h 1100iP(m� 1; k + 1; l)� h 99100iP(m� 1; k; l + 1)�: if m � 1nil : otherwiseReturn(m; k; l) def= (return:P(m + 1; k � 1; l) : if k � 1nil : otherwiseRelease(m; k; l) def= (release:P(m + 1; k; l � 1) : if l � 1nil : otherwise.5Note that our parallel composition is similar to the one introduced in [Sega95a]; the only di�erence isthat [Sega95a] uses another communication mechanism which is based on CSP-style synchronization oncommon actions and independent evolvement on all other actions (rather than the CCS -style synchro-nization on complementary actions that we use).

4.2. PSCCS : A SYNCHRONOUS PROBABILISTIC CALCULUS 79Intuitively, the �rst component m is the value of the counter ctest for the testing machinesthat are in their initial state (i.e. that have to test a product) while the second compo-nent k and the third component l stand for the values of the counters creturn and creleaserespectively. It is easy to see that O[[Pn]] � O[[P 0n]] and that O[[P 0n]] has (n + 1)(n + 2)=2states. Thus, by the compositionality of bisimulation equivalence �, for investigating thebehaviour of the controller system Pn in an environment : : : kPnk : : : one can switch fromthe exponential-large system O[[Pn]] to the polynomial-large system O[[P 0n]].4.2 PSCCS : a synchronous probabilistic calculusThe speci�cation language PSCCS was introduced by Giacalone, Jou & Smolka [GJS90]and later considered by several authors, e.g. [JoSm90, vGSST90, LaSk92].6 PSCCS usesa SCCS-style synchronous parallel composition s1�s2 where all transitions of the products1�s2 are composed by individual moves of s1 and s2; more precisely, in each step of s1�s2,each of the components s1 and s2 performs exactly one step. We assume a commutativeand associative function Act �Act ! Act , (a; b) 7! a � b where a � b stands for the resultof the simultaneous execution of the actions a and b.7 In contrast to Section 4.1 (andthe following Section 4.3) the special action symbol � is not needed here. Nevertheless,it might be contained in Act in which case it does not play a distinguished role and istreated as any other action.Syntax of PSCCS : Let ProcVar be a set of process variables. PSCCS statements aregiven by the grammar shown in Figure 4.5 (page 79). Here, Z 2 ProcVar , a 2 Act ,s ::= nil ��� Z ��� a:s ��� �Xi2I [pi]si ��� s1 � s2 ��� s n L ��� s[`]Figure 4.5: Syntax of PSCCS statementsL � Act , I is a countable indexing set, pi are real numbers pi 2]0; 1] with P pi = 1and ` : Act ! Act is a relabelling function. StmtPSCCS (or shortly Stmt) denotes thecollection of all PSCCS statements. A PSCCS program is a pair P = hdecl ; si where s isa statement and decl a declaration (i.e. a function decl : ProcVar ! StmtPSCCS).The intended meanings of inaction nil, pre�xing a:s, restriction s n L and relabelling s[`]are as in the case of CCS or PCCS . �Pi2I [pi]si models probabilistic choice: if si, i 2 I,are pairwise distinct then, with probability pi, �P [pi]si behaves as si. For �nite indexingset I = fi1; : : : ; ing, we also write [pi1]:si1 � : : :� [pin]sin instead of �Pi2I [pi]si. If si mayperform the action ai and becomes ti afterwards i = 1; 2, then s1� s2 may move to t1� t2via the action a1�a2. In the synchronous parallel composition (also called product) s1�s2,6Note that several authors use the name PCCS for that calculus while we call it PSCCS since it is anextension of SCCS and to avoid confusions with the language PCCS considered in Section 4.1.7In SCCS [Miln83], (Act ; �) is supposed to be an Abelian monoid with a unit 1. For our purposes, itsu�ces to assume that � is commutative and associative.

80 CHAPTER 4. PROBABILISTIC PROCESS CALCULIPdecl(Z; a; t) = Pdecl(decl(Z); a; t); Pdecl(a:s; a; s) = 1Pdecl �Xi2I [pi]si; a; t! = Xi2I pi �Pdecl(si; a; t)Pdecl(s1 � s2; a; t1 � t2) = X(b;c)2Syna Pdecl(s1; b; t1) �Pdecl(s2; c; t2)Pdecl(s n L; a; t n L) = Pdecl(s; a; t) if a =2 LPdecl(s[`]; a; t[`]) = Xb2`�1(a) Pdecl(s; b; t)Figure 4.6: Equations for Pdecl in the case of PSCCSthe probabilistic choices in s1 and s2 are supposed to be resolved causally independently.Thus, the probability of the transition of s1 � s2 to the state t1 � t2 via the action a isobtained by summing up the products of the probabilities for s1 to move to t1 via anaction b and s2 to move to t2 via an action c such that a = b � c.Operational semantics of PSCCS : With slight di�erences { that mainly arises fromthe fact that we do not allow substochastic states in fully probabilistic systems and dealwith internal probabilistic choice (which leads to another interpretation of the restrictionoperator; cf. Remark 4.2.4, page 81) { we provide PSCCS with the operational generativesemantics of [GJS90, JoSm90, vGSST90]. For this, we �x a declaration decl and de�nethe transition probability function Pdecl : Stmt �Act �Stmt ! [0; 1] as the least functionthat satis�es the equations of Figure 4.6 on page 80.8 Here, for a 2 Act ,Syna = f(b; c) 2 Act � Act : b � c = ag:Example 4.2.1 We consider the recursive PSCCS program hdecl ; Zi wheredecl(Z) = h13iZ � h23i a:nil.We get the equation Pdecl(Z; a; nil) = 13 �Pdecl(Z; a; nil) + 23 whose unique solution isPdecl(Z; a; nil) = 1:For the recursive PSCCS program hdecl ; Z 0i where decl(Z 0) = Z 0 we get the equationPdecl(Z 0; a; t) = Pdecl(Z 0; a; t). Clearly, the least solution is 0. Hence, Pdecl(Z 0; a; t) = 0for all a 2 Act and t 2 Stmt .The so de�ned transition probability function Pdecl : Stmt � Act � Stmt ! [0; 1] issubstochastic which means that the sum of the probabilities for the outgoing transitions8The existence of a least function satisfying the equations of Figure 4.6 follows with standard domain-theoretic arguments; see e.g. Propostion 12.1.1 on page 309.

4.2. PSCCS : A SYNCHRONOUS PROBABILISTIC CALCULUS 81s10 nil
���
���
 �� �
0, 23 a, 130, 1� �����	 @@@@@R s1 � s2 nil� nil0

�� �
�� �
���
0, 23 a � b, 112a � c, 140, 1� ����	 HHHH ?HHHHHjFigure 4.7: Examples for the operational semantics of PSCCS programsof a certain statement might be a real number between 0 and 1 (rather than 0 or 1).For instance, for the statement s1 = h13i a:nil� h23i nil we have Pdecl(s1; a; nil) = 1=3 andPdecl(s1; b; t) = 0 if (b; t) 6= (a; nil). For this reason, we introduce an auxiliary statement0 that denotes inaction and a special action symbol 0 which is needed for modellingtransitions from a state s 2 Stmt to 0. We de�ne Stmt0 = Stmt [f0g, Act 0 = Act [f0gand extend Pdecl to a function Stmt0�Act 0�Stmt0 ! [0; 1] (also called Pdecl) as follows.For s 2 Stmt , we putPdecl(s; 0; 0) = 1 � Xa2Act Xt2Stmt Pdecl(s; a; t):andPdecl(�) = 0 in all remaining cases (e.g. Pdecl(s; 0; t) = 0 if t 2 Stmt orPdecl(0; a; t) = 0for all a 2 Act0 and t 2 Stmt0). The operational semantics assigns to each PSCCSprogram P = hdecl ; si the fully probabilistic process O[[P]] = (Stmt0;Act0;Pdecl ; s).Example 4.2.2 The operational semantics of hdecl ; s1i where s1 = h 13i a:nil � h23i nil isthe process shown on the left of Figure 4.7 on page 81. The picture on the right shows theoperational semantics of hdecl ; s1 � s2i where s1 is as before and s2 = h14i b:nil� h34i c:nil.In both cases, decl is an arbitrary declaration.Remark 4.2.3 There are several possibilities for a formal de�nition of the transitionprobability function Pdecl . Some authors, e.g. [vGSST90], use indices for the transitionsand rules like if sj a[p]�!k t for some j 2 I then �Xi2I [pi]si a[p]�!j:k tfrom which the transition probability function Pdecl can be derived byPdecl(s; a; t) = Xj �p : s a[p]�!j t� :Other authors, e.g. [JoSm90, Toft94], use multisets of transitions. However, the resultingsemantics O[[P]] does not depend on the chosen way for de�ning the transition probabilityfunction Pdecl .Remark 4.2.4 [Internal, external probabilistic choice and restriction] Our inter-pretation of restriction s nL di�ers from those in [GJS90, JoSm90, vGSST90] (where thesyntax sdA instead of s n L where L = Act n A is used). In the rule for s n L, they use

82 CHAPTER 4. PROBABILISTIC PROCESS CALCULIa normalization factor (the probability Pdecl(s;Act n L) for state s to perform an actiona 2 Act n L). Their rule for the restriction operator leads to the equationPdecl(s n L; a; t n L) = Pdecl(s; a; t)Pdecl(s;Act n L)(provided that Pdecl(s;Act n L) > 0). Thus, they deal with the conditional probabilitiesfor the (Act nL)-labelled transitions of s under the assumption that s performs an actionfrom Act nL. In contrast to this, in our approach the value Pdecl(s;Act nL) represents theprobability of deadlock in s nL that results from the restriction (but not from a deadlockin s). For example, for the statements = t n fag where t = h12i a:nil � h12i b:nilwe deal with the transition probabilities Pdecl(s; b; nil n fag) = Pdecl(s; 0; 0) = 1=2 whilePdecl(s; b; nil n fag) = 1 in the approachs of [GJS90, JoSm90, vGSST90] that focus onan external probabilistic choice operator where the process randomly chooses one of theevents o�ered by environment. Hence, for the statement t of above, if the environmento�ers a and b then a and b are chosen with equal probability while, for an environment thatjust o�ers b (but not a), the action b will be performed (with probability 1). In contrast tothis, we assume an internal probabilistic choice operator where the probabilistic choicesare resolved independently on the environment. Thus, in our approach, if just b is availablewhile t is willing to perform a and b with equal probability then either b will be performed(if the randomized choice selects b) or a deadlock occurs (if a is selected), both withprobability 1/2.Beside the use of another probabilistic choice operator, several other variants of the op-erational semantics are possible and might be useful in certain applications.� We do not distinguish between well-termination and deadlock. If one wants to considernil as a well-terminated process then one can use an auxiliary statement (e.g. exit),a new action symbol (e.g. p) and the transition probabilities Pdecl(nil;p; exit) = 1instead of Pdecl(nil; 0; 0) = 1. Then, the 0-labelled transitions to 0 (that might arisefrom the restriction operator or recursion) represent deadlock while the p-labelledtransitions to exit represent well-termination.� Another possible variant concerns the rule for the product. In our approach, a deadlockin s1�s2 occurs if it occurs in one of the components s1 or s2. Alternatively, one couldallow the non-deadlocked component to perform further actions even if a deadlock hasoccurred in the other component. If 0-labelled and p-labelled transitions are used, onecan use rules to specify that a deadlock in s1 � s2 occurs i� it occurs in one of thecomponents while s1 � s2 behaves as s1 if s2 has well-terminated (i.e. has performedthe action p) and vice versa.For �xed declaration decl , we de�ne the relations �decl and vdeclsim for PSCCS statementsas in the case of PCCS (see page 77). Then, �decl and vdeclsim are congruences with respectto all operators of PSCCS . This result for bisimulation equivalence �decl was establishedby Jou & Smolka (cf. Lemma 4.1 in [JoSm90]). The congruence proof for vdeclsim is an easyveri�cation and omitted here.

4.3. PLSCCS : A LAZY SYNCHRONOUS CALCULUS 834.3 PLSCCS : a lazy synchronous calculusIn this section we propose a new calculus, called PLSCCS , which arises from PSCCS byreplacing the synchronous parallel composition � by a lazy synchronous parallel compo-sition
. In the lazy product P1
P2, the processes P1 and P2 are forced to synchronizeon all visible actions while the internal actions � are executed independently.As in the case of PCCS , we assume a special action � that denotes any internal or invisiblecomputation. While � does not play a distinguished role in the product s1�s2 of PSCCS(i.e. � is treated as any other action), in the lazy product s1
 s2, the components s1 ands2 may perform arbitrary many internal � -steps independently before they synchronize onsome visible actions. In other words, each step of s1
s2 is composed by sequences of stepsof s1 and s2, where each of them starts with an arbitrary number of internal actions � andends up with a visible action. As in the case of PSCCS , the probabilistic choices of thecomponents are supposed to be independent. Hence, the probabilities for the transitionsof s1
 s2 are given by the product of the individual probabilities where we deal with thecumulative e�ect of the � -transitions.Syntax of PLSCCS : PLSCCS statements are given by the grammar shown in Figure4.8 (page 83). Here, Z 2 ProcVar , a 2 Act , L � Act n f�g, I is a nonempty countables ::= nil ��� Z ��� a:s ��� �Xi2I [pi]si ��� s1
 s2 ��� s n L ��� s[`]Figure 4.8: Syntax of PLSCCS statementsindexing set, pi are real numbers pi 2]0; 1] with P pi = 1 and ` : Act ! Act is arelabelling function with `(�) = � . StmtPLSCCS (or shortly Stmt) denotes the collectionof all PLSCCS statements. PLSCCS denotes the set of all PLSCCS programs, i.e. pairsP = hdecl ; si consisting of a declaration decl and a PLSCCS statement. The intendedmeanings of nil, the pre�x operator a:s, the probabilistic choice operator �P[pi]si, therestriction operator s n L and the relabelling operator s[`] are as in the case of PSCCS(see page 79). For the lazy product s1
 s2, we assume a function(Act n f�g)� (Act n f�g)! Act ; (�; �) 7! � � �:where, as in the case of PSCCS , � � � stands for the result of the synchronization on thevisible actions � and �. Note that � � � = � is possible. Each a-labelled transition ofthe lazy product s1
 s2 is composed by sequences of steps of the components s1 and s2that are labelled by strings of the form � �� and � �� respectively such that a is the resultof the synchronized execution of the visible actions � and � (i.e. a = � � �). Thus, theprobability of s1
 s2 to move via the action a to t1
 t2 is given by the sum over allprobabilities Prob(s1; � ��; t1) � Prob(s2; � ��; t2) where (�; �) ranges over all pairs (�, �)of visible actions such that � � � = a. 99Recall that Probdecl(s; ���; t) is the probability for s to perform a sequence of internal actions followedby � ending up in the state t (cf. Section 3.3.1, page 50).

84 CHAPTER 4. PROBABILISTIC PROCESS CALCULIOperational semantics for PLSCCS : We supply PLSCCS with an operational seman-tics based on action-labelled fully probabilistic processes. As in the case of PSCCS , we �xa declaration decl : ProcVar ! Stmt and de�ne the transition probabilities Pdecl(s; a; t)(where s, t 2 Stmt and a 2 Act) with the help of a higher-order operator on the functionspace Stmt �Act �Stmt ! [0; 1]. For the de�nition of the semantics of the lazy product,we have to deal with the probabilities Probdecl(s; � ��; t) for s to move to t via a sequenceof steps labelled by a string of � ��. For this, we deal with an operator on function pairsand de�ne the pair hPdecl ;Qdecli as the least pair of functionsPdecl : Stmt � Act � Stmt ! [0; 1]and Qdecl : Stmt � (Act n f�g)� Stmt ! [0; 1]that satis�es the equations of Figure 4.9 on page 85.10 We proceed as in the case ofPSCCS and extend the so de�ned function Pdecl : Stmt : Act � Stmt ! [0; 1] to afunction Stmt0 � Act 0 � Stmt0 ! [0; 1] (also called Pdecl). For s 2 Stmt , we putPdecl(s; 0; 0) = 1 � Xa2Act Xt2Stmt Pdecl(s; a; t)and de�ne Pdecl(�) = 0 in all remaining cases.11 The operational semantics assigns toeach PLSCCS program P = hdecl ; si the action-labelled fully probabilistic process O[[P]]= (Stmt0;Act0;Pdecl ; s): Let Probdecl denote the probability measure in the action-labelledfully probabilistic system (Stmt0;Act0;Pdecl).Lemma 4.3.1 For all s, t 2 Stmt and � 2 Act, Qdecl(s; �; t) = Probdecl(s; � ��; t):12Proof: easy veri�cation. Uses structural induction on the syntax of s and Proposition3.3.4 (page 49).Corollary 4.3.2 For all s1, s2, t1, t2 2 Stmt and a 2 Act,Pdecl(s1
 s2; a; t1
 t2) = X(�;�)2Syna Probdecl(s1; � ��; t1) � Probdecl(s2; � ��; t2):Proof: follows immediately by Lemma 4.3.1 (page 84).Recall that Probdecl(s; � ��) = Pt Probdecl (s; � ��; t) is the probability for s to perform asequence of � 's followed by � (cf. Section 3.3.1, page 50).Corollary 4.3.3 For all s1, s2 2 Stmt,Pdecl(s1
 s2; 0; 0) = 1 � X�12Act�1 6=� X�22Act�2 6=� Probdecl(s1; � ��1) � Probdecl (s2; � ��2):10As in the case of PSCCS , the existence of a least function pair satisfying the equations of Figure 4.9can be derived with standard methods of domain-theory; see e.g. Remark 12.1.2 on page 309.11Here, Stmt0 = Stmt [f0g and Act0 = Act [f0g where the new action symbol 0 and the auxiliarystatement 0 are interpreted as in the case of PSCCS . See the explanations on page 81.12In the notations of Section 3.3.1 (page 50), Probdecl(s; ���; t) is the probability for the programhdecl ; si to behave as hdecl; ti after performing a sequence of steps labelled by an element of ���.

4.3. PLSCCS : A LAZY SYNCHRONOUS CALCULUS 85Pdecl(Z; a; t) = Pdecl(decl(Z); a; t); Pdecl(a:s; a; s) = 1Pdecl �Xi2I [pi]si; a; t! = Xi2I pi �Pdecl(si; a; t)Pdecl(s1
 s2; a; t1
 t2) = X(�;�)2Syna Qdecl (s1; �; t1) �Qdecl(s2; �; t2)Pdecl(s n L; a; t n L) = Pdecl(s; a; t) if a =2 LPdecl(s[`]; a; t[`]) = Xb2`�1(a) Pdecl(s; b; t)Qdecl(s; �; t) = Pdecl(s; �; t) + Xu2Stmt Pdecl(s; �; u) �Qdecl(u; �; t):Figure 4.9: Equations for Pdecl and Qdecl in the case of PLSCCSProof: follows immediately by Corollary 4.3.2 (page 84).Example 4.3.4 We consider the PLSCCS programs P1 = hdecl ; s1i, P2 = hdecl ; s2iwhere decl is an arbitrary declaration,s1 = h12i �:(nil n L) � h12i�:nil and s2 = �:�:nilfor some subset L of Act n f�g. The operational semantics of P1 and P2 are shown inFigure 4.10 (page 86). We now investigate the lazy product s1
 s2 where we assumethat � � � = �. In the lazy product s1
 s2, s2 �rst performs its internal step andthen o�ers the synchronization on � while s1 chooses randomly between the internalstep and the synchronization on �, both with probability 1=2. In the former case, s1and s2 cannot synchronize, because, after performing the internal transition, s2 waitsforever for the synchronization on �. In the latter case, s1 is idle until s2 o�ers thesynchronization on �. Figure 4.11 (page 86) shows the operational semantics of theprogram hdecl ; s1
 s2i. Clearly, we have Probdecl(s1; � ��; nil) = Pdecl(s1; �; nil) = 1=2and Probdecl(s2; � ��; nil) = 1. Thus, Pdecl(s1
 s2; �; nil
 nil) = 1=2. On the other hand,1 � X�12Act�1 6=� X�22Act�2 6=� Probdecl (s1; � ��1) � Probdecl(s2; � ��2)= 1 � Probdecl(s1; � ��) � Probdecl (s2; � ��) = 1� 12 � 1 = 12which yields Pdecl(s1
 s2; 0; 0) = 1=2.Example 4.3.5 We consider the programs Q1 = hdecl ; s1i, Q2 = hdecl ; s2i wheres1 = Z, decl(Z) = h13i �:Z � h13i �:�:w � h13i �:v, s2 = h 14i �:
:t� h34i �:u.

86 CHAPTER 4. PROBABILISTIC PROCESS CALCULI
nil n L nils1

0
�
 �	 �
 �	

�
 �	
�
 �	

� , 12 �, 120, 1 0, 1 0nil
�:nils2
�� �

�� �

���

���
0, 1

�, 1� , 1����	 @@@@R ???@@@@R ����	
Figure 4.10: The operational semantics of PLSCCS programs P1 and P2

0 nil
 nils1
 s2�
 �	 �
 �	
�
 �	0, 12 �, 120, 1����	 @@@@R�Figure 4.11:Here, t, u, v, w are pairwise di�erent statements. The operational semantics of Q1 andQ2 are shown in in Figure 4.12 (page 87) where the outgoing transitions of t, u, v and ware omitted. We consider the lazy product Q1
Q2. We haveProbdecl (s1; � ��;w) = Probdecl (s1; � ��; v) = 1=2and Probdecl(s2; � �
; t) = 1=4, Probdecl(s2; � ��; u) = 3=4. Thus,Pdecl(s1
 s2; � �
; w
 t) = Pdecl(s1
 s2; � �
; v
 t) = 18 ,Pdecl(s1
 s2; � � �; w
 u) = Pdecl(s1
 s2; � � �; v
 u) = 38 :In some applications, it might be helpful to work with a special visible idle action,e.g. called wait , by which a process can be forced to be idle in the next time step.Formally, we require that wait is a visible action such that wait �� = � �wait = � for all� 2 Act nf�g. For example, �:s
wait :t �rst performs � and then behaves as s
t. I.e. theprocess wait :t does not in
uence the �rst step, even though formally, it participates byperforming the action wait .Example 4.3.6 [The communication protocol Sender
 Receiver] We consider avariant of the simple communication protocol of Example 1.2.2 on page 20 which wespecify as the lazy product of a sender (who tries to send messages) and a receiver (whowaits for the messages by the sender). The sender works with an uncertain mediumthat might lose message (with probability 0.01). If the message gets lost then the senderretries to deliver the message. In case where the message is delivered correctly, thesender waits for an acknowledgement of the receipt. For simplicity, we assume that the

4.3. PLSCCS : A LAZY SYNCHRONOUS CALCULUS 87
�:ww

s1 v�� �
���

���
 ���
� , 13 �, 13 � , 13

�, 1
����	 @@@@R
� �
�

?
:tt
s2 u�� �
���

���
 ���
� , 14 �, 34
, 1
����	 @@@@R?Figure 4.12: The operational semantics of PLSCCS programs Q1 and Q2acknowledgement is transmitted by a safe medium that does not loose messages. Thebehaviour of the sender can be speci�ed using process equations as explained on page 73.Sender def=produce:Try to sendTry to send def= [0:01]Lost � [0:99]DeliverLost def= �:Try to sendDeliver def= deliver !:Wait for responseWait for response def= wait :ack?:SenderWe use the visible actions produce (which means the action by which the sender generatesa message), deliver ! (the output action by which the medium transmits the messageto the receiver), ack? (an input action that denotes that the sender sender reads theacknowledgement) and the action wait that is used to force the sender to be idle in thestep where the receiver works up the message. The invisible action � is used to describethe activities that are needed for preparing the next attempt to deliver the message. Theoperational semantics of the sender is shown in Figure 4.13 (page 87.) The receiver isSender

Try to send ack?:Sender
Wait for response

�� ���� �� �� ���� ��
produce , 1

� , 0:01 deliver !, 0:99 wait , 1
ack?, 1?'

& �6 @@@@@R
� $

6 6
Figure 4.13: The operational semantics of the sender

88 CHAPTER 4. PROBABILISTIC PROCESS CALCULIspeci�ed as follows. Receiver def= wait :Get messageGet message def= deliver?:consume:AcknowledgeAcknowledge def= ack !:ReceiverWe use the actions deliver? (the input action that stands for the receipt of the message),consume (an action by which the receiver works up the message and produces the acknowl-edgement), ack ! (the output action by which the receiver acknowledges the receipt of themessage) and the action wait (which ensures that the receiver is idle while the sendergenerates the next message). We suppose that deliver ! � deliver? = ack? � ack ! = � . Theoperational semantics of Sender
 Receiver is shown in Figure 4.14 (page 88.)13Sender
Receiver
Try to send
Get message

Wait for response
 consume :Acknowledge
ack?:Sender
Acknowledge

�� ���� ���� ���� ��

produce , 1
� , 1 � , 1
consume , 1
?
?
?

$

%

�

Figure 4.14: The operational semantics of Sender
 ReceiverAs in the cases of PCCS or PSCCS , we adapt bisimulation equivalence � and the sim-ulation preorder vsim for PLSCCS programs and statements where, for � 2 f�;vsimg,we de�ne P � P 0 i� O[[P]] � O[[P 0]] and s �decl s0 i� hdecl ; si �decl hdecl ; s0i. It is easy tosee that s1 �decl s01, s2 �decl s02 implies s1
 s2 �decl s01
 s02. Thus, bisimulation equiva-lence and the simulation preorder are congruences for PLSCCS . In Chapter 7 we de�neweak bisimulation equivalence for action-labelled fully probabilistic systems for which weshow that it preserves all operators of PLSCCS (except the probabilistic choice operator).This algebraic property is especially useful, since it allows one to replace components byequivalent ones that are minimized with respect to their internal behaviour.
13Note that the probability for the sender to reach the state Wait for response from Try to send viaa path labelled by a trace of ��deliver ! is 1.

Chapter 5Denotational models
The recent trend in the semantics of programming languages is to provide a program-ming language with several (pairwise \consistent") semantics that describe di�erent views,e.g. an operational, a denotational and a logical based semantics. While the operationalsemantics focusses on the stepwise behaviour, the denotational approach is based oncompositionality (i.e. the existence of semantic operators for modelling the syntactic con-structs of the language such as non-deterministic choice +, sequential composition ; orparallel composition k). Another characteristic features of denotational semantics for pro-gramming languages with recursion or repetition is a the use of �xed point equations forthe de�nition of the meaning of recursive or repetitive programs. Typically, these �xedpoint equations are solved with the help of Tarski's or Banach's �xed point theorems inwhich cases the semantic domain is supposed to be equipped with an appropriate partialorder or metric. Thus, denotational semantics, being compositional, provide the theorythat underpins system decomposition; and, if fully abstract, i.e., if the inherent order(in the partial order setting) or equality (in the metric setting) in the model preciselycorresponds to the operational (pre)order or equivalence, the denotational semantics canprovide additional insight into the nature of operational notions, and eventually serve asan intermediate link between the operational semantics and an appropriate logic.Several authors proposed denotational semantics for probabilistic process calculi (see Sec-tion 1.2.2, page 23), but only a few of them investigate the issue of full abstraction withrespect to an operational notion of \process equality". In the context of probabilisticprocess calculi with recursion, denotational models and related full abstraction resultsare presented for testing [Chri90a, Chri90b, Norm97, KwNo98a, KwNo98b] and failure[MMS+94] equivalence. To handle recursive processes, Morgan et al [MMS+94] use thestandard partial order approach for establishing denotational least �xed point seman-tics. Christo� [Chri90a, Chri90b] deals with a variant of acceptance trees �a la Hennessy[Henn88] and models recursion by equations as labellings for the branches in these ac-ceptance trees. Kwiatkowska & Norman [KwNo96, Norm97, KwNo98a, KwNo98b] usea variant of the standard metric denotational approach and de�ne the semantics as thelimit of a Cauchy sequence in a complete metric space.Based on the joint work with Marta Kwiatkowska [BaKw97], this chapter presents amethod for providing denotational semantics for probabilistic calculi like PCCS or PSCCSthat are fully abstract with respect to bisimulation and simulation. Full abstraction of89

90 CHAPTER 5. DENOTATIONAL MODELSa denotational semantics D with respect to bisimulation means that D identi�es exactlythose programs that are bisimilar, i.e. D[[P]] = D[[P 0]] i� P � P 0 while full abstractionwith respect to simulation means that the semantic domain (the range of D) is equippedwith an order v that re
ects the simulation preorder, i.e. D[[P]] v D[[P 0]] i� P vsim P 0.The partial order approach is used to obtain a fully abstract denotational semanticswith respect to simulation; the metric setting to obtain full abstraction with respect tobisimulation.As in the non-probabilistic case (e.g. [dBaZu82, GoRo83, dBaMe88, Abra91, RuTu93,Bai97]) the semantic domains ID and IM of the partial order and metric semantics re-spectively are obtained by applying standard categorical methods for solving recursivedomain equations.1 The main idea of the fully probabilistic case is to identify each pro-cess P with a distribution � on pairs (a;Q) where a is an action label, Q is a processand �(a;Q) the probability for P to perform the action a and to behave as Q afterwards.This leads to recursive equations of the formX �= f0g [Distr(Act �X)for the semantic domain X.2 Here, 0 is a special symbol to denote inaction (i.e. a processlike nil that does not perform any action). The central idea in the concurrent case is torepresent a process P by a set of pairs (a; �) consisting of an action a and a distribu-tion � on processes where each element (a; �) of that set represents a non-deterministicalternative. From this, we obtain domain equations of the formX �= Pow �(Act � Distr(X))where Pow�(�) denotes a suitable powerdomain construction and where inaction is mod-elled e.g. by ;. Unfortunately, in both cases the equation cannot be solved with the stan-dard methods of [SmPl82, AbJu94] or [AmRu89, MaZe91, RuTu93] for solving recursivedomain equations in the partial order or metric approach respectively since the distribu-tion operator X 7! Distr(X) fails the necessary condition of preserving completeness.3Nevertheless, the equationsX �= f0g[Distr(Act�X) and X �= Pow�n(Act�Distr(X))have �nal solutions in SET, the category of sets and functions, which yields �nal se-mantics in the sense of Rutten & Turi [RuTu93] that are fully abstract with respect tobisimulation.4In order to obtain fully abstract denotational models that can serve as semantic domainsfor providing denotational semantics in the metric or partial order framework we switchfrom Distr(�) to the probabilistic powerdomain Eval(�) of evaluations in the sense of Jones& Plotkin [JoPl89] (cf. Section 12.1.4, page 313). While distributions assign probabilitiesto elements, the evaluations decorate sets with \probabilities" (values in [0,1]). In ourcases, where the underlying domain is a metric space or partial order, the set Eval(�) ofall evaluations on (�) covers Distr(�). We solve domain equations of the formX �= f0g [Eval(Act �X) and X �= Pow�(Act � Eval(X))1The recursive domain equations re
ect the coinductive nature of bisimulation and simulation.2Recall that Distr(�) denotes the set of distributions on (�). See Section 2.2 (page 30 �).3See Remark 5.1.13 (page 95) and Remark 5.1.18 (page 97).4Here, Pow�n (�) denotes the collection of �nite subsets of (�).

5.1. DENOTATIONAL MODELS: CONCURRENT CASE 91where we apply the method of Abramsky & Jung [AbJu94] in the partial order approachand the method of Rutten & Turi [RuTu93] in the metric setting. The resulting do-mains ID and IM are shown to be internally fully abstract with respect to (bi-)simulationwhich means that the inherent order on ID agrees with the simulation preorder and thatbisimulation equivalence coincides with the equality on IM . Using the standard proce-dures to give denotational semantics in the partial order and metric approach we obtaindenotational semantics on ID and IM and the desired full abstraction results.Organization of that chapter: In Section 5.1 we consider the (more interesting andcomplicate) case of concurrent probabilistic processes in detail and the language PCCS(see Section 4.1, page 74 �) where we shrink our attention to �nitely branching systems.5The results for the fully probabilistic case and PSCCS (see Section 4.2, page 79 �) aresummarized in Section 5.2.In this chapter, the reader is supposed to be familiar with the basic concepts of denota-tional (least �xed point or metric) semantics and categorical methods for solving recursivedomain equations. The mathematical preliminaries that are needed in this chapter canbe found in the appendix (Sections 12.1.1, 12.1.2, 12.1.3 and 12.1.4; see page 307 �).Moreover, the reader should recall the notations that we use for distributions and weightfunctions (Section 2.2, page 30).5.1 Denotational models: concurrent caseWe take as basis �nitely branching action-labelled concurrent probabilistic processes to-gether with the bisimulation equivalence (De�nition 3.4.3, page 54) and the simulationpreorder (De�nition 3.4.9, page 56). First, we turn our attention to the construction ofsemantic domains which can serve as fully abstract denotational models for languageswith non-determinism, probabilistic choice and recursion (such as PCCS). We start withthe equation X �= Pow �(Act � Distr(X)) that we solve in SET and that yields \�nalsemantics" in the sense of [RuTu93] (see Section 5.1.1). Then, taking the domain equa-tions for non-probabilistic processes as basis, we derive domain equations involving theprobabilistic powerdomain of evaluations which { when solved respectively in appropriatecategories of partially ordered sets or metric spaces { give rise to semantic domains forprobabilistic processes that are internally fully abstract with respect to simulation andbisimulation respectively (see Sections 5.1.2 and 5.1.3). Having obtained these internallyfully abstract semantic domains, we use the standard procedures for establishing denota-tional semantics on dcpo's and complete metric spaces and obtain dentational semanticsfor PCCS that are shown to be fully abstract with respect to bisimulation and simulationrespectively (see Section 5.1.4).Simpli�ed notations: In the remainder of this section we deal with �nitely branch-ing action-labelled concurrent probabilistic systems or processes with action labels of a�xed �nite nonempty set Act . For simplicicity, we brie
y speak about probabilistic sys-tems or probabilistic processes rather than �nitely branching action-labelled concurrentsystems/processes of the form (S;Act ; Steps) or (S;Act ; Steps; s).5Note that the operational semantics for PCCS (which does not allow for unbounded non-deterministicchoice) always yields a �nitely branching process.

92 CHAPTER 5. DENOTATIONAL MODELS5.1.1 The domain IPIn the non-probabilistic case, the �nal solution of the equation X �= Pow�n(Act �X) inSET yields a characterization of \action-labelled trees" [Barr93, RuTu93, Bai97]. Thesecan be viewed as canonical representatives of the bisimulation equivalence classes of (non-probabilistic) �nitely branching labelled transition systems with action labels in Act .Here, Pow�n(�) denotes the collection of �nite subsets of (�). We adapt this idea forthe probabilistic case and show that the bisimulation equivalence classes of probabilisticprocesses form the �nal solution of the domain equation X �= Pow�n(Act � Distr(X)).Notation 5.1.1 [The domain IP] Let IP be the set of bisimulation equivalence classesof probabilistic processes.6We use symbols like T ; T 0; T1; T2; : : : to range ober the elements of IP .Notation 5.1.2 [The bisimulation equivalence classes [[P]]] For P to be a proba-bilistic process, [[P]] denotes the bisimulation equivalence class of P.Notation 5.1.3 [The process Pt] Let P = (S;Act ; Steps; s) be a probabilistic processand t 2 S. Then, Pt denotes the probabilistic process (S;Act ; Steps; t).Notation 5.1.4 [The elements TA] Let P = (S;Act ; Steps; s) be a probabilistic processand A 2 S= �. Let TA be the unique element of IP with TA = [[Pt]] for all (some) t 2 A.We associate with IP the probabilistic system S(IP) = (IP ;Act ; StepsIP) whereStepsIP ([[P]]) = f(a;Distr(f)(�)) : (a; �) 2 Steps(s)g:where f : S ! IP is given by f(t) = [[Pt]]. Hence, if T is the bisimulation equivalenceclass of P = (S;Act ; Steps; s) (i.e. T = [[P]]) then T a�!� i� there exists a transitions a�!� with �(TA) = �[A] for all bisimulation equivalence classes A 2 S= �. In the sequel,each element T of IP is identi�ed with the probabilistic process (IP ;Act ; Steps; T). Thefollowing lemma and its corollary show that for each probabilistic process P, [[P]] (viewedas a probabilistic process) is the unique element of IP which is bisimilar to P.Lemma 5.1.5 Let P, P 0 be probabilistic processes.(a) P � [[P]](b) P � P 0 if and only if [[P]] = [[P 0]](c) P vsim P 0 if and only if [[P]] vsim [[P 0]]Proof: (b) is clear since [[�]] is de�ned to be the bisimulation equivalence class of(�). (c) follows by (a) and part (c) of Lemma 3.4.14 (page 59). We show (a). Let6In order to see that IP is really a set consider a �xed set States of cardinality ! and de�ne IP to bethe set of bisimulation equivalence classes of probabilistic processes whose states belong to States. Then,each probabilistic process is bisimilar to some probabilistic process whose states belong to States. I.e. IPrepresents all bisimulation classes of probabilistic processes. Note that the set of states s which can bereached from the initial state is always countable. Recall that we assume a �xed �nite set Act of actionsand that we only consider �nitely branching processes.

5.1. DENOTATIONAL MODELS: CONCURRENT CASE 93P = (S;Act ; Steps; s) and R = f(t; [[Pt]]) : t 2 Sg. We show that R ful�lls the conditionsof Proposition 3.4.4 (page 54).7 Let f : S ! IP be as before (i.e. f(t) = [[Pt]]). It is easyto see that- If t a�!� then [[Pt]] ��!Distr(f)(�).- If [[Pt]] a�!� then � = Distr(f)(�) for some transition s a�!�.By Remark 2.2.3 (page 31), � �R Distr(f)(�). By Proposition 3.4.4 (page 54), Pt �f(t) = [[Pt]] for all t 2 S. In particular, with t = s, we obtain P � [[P]].Corollary 5.1.6 IP is internally fully abstract with respect to bisimulation, i.e. for allT , T 0 2 IP : T � T 0 i� T = T 0.Proof: Let P, P 0 be probabilistic process with T = [[P]], T 0 = [[P 0]]. Then, by part(a) of Lemma 5.1.5, T � P and T 0 � P 0. Hence, T � T 0 implies P � P 0, and thereforeT = [[P]] = [[P 0]] = T 0.Next we show that IP is a �nal solution of the equation X �= Pow�n(Act �Distr(X)) inSET.Theorem 5.1.7 IP is the �nal coalgebra (and hence the �nal �xed point) of the functorPow�n � FAct �Distr : SET! SET.8Proof: Let F = Pow�n � FAct � Distr . We de�ne e : IP ! F(IP) by e(T) =f(a; �) : T a�!�g. Then, (IP ; e) is a coalgebra of F . Let (Y; f) be a coalgebra of K,i.e. f : Y ! F(Y) is a function. We associate with Y a probabilistic system (Y;Act ; Steps)where we put Steps(y) = f(y). Hence, y a�!� i� (a; �) 2 f(y). It is easy to see that thefunction F : Y ! IP , F (y) = [[Py]] satis�es F(F) � f = e � F . We show the uniquenessof F as a function Y ! IP satisfying F(F) � f = e � F . Whenever F 0 : Y ! IP is afunction with F(F 0) � f = e � F 0 then we show that R = f(y; F 0(y)) : y 2 Y g satis�es theconditions of Proposition 3.4.4 (page 54).9 It is easy to see that- If y a�!� then F 0(y) a�!Distr(F 0)(�).- If F 0(y) a�!� then y a�!� for some � 2 Distr(Y) where � = Distr(F 0)(�).By Remark 2.2.3 (page 31), � �R Distr(F 0)(�). Thus, Py � F 0(y) for all y 2 Y . ByLemma 5.1.5 and Corollary 5.1.6, F 0(y) = [[Py]] for all y 2 Y . Hence, F = F 0.Since IP is the �nal coalgebra we get a �nal semantics in the sense of Rutten & Turi[RuTu93]. Let (S;Act ; Steps) be a probabilistic system. Then, (S; f) is a coalgebra ofF = Pow�n � FAct � Distr where f : S ! F(S) is given by f(s) = f(a; �) : s a�!�g. The�nal semantics F : S ! IP is de�ned as the unique function with F(F) � f = e � F . Aswe saw in the proof of Theorem 5.1.7, F (s) = [[Ps]] where Ps = (S;Act ; Steps; s). ByLemma 5.1.5 (page 92), the �nal semantics is fully abstract in the sense that it identi�estwo states i� they are bisimilar and that it preserves the simulation preorder vsim.7Here, R is viewed as a binary relation on the state space of the composed system (which is de�nedas described on page 61).8Recall the de�nitions of the distribution functor Distr : SET ! SET (page 312), the functor FAct :SET! SET which assigns to each set X the set Act�X (see page 312) and the functor Pow�n : SET!SET which assigns to each set X the set Pow�n (X) of �nite subsets of X (see page 312).9Here, R is viewed as a binary relation on the state space of the composed system (which is de�nedas described on page 61).

94 CHAPTER 5. DENOTATIONAL MODELSExample 5.1.8 We consider the processes P and P 0 of Figure 3.6 on page 57. (I.e. Pand P 0 are the processes with initial state s and s0 respectively.) The �nal semantics [[P]]and [[P 0]] of P and P 0 (as elements of IP = Pow�n(Act �Distr(IP))) are[[P]] = f(a; �)g and [[P 0]] = f(a; � 0)gwhere �(T) = 1=3, �(;) = 2=3, � 0(T) = � 0(;) = 1=2 and T = f(b; �1;)g.5.1.2 The semantic domain IDWe aim at solving a recursive domain equation of the form D �= Pow �(Act�Eval(D)) inan appropriate category of dcpo's. The reason not to deal the equation D �= Pow�(Act�Distr(D)) is that the distribution functor Distr does not preserve completeness of partiallyordered sets (cf. Remark 5.1.13, page 95), and hence, fails for the standard methodsfor solving recursive domain equations for dcpo's. First we turn to the question whichpowerdomain Pow �(�) should be used. We follow the ideas of the non-probabilistic casewhere the initial solution of the domain equationD �= PowHoare (f?g [Act �D)yields a semantic domain that is internally fully abstract with respect to the simulationpreorder [Bai97].10 Note that the auxiliary element ? is needed as Act �D fails to be adcpo (because it does not have a bottom element). Inaction (nil) is then modelled by theset f?g, the bottom element in PowHoare(f?g [Act �D). In the probabilistic case, weadapt this idea and deal with the equationD �= PowHoare(f?g [Act � Eval(D)):Recall the de�nitions of the category CONT? of continuous domains and strict and d-continuous functions (see pages 308 and 311) and of the locally d-continous functorsEval : CONT? ! CONT? which assigns to each continuous domain D the powerdomainEval(D) of evaluations on D (see page 314), PowHoare : CONT? ! CONT? (see page308) and F contAct : CONT? ! CONT? which assigns to each continuous domain D thedomain f?g [Act � D (see page 312). We solve the above equation in the categoryCONT? of continuous domains (alternatively, we could work with the larger categoryDCPO? of dcpo's and strict and d-continuous functions). For this, we have to show thelocal d-continuity of the associated functor PowHoare � F contAct � Eval .Lemma 5.1.9 The functor Fcont = PowHoare �F contAct �Eval : CONT? ! CONT? is locallyd-continuous.Proof: follows from the local d-continuity of Eval , F contAct and PowHoare .Notation 5.1.10 [The domain ID] ID denotes the initial �xed point of Fcont.11In what follows, we deal with the isomorphism as an equality, i.e. if (ID; j) is the initial�xed point of Fcont then we suppose ID = Fcont(ID) and j = idID. Note that the partial10Here, PowHoare(�) denotes the Hoare powerdomain (cf. Section 12.1.1, page 308).11By the results of [AbJu94] (see page 311), Fcont has an initial �xed point.

5.1. DENOTATIONAL MODELS: CONCURRENT CASE 95order on ID is the inclusion. The bottom element ?ID in ID is f?g where ? denotes thebottom element in f?g [Act � Eval(ID). If (xi)i2I is a directed family of elements in IDthen the least upper bound Fxi is (S xi)cl , the Scott-closure of S xi in f?g[Act�Eval(ID).If A, B are �nite subsets of f?g [Act � Eval(ID) then the Scott-closure Acl = A # andAcl � Bcl if and only if A vL B where vL denotes the lower preorder.12The desired internal full abstraction result for ID states that (in some sense) the inherentorder on ID (i.e. the inclusion) \re
ects" the simulation preorder. For this, we show thatIP (together with the preorder vsim) can be embedded into ID via a function {ID : IP ! IDsuch that T vsim T 0 i� {ID(T) � {ID(T 0). Thus, the subspace {ID(IP) of ID represents thesimulation equivalence classes of probabilistic processes. The basic lemma for the proof ofthis full abstraction result is Theorem 5.1.12 which asserts a general connection betweenDistr(D) and Eval(D) that hold for any dcpo D: Distr(D) equipped with the weight-function-based preorder �sim (as de�ned in Notation 5.1.11) is a subspace of Eval(D); inparticular, Theorem 5.1.12 yields that �sim is a partial order on Distr(D).Notation 5.1.11 [The partial order �sim] Let D be a partially ordered set (with par-tial order v) and �, �0 2 Distr(D). Then, � �sim �0 i� there exists a weight function for(�; �0) with respect to v.13The following theorem shows that, for each dcpo D, the set Distr(D) equipped with theorder �sim can be viewed as a subspace of Eval(D). More precisely, we show that thefunction Distr(D) ! Eval(D), � 7! E�, is order-preserving. Thus, each distribution �can be identi�ed with the evaluation E�.14Theorem 5.1.12 If D is a dcpo then �sim is a partial order on Distr(D). Moreover, forall �, �0 2 Distr(D), � �sim �0 i� E� v E�0.Proof: see Section 5.3, Theorem 5.3.2 (page 105) and Corollary 5.3.4 (page 109).Remark 5.1.13 [Incompleteness of Distr(D)] In general, Distr(D) is not complete.Consider the dcpo D = f0; 1g1 of all (�nite or in�nite) words built from 0 and 1equipped with the pre�x ordering. Let �k be the distribution with�k(x) = (1=2k : if x is a word of length k0 : otherwise.It is easy to see that (�k)k�1 is a monotone sequence in Distr(D) which does not have anupper bound in Distr(D). In order to see that �k vsim �k+1 consider the distributionweight on D �D with weight(x; x0) = weight(x; x1) = 1=2k+1 if x is a word of length kand weight(x; y) = 0 in all other cases.Using Theorem 5.1.12 we can show the following connection between IP and ID.Theorem 5.1.14 There exists a unique function {ID : IP ! ID such that{ID(T) = n(a; EDistr({ID)(�)) : T a�!�ocl :12Recall that that the lower preorder is given by A vL B i� for all x 2 A there exists y 2 B suchthat x v y. Here, v denotes the order on f?g [Act � Eval (ID).13Note that �sim = �v (with the notations of Section 2.2, page 30).14Recall that E� is given by E�(U) = �[U], see page 313.

96 CHAPTER 5. DENOTATIONAL MODELSMoreover, for all T , T 0 2 IP , T vsim T 0 i� {ID(T) � {ID(T 0).Proof: see Section 5.3, Theorem 5.3.10 (page 111).The �nal semantics of Section 5.1.1 (page 93) yields a semantics on ID which is fullyabstract with respect to the simulation preorder in the following sense. If P, P 0 areprobabilistic processes then P vsim P 0 i� {ID([[P]]) � {ID([[P 0]]) (Lemma 5.1.5, page 92,and Theorem 5.1.14). Thus, the element {ID([[P]]) can be considered as the simulationequivalence class of P.Example 5.1.15 We consider the processes P and P 0 of Example 5.1.8 (cf. Figure 3.6,page 57). P and P 0 are represented in ID by{ID([[P]]) = f(a; E�)gcl = f?g [f(a; E) : E 2 E 23g;{ID([[P 0]]) = f(a; E�0)gcl = f?g [f(a; E) : E 2 E 12g:Here, � = � 23 , � 0 = � 12 , Ep = fE�q : p � q � 1g where�p is is the unique distribution on ID with �p(?ID) = pand �p(f(b; E1�?ID)gcl) = 1� p. The picture on the rightshows the \maximal transitions" of xp = f(a; E�p)gcl .For each x 2 ID, each element (a; E�) 2 x can be viewedas a \transition" x a�!�. Maximality of a transitionx a�!� means that, whenever x a�!� then � �sim �.
xp

?ID y?ID
s�
���
 �	 �
���
 �	
a, �p

bp 1� p? ?���� HHHHj
We refer the interested reader to Section 5.3.2 (page 114 �) where we investigate somedomain-theoretic properties of the domain ID and show the domain-theoretic di�erencesbetween ID and the corresponding domain for non-probabilistic processes.5.1.3 The semantic domain IMIn the non-probabilistic case, a complete ultrametric space M that is internally fullyabstract with respect to bisimulation is obtained by solving the recursive domain equationM �= Pow comp(Act �M 12)(see [dBaZu82, GoRo83, dBaMe88, RuTu93, Bai97]). The subscript 1=2 denotes that thedistance on M is multiplied with the factor 1=2 and Pow comp(�) denotes the collection ofcompact subsets of (�) (see page 311). We adapt this idea to the probabilistic case andsolve the equation M �= Pow comp(Act � Eval(M) 12):Recall the notations for ultrametric spaces (Section 12.1.2, page 310 �) and the methodby Rutten & Turi [RuTu93] for solving recursive domain equations in the category CUMof complete ultrametric spaces and non-expansive functions (Section 12.1.3, page 312).First, we show that the probabilistic powerdomain Eval(�) of evaluations can be consideredas an endofunctor on CUM which is locally non-expansive in the sense of [RuTu93]. It iseasy to see that for each distribution � on M :�(x) = inf f E�(U) : x 2 U 2 Opens(M) g = inf f E�(B) : x 2 B 2 Balls(M) g

5.1. DENOTATIONAL MODELS: CONCURRENT CASE 97where E� is given by E�(U) = �[U] (see page 313).15 By the above, whenever �, �0 2Distr(M) with E� = E�0 then � = �0. Hence, the set Distr(M) of distributions on Mcan be considered as a subspace of Eval(M). We suppose Eval(M) to be endowed withthe distanced(E1; E2) = inf f � > 0 : E1(B) = E2(B) 8 B 2 Balls�(M) g :Theorem 5.1.16 If M is a complete ultrametric space then Eval(M) is a complete ul-trametric space. In this case, Eval(M) is the completion of Distr(M) (considered as asubspace of Eval(M)).Proof: see Section 5.3 Theorem 5.3.22 (page 120) and Theorem 5.3.23 (page 122).The ultrametric d on Eval(M) can be characterized as follows: d(E1; E2) � r i� E1(B) =E2(B) for all B 2 S�>r Balls�(M) i� E1(U) = E2(U) for all �-sets U where � > r.Whenever f : M ! M 0 is a non-expansive function between ultrametric spaces M andM 0 and B is an open ball inM 0 with radius � then f�1(B) is a �-set. From this, wheneverE1, E2 are evaluations on Eval(M) thend(Eval(f)(E1);Eval(f)(E2)) � d(E1; E2);i.e. Eval(f) is non-expansive. Hence, Eval can be considered as an endofunctor of CUM.Lemma 5.1.17 The functor Eval : CUM! CUM is locally non-expansive.Proof: easy veri�cation.Remark 5.1.18 [Incompleteness of Distr(M)] Similarly to Remark 5.1.13 (page 95)the set f0; 1g1 equipped with the natural distanced(x; y) = inf � 12n : x[n] 6= y[n] �(where z[n] denotes the n-th pre�x of z) yields an example for a complete metric spaceM where Distr(M) is not complete (i.e. Distr(M) as a subspace of Eval(M) is notclosed). Consider the sequence (�k) which is de�ned as in Remark 5.1.13 (page 95).Then, d(�k; �i) � 1=2i for all k � i. Thus, (�k) is a Cauchy sequence in Distr(M) whichdoes not have a limit in Distr(M).16Recall the de�nitions of the functors Pow comp : CUM ! CUM which assigns to eachcomplete ultrametric space M the set Pow comp(M) of compact subsets of M (see page312) and F cumAct with F cumAct (M) = Act�M 12 where the subscript 12 means that the distanceon M is multiplied with the factor 1=2 (see page 312).15Recall that for each ultrametric space M , we deal with the topology of open balls, i.e. Opens(M) isthe set of all subsets U of M such that, for each x 2M , there is some open ball B with x 2 B � U (seepage 310).16The limit of (�k) in Eval (M) is the unique evaluation E on M such that for all open balls B,E(B) = 1=2n if B = B(x; 1=2n) for some �nite word x of the length n, and E(B) = 0 in all other cases(i.e. those cases where B = fxg for some �nite word x). This evaluation E is not of the form E� for some� 2 Distr(M).

98 CHAPTER 5. DENOTATIONAL MODELSLemma 5.1.19 The functor Fcum = Pow comp � F cumAct � Eval : CUM ! CUM is locallycontracting.Notation 5.1.20 [The domain IM] Let IM denote the unique �xed point of Fcum.17As in the case of ID, we deal with the isomorphism as an equality, i.e. if (IM; j) is theunique �xed point of Fcum then we suppose IM = Fcum(IM)) and j = idIM .Theorem 5.1.21 IP is a dense subspace of IM . More precisely, there exists a uniquefunction {IM : IP ! IM such that for all T 2 IP ,{IM(T) = f(a; EDistr({IM)(�)) : T a�!�g:This function {IM is injective and {IM(IP) is a dense subspace of IM .Proof: see Section 5.3, Theorem 5.3.27 (page 124).By Lemma 5.1.5 (page 92) and Theorem 5.1.21, IM is fully abstract with respect tobisimulation in the following sense. If P, P 0 are probabilistic processes then P � P 0 i�{IM([[P]]) = {IM([[P 0]]).Example 5.1.22 We consider the processes P and P 0 of Example 5.1.8 (cf. Figure 3.6,page 57); see also Example 5.1.15, page 96. P and P 0 are represented in IM by{IM([[P]]) = f(a; E�)g and {IM([[P 0]]) = f(a; E�0)gwhere �(f(b; E�1;)g) = 1=3, �(;) = 2=3 and � 0(f(b; E�1;)g) = � 0(;) = 1=2.Remark 5.1.23 [The \distance" between processes] Theorem 5.1.21 (page 98) yieldsa \distance" for probabilistic processes which generalizes the one that is obtained fromthe approach of deBakker & Zucker [dBaZu82] for non-probabilistic processes: For P, P 0to be probabilistic processes, the \distance" between P and P 0 is given byd(P;P 0) = dIM ({IM([[P]]); {IM([[P 0]])) :Roughly speaking, the distance between two processes P and P 0 is 1=2n if n is the maximalnumber such that the n-cuts of the unwindings of P and P 0 are bisimilar. For instance,the processes P and P 0 on Figure 5.1 (page 99) have the distance 1=2 as their 1-cuts arebisimilar.18 Kwiatkowska & Norman [KwNo96, Norm97] deal with a di�erent metric whichis not based on n-cuts. For instance, in the approach of [KwNo96, Norm97] the processesPn shown on the left of Figure 5.2 (page 99) \converge" to the process P (shown on theright of Figure 5.2) while in our setting the sequence (Pn) (more precisely, the inducedsequence ({IM([[Pn]])) in IM) is not a Cauchy sequence.17The existence of a unique �xed point of Fcum is ensured by the results of [RuTu93] (see page 312).18Note that in the 1-cut, the states t, t0, u and u0 are viewed to be bisimilar as we ignore the b-labelledtransitions.

5.1. DENOTATIONAL MODELS: CONCURRENT CASE 99

vt u
s

v0t0 u0
s0

kk k
k

kk k
ka, � a, �0

b b
s s

?
? ?

?
����	 @@@@R ����	 @@@@R13 23 12 12

Figure 5.1: Two processes with distance 1=2

vt u
sn

vt
s

nn n
n

nn
na, �n

b bat
???

?�����	 @@@@@R1� 12n 12n
Figure 5.2: Two processes with distance 15.1.4 Denotational semantics on IM and IDThis section shows how to establish denotational semantics for the process algebra PCCS(see Section 4.1, page 74 �) on IM and ID and the desired full abstraction results.Denotational semantics in the metric and partial order approach: We assume thereader to be familiar with the Scott-Strachey approach to establish denotational semanticsin the partial order approach and the standard procedure to give denotational semanticsin the metric approach [Stoy77, Niva79, dBaZu82]. Here, we only give a brief summary.We refer to [BMC94, dBdV96] for a full treatment. The domain X of a denotationalsemantics D for a process algebra PA (like CCS or a probabilistic calculus like PCCS)is equipped with a set SemOp of semantic operators that re
ect the operators of PA inthe following sense. If op is an n-ary operator symbol (like the binary operator symbol +for modelling non-deterministic choice or the 1-ary (action-)pre�x operator s 7! a:s) andopX the corresponding semantic operator on X thenD[[op(P1; : : : ;Pn)]] = opX (D[[P1]]; : : : ;D[[Pn]])for all PA programs P1; : : : ;Pn. Moreover, for any declaration decl , the meanings of aprocedure name (process variable) Z and the body of the procedure decl(Z) are the same.That is, for any �xed declaration decl , the function s 7! D[[hdecl ; si]] is a homomorphismfrom the word algebra (Stmt ;Op) to (X; SemOp) such that the meaning of process variable

100 CHAPTER 5. DENOTATIONAL MODELSZ is given by decl(Z), i.e. D[[hdecl ; Zi]] = D[[hdecl ; decl(Z)i]]. It is known (see, for instance,[BMC94]) that function D satis�es these conditions i�, for any �xed declaration decl , thefunction Stmt ! X, s 7! D[[hdecl ; si]], is a �xed point of the operator Fdecl : (Stmt !X)! (Stmt ! X), de�ned byFdecl(f)(op(s1; : : : ; sn)) = opX (Fdecl (f)(s1); : : : ; Fdecl(f)(sn))for each operator op of PA and, for each process variable Z, Fdecl(f)(Z) = f(decl(Z)).Given this function Fdecl , the denotational semantics of PA { regardless of whether wefollow the partial order or metric approach { is obtained by D[[hdecl ; P i]] = fdecl(P)where fdecl : Stmt ! X is a certain �xed point of Fdecl . In the partial order approach it isguaranteed { by Tarski's �xpoint theorem { that Fdecl has a least �xed point, provided thatFdecl is d-continuous on the function space Stmt ! X (which is the case if all semanticoperators are d-continuous). In the metric approach it is guaranteed { by Banach's�xpoint theorem { that Fdecl has a unique �xed point, provided that Fdecl is contracting.In order to guarantee that Fdecl is contracting it is su�cient that the semantic operatorsare non-expansive and contracting in certain arguments. For the latter, one has to shrinkthe domain of D to guarded programs, i.e. those programs hdecl ; si such that, for allprocedures (process variables) Z, Z 0, each recursive procedure call of Z 0 in decl(Z) ispreceeded by at least one action.Guarded PCCS : The formal de�nition of guardedness for the process algebra PCCS isas follows. Guarded PCCS statements are built from the following production system.g ::= nil ��� a: �Xi2I [pi]si ! ��� g1 + g2 ��� g1 k g2 ��� g n L ��� g[`]where si are arbitrary PCCS statements. A declaration decl is called guarded i� decl(Z)is guarded for all Z 2 ProcVar . GPCCS the subset of guarded programs, i.e. all programshdecl ; si where decl is a guarded declaration.Semantic operators on ID and IM : We give a denotational semantics for GPCCS onIM , which is fully abstract with respect to bisimulation equivalence, and a denotationalsemantics for PCCS on ID, which is fully abstract with respect to the simulation preorder.For this, we need non-expansive/contracting semantic operators on IM and d-continuoussemantic operators on ID. In the sequel, X = IM or X = ID. We use the closue notationsfor subsets of Act�Eval(IM) and subsets of f?g[Act�Eval(ID) where we put Acl = A ifA � Act�Eval(IM) and where, for ; 6= A � f?g[Act�Eval(ID), Acl is the Scott-closureof A and ;cl = f?g.� The process nil is modelled by ; in IM and by ?ID = f?g in ID.� Nondeterministic choice on IM and ID is modelled by set-theoretic union.� Action-guarded probabilistic choice: Let a 2 Act and (pi)i2I be a countable family ofreal numbers pi > 0 with Pi2I pi = 1. Let (xi)i2I be a family in X. We puta: �Xi2I [pi]xi! = f(a; E�)gcl where � 2 Distr(X) is given by �(x) = Xi2Ixi=x pi:

5.1. DENOTATIONAL MODELS: CONCURRENT CASE 101We de�ne semantic operators for modelling restriction, relabelling and parallelism as �xedpoints of suitable operators. This re
ects the recursive nature of restriction, relabellingand parallelism (cf. Milner's expansion law [Miln89] for parallelism).� Restriction: Let L � Act with L = L. We de�ne FXL : (X ! X)! (X ! X) by:FXL (f)(x) = f (a;Eval(f)(E)) : (a; E) 2 x; a =2 L gcl :� Relabelling: Let ` be a relabelling function. F X̀ : (X ! X)! (X ! X) is given byF X̀(f)(x) = f (`(a);Eval(f)(E)) : (a; E) 2 x gcl :� Parallel composition: We use the following notations. If f : X �X ! X is a functionand x0, y0 2 X then we de�ne f(x0; �); f(�; y0) : X ! X by f(x0; �)(y) = f(x0; y) andf(�; y0)(x) = f(x; y0). We de�ne FXk : (X �X ! X)! (X �X ! X) byFXk (f)(x; y) = �FX1 (f)(x; y) [FX2 (f)(x; y) [FXsyn(f)(x; y)�clwhereFX1 (f)(x; y) = f (a;Eval(f(�; y))(E)) : (a; E) 2 x g,FX2 (f)(x; y) = f (a;Eval(f(x; �))(E)) : (a; E) 2 y g,FXsyn(f)(x; y) = f(�;Eval(f)(E1 � E2)) : (�;E1) 2 x; (�;E2) 2 y for some � 6= �g.In Section 5.3, Lemma 5.3.12 (page 113) and Lemma 5.3.29 (page 125) we show: Theoperators F ID` , F IDL and F IDk are d-continuous and have unique �xed points. These ared-continuous. The operators F IM` , F IML and F IMk are contracting and their unique �xedpoints are non-expansive. Thus, the unique �xed points of the operators F X̀ , FXL andFXk yield non-expansive, resp. d-continuous, semantic operators x 7! x[`], x 7! x n L,(x; y) 7! xky on ID and IM for modelling relabelling, restriction and parallelism. Clearly,the union is d-continuous as an operator on ID, and non-expansive when considered asan operator on IM . The operator �P is contracting on IM and d-continuous on ID. Moreprecisely, if (xi)i2I , (x0i)i2I are countable families in IM thend a: �Xi2I [pi]xi ! ; a: �Xi2I [pi]x0i ! ! � 12 �maxfd(xi; x0i) : i 2 IgIf (xi)i2I is a family in ID such that xi = FXi where Xi is a directed subset of ID thena: �Xi2I [pi]xi ! = G (a: �Xi2I [pi]yi ! : yi 2 Xi; i 2 I) :Denotational semantics on ID and IM : As before, we assume thatX = ID orX = IM .Let decl be a declaration where we suppose that decl is guarded when dealing withX = IM . We de�ne the operator FXdecl : (Stmt ! X)! (Stmt ! X) as follows:FXdecl (f)(nil) = ;; FXdecl(f)(Z) = f(decl(Z))FXdecl (f) a: �Xi2I [pi]si ! ! = a: �Xi2I [pi]FXdecl (f)(si) !

102 CHAPTER 5. DENOTATIONAL MODELS
FXdecl (f)(s1 + s2) = FXdecl (f)(s1) [FXdecl (f)(s2)FXdecl (f)(s1 k s2) = FXdecl (f)(s1) k FXdecl (f)(s2)FXdecl (f)(s n L) = FXdecl(f)(s) n L; FXdecl(f)(s[`]) = FXdecl (f)(s)[`]By the results of [BMC94], F IDdecl is d-continuous, and hence has a least �xed point f IDdecl ;F IMdecl is contracting and hence has a unique �xed point f IMdecl . We obtain a denotationalsemantics for PCCS on ID and for GPCCS on IM :DID : PCCS ! ID; DIM : GPCCS ! IMare given by DX [[hdecl ; si]] = fXdecl(s).Theorem 5.1.24 The denotational semantics DID and DIM are fully abstract with respectto simulation and bisimulation respectively. More precisely:(a) If P, P 0 2 PCCS then DID[[P]] = {ID([[P]]) and P vsim P 0 i� DID[[P]] � DID[[P 0]].(b) If P, P 0 2 GPCCS then DIM [[P]] = [[P]] and P � P 0 i� DIM [[P]] = DIM [[P 0]].Here, IP is considered as a subspace of IM (Theorem 5.1.21, page 98) and {ID : IP ! ID isas in Theorem 5.1.14, page 95.Proof: see Section 5.3, Theorem 5.3.34 (page 127) and Theorem 5.3.34 (page 127).Example 5.1.25 Let P0 = hdecl0; s0i be as in Example 4.1.3 on page 77, i.e.s0 = s+ Z and decl0(Z) = a:Z where s = a: �h13i b:nil� h23inil�.The denotational semantics DX [[P0]] is x [y where x and y are as follows.� Case X = ID: y = f(a; E�)gcl and � the unique distribution with�(?ID) = 2=3, �(yb) = 1=3, yb = f(b; E�1?ID)gclwhile x is the unique element in ID such that x = f(a; E�1x)gcl .19� Case X = IM : y = f(a; E�)g and � the unique distribution with �(;) = 2=3, �(yb) =1=3, yb = f(b; E�1;)g and x the unique element in IM with x = f(a; E�1x)g.20Clearly, ID is more \abstract" than IM since simulation equivalence is coarser than bisim-ulation equivalence. We obtain the following consistency result for DID and DIM .21Theorem 5.1.26 There exists a unique function f : IM ! ID such thatf(x) = f(a;Eval(f)(x)) : (a; E) 2 xgclfor all x 2 IM . This function f satis�es f � DIM [[P]] � = DID[[P]] for all P 2 GPCCS.19Note that the notation x = f(a;E�1x)gcl only makes sense as we treat the isomorphism betweenID and Fcont(ID) as an equality. The precise de�nition of x is as follows. We de�ne x = Fxn wherex0 = ?ID, xn+1 = f(a;E�1xn)gcl .20Formally, x = limxn where x0 = ;, xn+1 = f(a;E�1xn)g.21For the notion \consistency" see [BMC97].

5.1. DENOTATIONAL MODELS: CONCURRENT CASE 1035.1.5 A few remarks about probabilistic powerdomainsTo construct the denotational models we have generalized to the probabilistic setting theestablished catgorical methods for solving domain equations for non-probabilistic pro-cesses. These generalized domain equations involved appropriately adjusted probabilisticpowerdomains of evaluations. The probabilistic powerdomain Eval(D) of evaluation for adcpo D is smooth in the sense that, for example, the probabilistic powerdomain Eval(D)of a two-point space D is the real interval [0; 1]. Thus, limits can be approximated byapproaching them arbitrarily close. On the other hand, in the ultrametric case we obtaina discrete construction, in the sense that the two-point space lifted to the probabilisticcase gives the real interval [0; 1] with the discrete topology. In particular, it is not possibleto get arbitrarily close to a limit.22 Another di�erence between the metric and partialorder approach is the density of {IM(IP) in IM that stands in contrast to Lemma 5.3.15(page 116) which shows that {ID(IP) is not a basis of ID.De Vink & Rutten [dViRu97] consider \continuous" reactive systems where each state sand possible action a in s is associated with a probability measure for the possible nextstates (rather than a distribution) and generalize the de�nition of bisimulation equivalence�a la Larsen & Skou [LaSk89] to continuous reactive systems. More precisely, [dViRu97]solve the domain equationM �= Act ! �f0g [ProbMeascs(M) 12�in CUM (also with the methods of [RuTu93]) and show that the resulting domain isinternally fully abstract with respect to the proposed notion of bisimulation. Here,ProbMeascs(M) denotes the collection of probability measures on the Borel �-�eld in-duced by the opens on M with compact support which means probability measures thatvanish outside a compact set. The special symbol 0 is needed to model inaction. Clearly,each evaluation E on an ultrametric space M can be extended to a probability measureon the Borel �-�eld of M in a unique way; but, in general, the induced probability mea-sure does not have a compact support. Vice versa, a probability measure with compactsupport might fail the axiom of continuity. More precisely, if E is a probability measureon the Borel �-�eld of an ultrametric space M thenE [i2I Ui ! = supi2I E(Ui)for any directed countable family (Ui)i2I of opens in M whileE 0@ [j2J Vj 1A 6= supj2J E(Vj)for a directed uncountable family of opens Vj in M is possible. Thus, Eval(M) andProbMeascs(M) are non-comparable subsets of the space ProbMeas(M) of all probability22We should emphasise though that the methodology we used to derive the ultrametric model IM isconsistent with the established methodology (in particular, the metric satis�es the intuitive propertyd(x; y) � 12n i� x and y agree up to the n-th step, and we obtain full abstraction for bisimulation), andthat an attempt to obtain a \smooth" metric construction might mean having to go beyond the knowntechniques, see [KwNo96, Norm97].

104 CHAPTER 5. DENOTATIONAL MODELSmeasures on the Borel �-�eld of M . Nevertheless, to obtain a denotational model that isfully abstract with respect to bisimulation we could follow the approach of [dViRu97] andwork with the powerdomain ProbMeascs(�) of probability measures with compact support(rather than the probabilistic powerdomain Eval(�) of evaluations). That is, alternativelywe could deal with the equationM �= Pow comp �Act � ProbMeascs(M) 12�that can also be solved in CUM with the method of [RuTu93]. In that case, we wouldhave to shrink the semantics for PCCS on those programs that only use �nite branchingaction-guarded probabilistic choice a:([p1]s1�: : :�[pn]sn) rather than countable branchingaction-guarded probabilistic choice a:(�Pi2I [pi]si).235.2 Denotational models: fully probabilistic caseWe brie
y summarize how the results of the previous section can be modi�ed for thefully probabilistic case, i.e. to obtain fully abstract denotational semantics for the processcalculus PSCCS (see Section 4.2, page 79 �). As before, we assume Act to be a �xed�nite nonempty set of actions and use the symbol 0 to denote inaction. Let IP f denotethe collection of all bisimulation equivalence classes of fully probabilistic processes withaction labels in Act . Then, IP f is the �nal solution of the equationX �= f0g [Distr(Act �X)in SET. From this, we obtain �nal semantics �a la [RuTu93]. Using the evaluation functorEval on the categories CONT? and CUM, internally fully abstract semantic domains IDfand IM f can be derived as follows. Applying the methods of [AbJu94, RuTu93] we de�ne� IDf as the initial solution of the equation D �= Eval (f?g [Act �D) in CONT?,24� IM f as the unique solution of the equation M �= f0g [Eval �Act �M 12� in CUM.The domain IP f can be \embedded" into IDf and IM f in a similar way as IP is \embedded"into ID and IM .25 Using appropriate semantic operators on IDf and IMf { that can beobtained in a similar way as we de�ned the semantic operators on ID and IM { andthe standard procedures to give denotational semantics in the partial order and metricapproach we obtain denotational semanticsDIDf : PSCCS ! IDf and DIMf : GPSCCS ! IMfthat are fully abstract with respect to simulation and bisimulation respectively.26 I.e.P vsim P 0 i� DIDf [[P]] vIDf DIDf [[P 0]] and P � P 0 i� DIMf [[P]] = DIMf [[P 0]].23This is because the associated probability measure of a distribution with in�nite support might havea non-compact support.24Note that in IDf , inaction is modelled by the evaluation E�1? .25IP f can be viewed as a dense subspace of IMf (which yields a distance for fully probabilistic processes).There is a function { : IP f ! IDf such that T vsim T 0 i� {(T) vIDf {(T 0). In particular, {([[P]]) canbe viewed as a canonical representative for the simulation equivalence class of P . Here, [[P]] denotes thebisimulaton equivalence class of the fully probabilistic process P .26Here, GPSCCS denotes the set of guarded PSCCS programs which are de�ned in the obvious way.

5.3. PROOFS 1055.3 Proofs5.3.1 The partial order �sim on Distr(D)We give the proof for Theorem 5.1.12 (page 95) that states that �sim (in the sense ofNotation 5.1.11, page 95) is a partial order on distributions of a dcpo D and that thefunction Distr(D) ! Eval(D), � 7! E� is an order-preserving embedding on the par-tially ordered set Distr(D) into the dcpo Eval(D). As a corollary we obtain Theorem3.4.15 (page 59) and Theorem 3.4.19 (page 61) stating that simulation and bisimulationequivalence coincide for reactive or fully probabilistic systems.Lemma 5.3.1 Let D be a dcpo and �, �0 2 Distr(D) such that E� v E�0. Then, �[U] ��0[U] for all G�-sets U .27Proof: Let U = Ti�0 Ui where Ui 2 Opens(D). W.l.o.g. U1 � U2 � : : : (otherwise wedeal with U 0i = U1 \ : : :\Ui). Then, Ai = D nUi are closed sets with A1 � A2 � : : : SinceE� v E�0 we have �[Ai] � �0[Ai] for all i � 1. Let A = SAi = D n U . It is su�cientto show that �[A] � �0[A]. We suppose �[A] < �0[A]. We de�ne � = 12(�0[A] � �[A]).Then, � > 0. There exists a �nite subset X of A with �0[X] > �0[A] � �. Since X is�nite there exists i � 1 with X � Ai. Thus,�[Ai] � �[A] < �[A] + � = �0[A]�� < �0[X] � �0[Ai]:Contradiction.Theorem 5.3.2 (cf. Theorem 5.1.12, page 95) Let D be a dcpo and �, �0 2 Distr(D).Then, � �sim �0 i� E� v E�0.Proof: For simplicity E = E� and E 0 = E�0 .=): Let � �sim �0 and weight : D � D ! [0; 1] be a weight function for (�; �0) withrespect to the partial order v on D. For all U 2 Opens(D):If x 2 U and y 2 D n U then weight(x; y) = 0.(This is because U is upward-closed and because of the third condition of weight func-tions.) By the second condition of weight functions:E(U) = Xx2U �(x) = Xx2U Xy2U weight(x; y) = Xy2U Xx2U weight(x; y)� Xy2U Xx2D weight(x; y) = Xy2U �0(y) = E 0(U):Hence, E v E 0.(=: We assume E v E 0. For f : D �D ! [0; 1] be a function, we de�ne �f , �0f : D ![0; 1] by: �f(x) = Xy2D f(x; y); �0f(y) = Xx2D f(x; y):Let F be the set of functions f : D �D! [0; 1] such that27Recall that G�-sets in a topological space are countable intersections of opens.

106 CHAPTER 5. DENOTATIONAL MODELS(1) f(x; y) 6= 0 for at most countably many (x; y) 2 D.(2) For all x, y 2 D, �f(x) � �(x) and �0f(y) � �0(y).(3) If f(x; y) 6= 0 then x v y.We show that there is a function f 2 F such that �f = � and �0f = �0. (Then, thisfunction f is a weight function for (�; �0) with respect to v. Hence, � �sim �0.) Forf 2 F, we put �(f) = Xx;y2D f(x; y)and Xf = fx 2 D : �(x) > �f(x)g; Yf = fy 2 D : �0(y) > �0f(y)g:It is easy to see that Xf = ; i� �f = � i� Yf = ; i� �0f = �0 i� �(f) = 1. Thus, ouraim is to show the existence of a function f 2 F with �(f) = 1. (Then, we may concludethat f is a weight function for (�; �0) and therefore � �sim �0.)If f 2 F then we de�ne a f -path to be a �nite sequence ~p = (x0; y0; : : : ; xn; yn) in D suchthat n � 0 and(i) f(xi+1; yi) > 0, i = 0; 1; : : : ; n� 1(ii) xi v yi, i = 0; 1; : : : ; n(iii) x0; : : : ; xn and y0; : : : ; yn are pairwise distinct (but xi = yj is possible).We de�ne �rst(~p) = x0, last(~p) = yn andRf (x) = flast(~p) : ~p is a f -path with �rst(~p) = xg:(Intuitively, Rf (x) is the set of all y 2 D that can be reached from x via a f -path.)Claim 1: Let f 2 F and x 2 Xf . Then, Rf (x) \ Yf 6= ;.Proof: Let A = fz 2 D : �(z) > 0 _ �0(z) > 0g, Z = A nRf(x) andU = \z2ZD n z # :As Z is countable and z # Scott-closed, U is a G�-set. Thus, by Lemma 5.3.1 (page 105):(*) �0[U] � �[U]It is easy to see that A\U = A\Rf (x).28 Thus, �[U] = �[Rf(x)] and �0[U] = �0[Rf (x)].Since x 2 Rf (x) (as (x; x) is a f -path) and x 2 Xf we have(**) �[U] = Xz2Rf (x) �(z) > Xz2Rf (x) �f(z) = Xz2Rf (x) Xy2D f(z; y):We suppose that Rf (x) \ Yf = ;. Then, �0(y) = �0f(y) for all y 2 Rf (x). Hence,(***) �0[U] = Xy2Rf (x) �0(y) = Xy2Rf (x) �0f(y) = Xy2Rf (x) Xz2D f(z; y):If f(z; y) > 0 and (x0; y0; : : : ; xn; yn) is a f -path with z =2 fx0; y0; : : : ; xn; yng x0 =x and yn = y then (x0; y0; : : : ; xn; yn; z; z) is a f -path. If z = xi for some i then~p = (x0; y0; : : : ; xi; xi) is a f -path with last(~p) = z. If z = yi for some i then ~p =(x0; y0; : : : ; xi; yi) is a f -path with last(~p) = z. Thus,28For the inclusion A \ Rf (x) � A \ U we use the fact that Rf (x) is upward-closed.

5.3. PROOFS 107if y 2 Rf(x) and f(z; y) > 0 then z 2 Rf (x).Hence,f(z; y) 2 D �D : f(z; y) > 0; y 2 Rf (x)g � f(z; y) 2 D �D : f(z; y) > 0; z 2 Rf (x)g:We obtain by (***) and (**):�0[U] = Xy2Rf (x) Xz2D f(z; y) � Xz2Rf (x) Xy2D f(z; y) < �[U]:This contradicts (*). Thus, Rf (x) \ Yf 6= ;. cBy Claim 1 we obtain: If f 2 F, �(f) < 1 then Xf 6= ;. Thus (by Claim 1), there existsa f -path ~p with �rst(p) 2 Xf and last(~p) 2 Yf .Let ~p = (x0; y0; : : : ; xn; yn) be a f -path with x0 = x 2 Xf and yn = y 2 Yf . We de�ne�(f; ~p) = min n�(x)� �f (x); �0(y)� �0f(y); f(xi+1; yi) : i = 0; : : : ; n� 1oand f [~p] : D �D ! [0; 1] byf [~p](x; y) = 8><>: f(xi; yi) + �(f; ~p) : if (x; y) 2 f(xi; yi) : i = 0; 1; : : : ; ngf(xi+1; yi)��(f; ~p) : if (x; y) 2 f(xi+1; yi) : i = 0; 1; : : : ; n� 1gf(x; y) : otherwise.Then, �(f; ~p) > 0, f [~p] 2 F and(I) �(f [~p]) = �(f) + �(f; ~p).(II) For each x 2 D there is at most one y 2 D with f(x; y) 6= f [~p](x; y).(III) For each y 2 D there is at most one x 2 D with f(x; y) 6= f [~p](x; y).(IV) jf(x; y)� f [~p](x; y)j � �(f; ~p).(II) and (III) follow by condition (iii) of f -paths. By induction on i we de�ne a sequence(fi)i�0 of functions fi 2 F as follows.{ Let f0 be given by f0(x; y) = 0 for all x, y 2 D.{ Now we suppose i � 1 and that f0; : : : ; fi�1 are de�ned. If �(fi�1) = 1 then we setfi = fi�1. Otherwise, we de�ne�i = sup n �(fi�1; ~p) : ~p is a f -path with �rst(~p) 2 Xfi�1 and last(~p) 2 Yfi�1o :We choose some fi�1-path ~pi with�rst(~pi) 2 Xfi�1 , last(~pi) 2 Yfi�1, �(fi�1; ~pi) > �i � 1=2i.We de�ne fi = fi�1[~pi].Claim 2: lim fi exists and limfi 2 F, �(limfi) = 1.Proof: By (I) we get 1 � �(fi) = P1�j�i �(fj�1; ~pj). Thus, Pj �(fj�1; ~pj) isconvergent. Let � > 0 and i� � 1 such thatkXj=i �(fj�1; ~pj) < � for all k � i � i�.

108 CHAPTER 5. DENOTATIONAL MODELSBy (IV), for all x, y 2 D and k � i � i�:jfk(x; y)� fi(x; y)j � kXj=i+1 jfj(x; y)� fj�1(x; y)j � kXj=i+1�(fj�1; ~pj) < �:Hence, (fi(x; y))i�0 is a Cauchy sequence. Let f(x; y) = limfi(x; y). Then:(V) jf(x; y)� fi(x; y)j = limk!1 jfk(x; y)� fi(x; y)j � �for all x; y 2 D, � > 0, i � i�.We get by (II), (III) and (IV):(VI) j�f(x)� �fi(x)j � Xj�i�(fj�1; ~pj) � � for all � > 0, i � i�, x 2 D.(VII) j�0f(y)� �0fi(y)j � Xj�i�(fj�1; ~pj) � � for all � > 0, i � i�, y 2 D.Thus, �f(x) = lim�fi(x) � �(x) and �0f(y) = lim�0fi(y) � �0(y). Hence, f 2 F. Weshow that �(f) = 1. We assume that �(f) < 1. By Claim 1, there is some f -path~p = (x0; y0; : : : ; yn; xn) with x0 2 Xf and yn 2 Yf . Let � < 1=2 � �(f; ~p). By (V) (andusing the fact that f(xj+1; yj) � �(f; ~p)),fi(xj+1; yj) � f(xj+1; yj)� � � 12 ��(f; ~p) > 0; j = 0; : : : ; n� 1for all i � i�. By (VI) and (VII) (and using the fact that �(x0)��f(x0), �0(yn)��0f(yn) ��(f; ~p)) we obtain:�(x0)� �fi(x0) � �(x0)� �f(x0)� � � 12 ��(f; ~p),�0(yn)� �0fi(yn) � �0(yn)� �0f(yn)� � � 12 ��(f; ~p).Thus, ~p is a fi-path for all i � i� and �(fi; ~p) � 1=2 � �(f; ~p). Let j � 1 such that�(f; ~p) > 1=2j�1. Then, for all i � i�,�(fi; ~p) � 12 ��(f; ~p) > 12j :Hence, �i � �(fi�1; ~p) > 1=2j for all i � i�. By de�nition of ~pi:�(fi�1; ~pi) > �i � 12i > 12j � 12i � 12j+1for all i � maxfi�; j + 1g. Contradiction (as Pi�(fi�1; ~pi) is convergent). cLemma 5.3.3 Let D be a dcpo and �, �0 2 Distr(D) such that E� = E�0. Then, � = �0.Proof: Suppose �(x) 6= �0(x) for some x 2 D. W.l.o.g. �(x) < �0(x). Let � =�0(x)� �(x). Then, � > 0. Let A = x #. Then, A is Scott-closed. Since Py2A �(y) andPy2A �0(y) are convergent there exists a �nite subset C0 of A with x 2 C0 andXy2AnC0 �(y) < �; Xy2AnC0 �0(y) < �:

5.3. PROOFS 109Let K = �[A n C0], K 0 = �0[A n C0], C = C0 n fxg and B = S f z # : z 2 C g. Then,K < �, K 0 < � and A and B are Scott-closed (as C is �nite). Since E� = E�0 we get�[A] = �0[A] and �[B] = �0[B]. Since C � B we have �[C] = �[B] � �[B n C] and�0[C] = �0[B]� �0[B n C]. Since A = (A nC0) [fxg [C and �[B n C] � 0 we get:�[A] = K + �(x) + �[C] = K + �(x) + �[B]� �[B n C]� K + �[B] + �(x) < �+ �[B] + �(x) = �[B] + �0(x):Since B n C � A n C0 we get �0[B n C] � �0[A n C0] = K 0. Hence,�0[A] = K 0 + �0(x) + �0[C] = K 0 + �0(x) + �0[B]� �0[B n C] � �0(x) + �0[B]:Since �[B] = �0[B] we obtain �[A] < �[B] + �0(x) = �0[B] + �0(x) � �0[A].Contradiction (as �[A] = �0[A]).Corollary 5.3.4 For every partially ordered set D, �sim is a partial order on Distr(D).Proof: By Remark 2.2.1 (page 30), �sim is a preorder on Distr(D). We show theantisymmetry of �sim. Let D be the ideal completion29 ofD. We consider D as a subspaceof D. For � to be a distribution on D, we de�ne � 2 Distr(D) as follows.�(x) = (�(x) : if x 2 D0 : otherwise.Clearly, if �, �0 2 Distr(D) and � �sim �0 then � �sim �0.Let �, �0 be distributions on D with � �sim �0 and �0 �sim �. Then, � �sim �0 and�0 �sim �. As D is a dcpo we obtain by Theorem 5.3.2 (page 105): E� v E�0 andE�0 v E�. Thus, E� = E�0 . By Lemma 5.3.3 (page 108): � = �0. Hence, � = �0.Lemma 5.3.5 Let R be a preorder on a set X and �, �0 2 Distr(X). If � �R �0 and�0 �R � then �[A] = �0[A] for all equivalence classes A with respect to the kernel R\R�1of R.Proof: Let � = R \ R�1 and D = X= � the quotient space endowed with thepartial order [x]� v [x0]� i� (x; x0) 2 R.30 Let f : X ! D be the canonical projection,i.e. f(x) = [x]� for all x 2 X. For � 2 Distr(X), we de�ne �D : D ! [0; 1] by�D([x]�) = Xx02[x]� �(x0):Then, �D([x]�) = �[[y]�]. It is easy to see that, if weight is a weight function for (�; �0)with respect to �sim (where �, �0 2 Distr(X)) then weightD : D �D! [0; 1],weightD([x]�; [y]�) = Xx02[x]� Xy02[y]�weight(x0; y0)is a weight function for (�D; �0D) with respect to v. Hence, if �, �0 2 Distr(X), � �R �0and �0 �R � then �D �sim �0D and �0D �sim �D. By Corollary 5.3.4 (page 109), �D = �0D.Thus, �[A] = �D(A) = �0D(A) = �0[A] for all A 2 D = X= �.29For the de�nition of an ideal completion see e.g. [AbJu94] or any other standard book about domaintheory.30[y]� denotes the equivalence class of y with respect to �.

110 CHAPTER 5. DENOTATIONAL MODELSTheorem 5.3.6 (cf. Theorem 3.4.15, page 59) If (S;Act ; Steps) is a reactive action-labelled concurrent probabilistic system and s, s0 2 S then s �sim s0 implies s � s0.Proof: We show that �sim is a bisimulation. Clearly, �sim is an equivalence relationon S. We assume S to be equipped with the preorder R =vsim. Let s, s0 2 S, s �sim s0and s a�!�. There exist transitions s0 a�!�0 and s a�!�00 with � �R �0 and �0 �R �00. As(S;Act ; Steps) is reactive we have � = �00. By Lemma 5.3.5 (page 109), �[A] = �0[A] forall A 2 S= �sim.Theorem 5.3.7 (cf. Theorem 3.4.19, page 61) Let (S;Act ;P) be an action-labelledfully probabilistic system and s, s0 2 S. Then, s �sim s0 implies s � s0Proof: Clearly, if s �sim s0 and s is terminal then s0 is terminal and s � s0. LetX = Act � S and let s, s0 be non-terminal states in S such that s �sim s0. Let �,�0 2 Distr(X) be given by �(ha; ti) = P(s; a; t) and �0(ha; ti) = P(s0; a; t). We considerthe relation R = fha; ti; ha; t0i : t vsim t0; a 2 Actg. Then, � �R �0 and �0 �R �. ByLemma 5.3.5 (page 109): If a 2 Act and C 2 S= �sim thenP(s; a; C) = �[C 0] = �0[C 0] = P(s0; a; C)where C 0 = f(a; t) : t 2 Cg. (Note that C 0 2 X=(R \ R�1).) We conclude that �sim is abisimulation.5.3.2 The domain IDThis section shows the connection between IP and ID (Theorem 5.1.14, page 95) and the d-continuity of the semantic operators for modelling restriction, relabelling and parallelismand presents some domain-theoretic properties of ID.Recall that ID denotes the initial �xed point of the functor Fcont = PowHoare �F contAct �Eval :CONT?! CONT? where we deal with the isomorphism as an equality (Notation 5.1.10,page 94). The partial order on ID is the inclusion, the bottom element is ?ID = f?g. Thefollowing is standard.Notation 5.3.8 [The n-th projection proj IDn] The functions proj IDn : ID ! ID are de-�ned as follows. Let proj ID0 (x) = ?ID for all x 2 ID andproj IDn+1 = Fcont �proj IDn � :Then, proj IDn+1(x) = f(a;Eval(proj IDn)(E)) : (a; E) 2 xgcl . (proj IDn)n�0 is a monotonesequence of strict and continuous functions on ID satisfying� proj IDn � proj IDk = proj IDk � proj IDn = proj IDn for all 0 � n � k� Fn�0 proj IDn = idID� x � y i� proj IDn (x) � proj IDn (y) for all n � 0.Recall that, for X to be a set, we suppose the set of functions X ! ID to be endowedwith the partial order f1 v f2 i� f1(x) v f2(x) for all x 2 X. Then, X ! ID is a dcpo(see Section 12.1.1, page 308). We often use the following fact.

5.3. PROOFS 111Lemma 5.3.9 Let X be a set. Each d-continuous operator F : (X ! ID) ! (X ! ID)with F (proj IDn � f) = proj IDn+1 � F (f) has a unique �xed point.Proof: The existence of a �xed point f follows by Tarski's �xed point theorem. If fand f 0 are �xed points of F then it can be shown by induction on n that proj IDn � f =proj IDn � f 0. Hence,f(x) = Gn�0 proj IDn (f(x)) = Gn�0 proj IDn (f 0(x)) = f 0(x)for all x 2 ID.We denote the partial orders on Eval(ID) and on f?g[Act �Eval(ID) by v. Recall thatvL denotes the lower preorder on f?g [Act � Eval(ID), i.e. if A, B are �nite nonemptysubsets of f?g [Act � Eval(ID) then A vL B i� for all x 2 A there exists y 2 B suchthat x v y. Moreover,� Acl � Bcl if and only if A vL B.� Acl = A #= fx : x � y for some y 2 Ag.Theorem 5.3.10 (cf. Theorem 5.1.14, page 95) There exists a unique function {ID :IP ! ID such that {ID(T) = n(a; EDistr({ID)(�)) : T a�!�ocl :Moreover, for all T , T 0 2 IP : T vsim T 0 i� {ID(T) � {ID(T 0).Proof: For simplicity, we write proj n and { rather than proj IDn and {ID. Let F : (IP !ID)! (IP ! ID) be given by F (f)(T) = Af(T)cl whereAf(T) = f(a; EDistr(f)(�)) : T a�!�g:Note that { since T is �nitely branching { Af(T) is �nite and hence F (f)(T) = Af(T) #.We have to show that F has a unique �xed point { and that this function { satis�es:{(T) � {(T 0) i� T vsim T 0.Claim 1: The operator F is d-continuous.Proof: If f = Fi2I fi then we show that for each T 2 IP :(1) Afi(T) vL Af(T) (which implies F (fi)(T) � F (f)(T))(2) Whenever y 2 ID with Afi(T) � y for all i 2 I then Af(T) � y. This implies thatF (f)(T) � y for each upper bound y of (F (fi)(T))i2I .Then, from (1) and (2), Gi2I F (fi)(T) = F (f)(T):We have EDistr(f)(�) = Eval(f)(�) = FEval(fi)(�) = FEDistr(fi)(�) by Remark 12.1.3(page 313) and Lemma 12.1.4 (page 314). Hence:ad (1) If (a; E) 2 Afi(T) then T a�!� for some distribution � with E = EDistr(fi)(�).Then, E v EDistr(f)(�). Hence, (a; E) v (a; EDistr(f)(�)) 2 Af(T).

112 CHAPTER 5. DENOTATIONAL MODELSad (2) If y 2 ID, Afi(T) � y for all i 2 I and (a; E) 2 Af (T) then E = EDistr(f)(�) forsome distribution � where T a�!�. Then, (a; EDistr(fi)(�)) 2 Afi(T) � y for alli 2 I. Since (a; E) = Gi2I (a; EDistr(fi)(�))in f?g [Act � Eval(ID) and y is lub-closed we get (a; E) 2 y. cDe�nition: Let { : IP ! ID be the least �xed point of F (Tarski's �xed point theorem).Then, {(T) = F ({)(T) = A{(T) #. If T 2 IP then we putAn(T) = f (a; EDistr(proj n�1�{)(�)) : T a�!�g:Then, proj n({(T)) = An(T) #. Thus, proj n({(T)) � proj n({(T 0)) i� An(T) vL An(T 0).Claim 2: For all T , T 0 2 IP , {(T) � {(T 0) i� T vsim T 0.Proof: Since all elements of IP (viewed as action-labelled concurrent probabilistic pro-cesses) are �nitely branching (and hence image-�nite) it is su�cient to show thatproj n({(T)) � proj n({(T 0)) i� T vn T 0(Lemma 3.4.13, page 59). We prove this by induction on n. In the case n = 0 there isnothing to show. In the induction step n =) n+1 we suppose proj n({(T)) � proj n({(T 0))i� T vn T 0 for all T , T 0 2 IP .� Let T , T 0 2 IP , proj n+1({(T)) � proj n+1({(T 0)) and let T a�!� be a transition. Let� = Distr(proj n � {)(�). Then, (a; E�) 2 An+1(T) vL An+1(T 0): Hence, there exists(a; E 0) 2 An+1(T 0) with E� v E 0. By de�nition of An+1(T 0) there exists a transitionT 0 a�!�0 with E 0 = E�0 and � 0 = Distr(proj n � {)(�0). By Theorem 5.3.2 (page 105),� �sim � 0. By Remark 2.2.3, � �R �, �0 �R � 0 whereR = f(T1; proj n({(T1)) : T1 2 IPg:Using Remark 2.2.1 (page 30) and Remark 2.2.2 (page 31) we obtain � �R0 �0 whereR0 = R� � �R�1 = f (T1; T 01) : proj n({(T1)) � proj n({(T 01)) g:By induction hypothesis, R0 � vn. Hence, � �vn �0. Thus, T vn T 0.� Let T , T 0 2 IP , T vn+1 T 0. It su�ces to show that An+1(T) vL An+1(T 0). Let(a; E) 2 An+1(T). There exists a transition T a�!� such that E = E� where � =Distr(proj n � {)(�). Since T vn+1 T 0 there exists a transition T 0 a�!�0 with � �vn �0.Then, (a; E�0) 2 An+1(T 0) where � 0 = Distr(proj n � {)(�0). By Remark 2.2.3 (page 31),� �R �, �0 �R � 0 where R is as above. Using Remark 2.2.1 (page 30) and Remark2.2.2 (page 31) we obtain � �R00 � 0 whereR00 = R�1� vn �R = f(proj n({(T1)); proj n({(T 01))) : T1 vn T 01g:By induction hypothesis we obtain � �sim � 0. By Theorem 5.3.2 (page 105), E� v E�0.Thus, (a; E) = (a; E�) v (a; E�0) 2 An+1(T 0). cClaim 3: If {0 : IP ! ID is also a �xed point of F then {0 = {.Proof: It is easy to see that F (proj n � f) = proj n+1 � F (f) for all functions f : IP ! ID.Hence, by Lemma 5.3.9 (page 111), F has a unique �xed point. Therefore, {0 = {. c

5.3. PROOFS 113Lemma 5.3.11 (cf. Remark 3.4.11, page 57) Let (S;Act ; Steps) be an action-labelledconcurrent probabilistic system and �, �0 2 Distr(S) such that � �R �0 where R =f(s; s0) 2 S � S : s vsim s0g. Then, for each t 2 S:(a) �[t #sim] � �0[t #sim](b) If Supp(�) and Supp(�0) are �nite then �[t "sim] � �0[t "sim].Here, t "sim= fu 2 S : t vsim ug and t #sim= fu 2 S : u vsim tg.Proof: For s 2 S, we de�ne Ps = (S;Act ; Steps; s) and xs = {ID([[Ps]]). Then, byTheorem 5.3.10 (page 111) and Lemma 5.1.5 (page 92):(*) s vsim s0 i� xs � xs0 .For � to be a distribution on S, we de�ne �ID 2 Distr(ID) by �ID(x) = �[Ux] whereUx = fu 2 S : xu = xg. By (*):(**) If � 2 Distr(S) then �[t #sim] = �ID[xt #]; �[t "sim] = �ID[xt "]:We �x some t 2 S and �, �0 2 Distr(S) with � �R �0. Clearly, �ID �sim �0. Let E = E�IDand E 0 = E�0ID . Then, E v E 0 (by Theorem 5.3.2, page 105). As xt # is Scott-closed weget �[t #sim] = �ID[xt #] = E(xt #) � E 0(xt #) = �0ID[xt #] = �0[t #sim]:Now we assume that Supp(�) and Supp(�0) are �nite. Let A = Supp(�) [Supp(�0),B = fv 2 A : t 6vsim vg and U = \v2B (ID n xv #) :Then, A and B are �nite. Thus, U is the �nite intersection of Scott-opens. Hence, U isScott-open. Clearly, xt " � U and U\fxv : v 2 Ag � xt ". Hence, Supp(�ID)\U � xt ".Thus, �ID[xt "] = E(U): By (**), �[t "sim] = E(U). Similarly, Supp(�0) \ U � xt "and �0[t "sim] = E 0(U). As U is Scott-open and E v E 0 we obtain�[t "sim] = E(U) � E 0(U) = �0[t "sim]:Recall the de�nitions of the operators F IDL , F ID` : (ID ! ID) ! (ID ! ID) and F IDk :(ID � ID! ID)! (ID � ID! ID) that were given on page 101.Lemma 5.3.12 The operators F ID` , F IDL and F IDk are d-continuous and have unique �xedpoints. These are d-continuous.Proof: Let F 2 fF ID` ; F IDL ; F IDk g. Using the local d-continuity of Eval (Lemma 12.1.4,page 314) it is easy to see that F is locally d-continuous. Moreover,F (proj IDn � f) = proj IDn+1 � F (f):Then, by Lemma 5.3.9 (page 111), F has a unique �xed point f . f is d-continuous since Fmaps d-continuous functions to d-continuous functions and since the set of d-continuous

114 CHAPTER 5. DENOTATIONAL MODELSfunction is lub-closed. Note that { by Tarski's �xed point theorem { the unique (least)�xed point of F can be written as least upper bound of the sequence (F n(f0))n�0 wheref0(x) = ?ID for all x 2 ID. Thus, by induction on n, all functions F n(f0) are d-continuous.Hence, f = FF n(f0) is d-continuous.In the remainder of this section we investigate some domain-theoretic properties of thedomain ID. We use some basic notions of domain theory like SFP domains or compactnessof elements that are not explained in that thesis but can be found e.g. in [AbJu94]. Thereader not familiar with (or not interested in) domain theory might skip the rest of thatsection.In the non-probabilistic case where a domain-theoretic model IDnonprob for the simulationpreorder can be obtained from the equation D �= PowHoare(f?g [Act �D)) which canbe solved in the category of SFP domains. The set Tree of �nitely branching trees (the�nal solution of X �= Pow�n(Act �X) in SET) can be \embedded" into IDnonprob via afunction { : Tree ! IDnonprob similar to the way where IP is \embedded" into ID via {ID.The images of �nitely branching trees of �nite height with respect to { are the compactelements of IDnonprob. In particular, the set {(Tree) is a basis of IDnonprob. Moreover, if theunderlying alphabetAct is �nite then, for the n-th projection proj n : IDnonprob ! IDnonprob,the elements of proj n({(Tree)) are compact and proj n(IDnonprob) � {(Tree). (For furtherdetails about the non-probabilistic case see [Bai97]). The situation is di�erent in theprobabilistic case:� The elements of proj IDn ({ID(IP)) are not compact (cf. Lemma 5.3.13, page 114).� {ID(IP) is not a basis of ID (cf. Lemma 5.3.15, page 116).� If n � 2 then proj IDn (ID) 6� {ID(IP) (cf. Lemma 5.3.16, page 116).Lemma 5.3.13 The elements of proj IDn ({ID(IP))nproj ID1 ({ID(IP)), n � 2, are not compact.Proof: Let n � 2 and x 2 proj IDn ({ID(IP)) n proj ID1 ({ID(IP)). Then, there exists anelement (a; E�) 2 x which is maximal in x and with �(y) > 0 for some y 2 ID, y 6= f?g.We choose N � 0 with 1=2N < �(y) and for n � N we put�n(z) = 8><>: �(z) : if z 6= f?g, z 6= y�(f?g) + 1=2n : if z = f?g�(y)� 1=2n : if z = y.Then, FE�n = E�. Hence, x = F xn where xn = Acln , An = (x n f(a; E�)g)[f(a; E�n)gbut x 6v xn for all n � N . Thus, x is not compact.Lemma 5.3.14 Distr(ID) (as a subspace of Eval(ID)) is not a basis of Eval(ID).Proof: We give an example for an evaluation E 2 Eval(ID) that cannot be writtenas E = FE�. Let y = f(b; E�)gcl where � = �1?ID. For p 2 [0; 1], let �p be as inExample 5.1.15 (page 96), i.e. �p is the unique distribution on ID with �p(y) = p and�p(?ID) = 1� p. Let xp = f(a; E�p)gcl , Up = ID n x1�p #.We de�ne E 2 Eval(ID) by E(U) = supfq : x1�q 2 Ug where sup ; = 0. As x1�q 2 Upi� q < p we have E(Up) = p.

5.3. PROOFS 115Claim 1: If � 2 Distr(ID), E� v E then �(x) = 0 for all x 2 IDn(f?IDg[fxp : p 2 [0; 1]g).Proof: First we observe that ID n fxp : p 2 [0; 1]g � ID n x1 #= U0. As is Scott-open wehave �[U0] � E(U0) = 0. Hence, �(x) = 0 for all x 2 U0. cWe suppose that E = F�2ME� where M � Distr(ID) such that fE� : � 2 Mg isdirected. (I.e.M is directed with respect to �sim.) Then, for all � 2 M and p 2 [0; 1],p = sup f�[Up] : � 2 Mg :Claim 2: For all � > 0 there is some � 2 M such that �[Up] � p� � for all p 2 [0; 1].Proof: For each p 2 [0; 1] we choose some �p with �p[Up] � p� � (axiom of choice). LetXp be a �nite subset of ID such that �p[ID n Xp] < �=2. There exists some �p > 0 with�p < �=2 and fxq : q 2]p � �p; p + �p[g \ Xp � fpg. As [0; 1] is compact there existsp1; : : : ; pk 2 [0; 1] such that [0; 1] � k[i=1]pi � �i; pi + �i[:where �i = �pi . For all q 2]pi � �i; pi + �i[and i = 1; : : : ; k,�pi[Uq] = �pi[Upi] � pi � 12 � � � q � �:We choose some � 2 M with �pi �sim �. Then, �[Uq] � q � � for all q 2 [0; 1]. cLet (�n) be a sequence inM such that �1 �sim �2 �sim : : : and �n[Up] � p� 1=2n for alln � 1 and p 2 [0; 1]. (The existence of such a sequence follows by Claim 2 and the factthatM is directed with respect to �sim.)Claim 3: limn!1 �n(x1�p) = 0 for all p 2 [0; 1].Proof: Let � > 0 and n � 1 such that 1=2n�1 < �. For all q 2 [0; 1], q > p, we havex1�p 2 Uq n Up and Up � Uq. Hence, for all q with p < q < p+ 1=2n,q � �n[Uq] � �n[Up] + �n(x1�p) � p� 12n + �n(x1�p) � q � 12n�1 + �n(x1�p):Thus, �n(x1�p) � 1=2n�1 < �. cClaim 4: limn!1 �n(?ID) = 0.Proof: We suppose that there is some � > 0 with �n(?ID) � � for in�nitely many n. Let(�nk) be a subsequence of (�n) with �nk(?ID) � 0 for all k � 1. We choose some k � 1where 1=2nk < �. Since ?ID =2 U1 we get1� 12nk � �nk [U1] � 1� �nk(?ID) � 1� �:Contradiction. cLet X = Sn�1fx 2 D : �n(x) > 0g. By Claim 1, X � f?IDg [fxp : p 2 [0; 1]g. Thus,1 = limn!1 Xx2X �n(x) = Xx2X limn!1 �n(x) = 0by Claim 3 and 4. Contradiction.

116 CHAPTER 5. DENOTATIONAL MODELSLemma 5.3.15 {ID(IP) is not a basis of ID.Proof: We consider the element y = f(a; E)gcl of ID where E is as in Lemma 5.3.14(page 114). We suppose that y can be written in the form y = FX for some directedsubset X of {ID(IP). Then, y is the Scott closure of Sx2X x in f?g[Act�Eval(ID). SinceX � {ID(IP) each element x of X is of the form f(a; E�x1); : : : ; (a; E�xrx)gcl where �xi aredistributions with E�xi v E. LetM = f�xi : i = 1; : : : ; rx; x 2 Xg. It is easy to see thatM is directed and E = FfE� : � 2 Mg which is impossible as shown in Lemma 5.3.14(page 114).Lemma 5.3.16 If n � 2 then proj IDn (ID) 6� {ID(IP).Proof: Consider x = Acl where A = f(a; E�n) : n � 1g and �n is the uniquedistribution on ID with �n(yb) = 1=n and �n(yc) = 1� 1=n.xyb yc?ID?ID
�
���
�� �
���
 �	�
 �	
sa, �nb c1n 1� 1n?

? ?����= ZZZZ~
Here, yb = f(b; E�1?D)gcl , yc = f(c; E�1?D)gcl . The elements (a; E�n), n � 1 are pairwiseincomparable. Hence, x cannot be written in the form x = Xcl(= X #) where X is �nite.Therefore, x =2 {ID(IP), but x = proj ID2 (x) 2 proj ID2 (ID).Note that Lemma 5.3.16 does not hold for n = 1. We have:proj ID1 (ID) = f?IDg [f(�;E�) : � 2 Actg � {ID(IP)where � = �1?ID.5.3.3 The metric probabilistic powerdomains of evaluationsThis section presents the proof of Theorem 5.1.16 (page 97) stating that, for any completeultrametric space M , the probabilistic powerdomain Eval(M) of evaluations on M is thecompletion of Distr(M). Recall that the distance on Eval(M) is given byd(E1; E2) = inf f � > 0 : E1(B) = E2(B) 8 B 2 Balls�(M) g :Lemma 5.3.17 Let M be an ultrametric space. Every nonempty open subset U of Mcan be written as disjoint union of open balls. If U is a �-set then U can be written asdisjoint union of open balls with radius �.Proof: Let U be a nonempty open subset of M . If x 2 U then we put�(x) = sup fr > 0 : B(x; r) � Ug:

5.3. PROOFS 117Let � be the following equivalence relation on U : x � y i� �(x) = �(y). Let V be asubset of U such that V \ [x]� consists exactly of one element (axiom of choice). Then,U can be written as disjoint union of the open balls B(x; �(x)), x 2 V . In the case whereU is a �-set we deal with the equivalence relation x �� y i� d(x; y) < � instead of �.Lemma 5.3.18 Let M be an ultrametric space and E an evaluation on M . Then, foreach open subset U of M , whenever U = Si2I Bi where (Bi)i2I is a family of pairwisedisjoint open balls then for each � > 0 there exists a �nite subset J of I withE(U) � � � Xj2J E(Bj)Proof: If J � I is �nite then we put BJ = Sj2J Bj. Then, E(BJ) = Pj2J E(Bj).Let � > 0. We show that there exists a �nite subset J of I with E(BJ) � E(U)� �: Let Kbe the set of �nite subsets of I. Then, the family (BJ)J2K is directed and SJ2K BJ = U .Hence, E(U) = supJ2K E(BJ). In particular, there exists a �nite subset J of I withE(BJ) � E(U)� �.Immediately by Lemma 5.3.18 we get:Corollary 5.3.19 Each evaluation on an ultrametric space is uniquely determined by itsvalue on the open balls.Lemma 5.3.20 Let M be an ultrametric space, E an evaluation on M and 0 < r � 1.Then, the set of open balls B = B(x; r) for some x 2 M with E(B) 6= 0 is countable.I.e. there exists a countable subset N of M such that E(B(x; r)) 6= 0 implies d(x; y) < rfor some y 2 N .Proof: Since M = SB2I B where I is the set of open balls B = B(x; r) for somex 2 M and since B \ B0 = ; for all B, B0 2 I, B 6= B0 we get by Lemma 5.3.18 (page117): There exists �nite subsets In of I with1� 12n � XB2In E(B):W.l.o.g. I0 � I1 � I2 � : : : (otherwise we deal with I 0n = I0 [I1 [: : :[In instead of In).Let J = S In. Then, J is countable. Let B 2 I n J . We suppose E(B) > 0. Let n be anatural number with 1=2n < E(B). Then,1 = E(M) � E(B) + XB02In E(B0) � E(B) + 1 � 12n > 1:Contradiction. Hence, E(B) = 0 for all B 2 I n J .In the next lemma we give su�cient { and by Lemma 5.3.18 on page 117 { necessaryconditions for the extension of a given function F : Balls(M)! [0; 1] to an evaluation.Lemma 5.3.21 Let M be an ultrametric space and F : Balls(M) ! [0; 1] a functionwhich satis�es:1. F (M) = 1

118 CHAPTER 5. DENOTATIONAL MODELS2. If B1; : : : ; Bn are pairwise disjoint open balls which are contained in some open ballB then nXi=1 F (Bi) � F (B):3. Whenever B is an open ball and B = Si2I Bi where (Bi)i2I is a family of pairwisedisjoint open balls then for each � > 0 there exists a �nite subset J of I withF (B) � � � Xj2J F (Bj):Then, there exists a unique evaluation E on M with E(B) = F (B) for all B 2 Balls(M).Proof: By Corollary 5.3.19 (page 117) there exists at most one evaluation E on Mwhich extends F . We de�ne E as follows:E(U) = sup (XB2I F (B) : I 2 I(U))where I(U) denotes the collection of all �nite sets consisting of pairwise disjoint open ballsB � U . By Lemma 5.3.17 (page 116), I(U) is nonempty whenever U 6= ;. WheneverI 2 I(M) we put FI = PB2I F (B). We show that E is an evaluation: we haveE(M) = 1 since I = fMg 2 I(M) and F (M) = 1. The monotonicity of E is clear sincewhenever U � V then I(U) � I(V). Let U , V �M be nonempty opens. We show thatE(U \ V) + E(U [V) = E(U) + E(V):Step 1: We show that E(U \ V) + E(U [V) � E(U) + E(V). Let � > 0. We showthat there exists IU 2 I(U) and IV 2 I(V) withE(U [V) + E(U \ V)� � � FIU + FIV :(Then, we may conclude that E(U) + E(V) � E(U [V) + E(U \ V)� � for all � > 0.Hence, E(U) + E(V) � E(U [V) + E(U \ V).)Let J 2 I(U [V), K 2 I(U \V) with FJ � E(U [V)� 14 � � and FK � E(U \V)� 14 � �.Then,(*) FJ + FK � E(U [V) + E(U \ V)� 12 � �Claim: Each ball B 2 J can be written as disjoint union of open balls C satisfying C � Uor C � V .Proof: Let B 2 J . For each x 2 B we put:r(x) = (sup fr > 0 : B(x; r) � B \ Ug : if x 2 B \ U ,sup fr > 0 : B(x; r) � B \ V g : if x 2 B \ (V n U).Then, r(x) > 0 for all x 2 B. We put Bx = B(x; r(x)). Then, either Bx � U or Bx � V .Let X be the set of elements x 2 B \ U with Bx � By for some y 2 B \ (V n U). We

5.3. PROOFS 119can deal with the set of balls C = Bx where x 2 V or x 2 U nX. (Note that for all x,y 2 B \ (V [(U nX)) either Bx = By or Bx \ By = ;.) cLet jJ j be the cardinality of J and let B 2 J . By assumption there exists a �nite set IBconsisting of pairwise disjoint open balls C � U or C � V withF (B)� 12jJ j � � � FIB :Let J 0 be the set of all balls C 2 IB, B 2 J . Then, J 0 is �nite andFJ � 12 � � = XB2J 0 F (B) � 12 � � � XB2J 0 XC2IB F (C):We put:J 0U = fB 2 J 0 : B � Ug, J 0V = J 0 n J 0U ,KU = f C 0 2 K : C \ B = ; 8 B 2 J 0U g,KV = K nKU , IU = J 0U [KU , IV = J 0V [KV .Then, IU 2 I(U). We show IV 2 I(V). It is clear that all balls B 2 IV are containedin V and that the balls of J 0V (and the balls of KV) are pairwise disjoint. Suppose thereare balls B 2 J 0V and C 2 KV with B \ C 6= ;. Then, either B � C or C � B. The�rst case is impossible since B 6� U (by de�nition of J 0V) and C � U \ V . The secondcase is impossible since then C \ B0 6= ; for some B 2 J 0U and hence either B0 � C � Bor C � B \ B0 (which contradict the assumption that the balls B, B0 are disjoint). Weobtain FIU + FIV = XB2J 0 XC2IB F (C) + FK� FJ � 12 � � + FK � E(U [V) + E(U \ V) � �:Step 2: We show that E(U \ V) + E(U [V) � E(U) + E(V). Let � > 0 and letIU 2 I(U), IV 2 I(V) such thatFIU � E(U)� 12 � �; FIV � E(V)� 12 � �:Then, K = fB \ C : B 2 IU ; C 2 IV ; B \ C 6= ;g is a �nite set of disjoint open ballswhich are contained in U \ V . Let J be the set consisting of the following balls:- B [C where B 2 IU , C 2 IV , B \ C 6= ;- B 2 IU where B \ C = ; for all C 2 IV- B 2 IV where B \ C = ; for all B 2 IUJ is a �nite set of pairwise disjoint open balls contained in U [V . (Note that wheneverB, C are open balls with B \ C 6= ; then either B � C or C � B.) It is easy to see thatFK + FJ = FIU + FIV . Hence,E(U [V) + E(U \ V) � FK + FJ = FIU + FIV � E(U) + E(V)� �

120 CHAPTER 5. DENOTATIONAL MODELSfor all � > 0. Therefore, E(U [V) + E(U \ V) � E(U) + E(V).Step 3: We show that E is continuous. Let U be a nonempty open set and let (Ui)i2I bea directed family of open sets with U = SUi. Since Ui � U we have E(Ui) � E(U) andtherefore supE(Ui) � E(U). For each x 2 U and i 2 I we put ri(x) = 0 if x =2 Ui andri(x) = sup fr > 0 : B(x; r) � Uigif x 2 Ui. Let r(x) = supi2I ri(x). Then, ri(x) > 0 and Bx = B(x; r(x)) � U .We de�ne an equivalence relation � on U by x � y i� Bx = By. It is easy to see thatx 6� y i� Bx \ By = ; and that Bx is the equivalence class of x. For each equivalenceclass A, we de�ne BA = Bx and rA = r(x), where x is a representative of A. We choosea real number �A with 0 < �A < rA. Then, U is the disjoint union of the balls BA whereA ranges over all equivalence classes. Let CA be the set of all balls B(x; �A) where x 2 A.BA is the disjoint union of the balls C 2 CA. For each ball C 2 CA there exists i 2 I andx 2 C such that �A < ri(x) � rA. (Here, we use the fact that x � y implies ri(x) = ri(y)for all i 2 I.) Then, C � B(x; ri(x)) � Ui. Hence, U is the disjoint union of the ballsC 2 CA where A ranges over the equivalence classes. By de�nition of E there exists a�nite set J of open balls where each ball C 2 J is contained in some of the sets Ui andwhich satis�es: E(U)� � � XC2J F (C)Since (Ui)i2I is directed and since J is �nite there exists an index i 2 I with C � Ui forall C 2 J . Then, SC2J C � Ui. Thus, E(Ui) � PC2J F (C) � E(U)� �.Theorem 5.3.22 (cf. Theorem 5.1.16, page 97) If M is an ultrametric space thenEval(M) is an ultrametric space. If M is complete then also Eval(M) is complete.Proof: It is clear that the distance d on Eval(M) is a pseudo-ultrametric. Ifd(E1; E2) = 0 we have to show that E1(U) = E2(U) for all opens U . Since d(E1; E2) = 0we have E1(B) = E2(B) for all B 2 Balls(M). U can be written as disjoint union of openballs: U = Si2I Bi. The family of sets UJ = Si2J Bi where J is a �nite subset of I isdirected. For each �nite subset J we have:E1(UJ) = Xi2J E1(Bi) = Xi2J E2(Bi) = E2(UJ):Since U = SJ UJ we get E1(U) = supJ E1(UJ) = supJ E2(Uj) = E2(U). Weconclude that Eval(M) is an ultrametric space.Now we suppose M to be complete. We show that Eval(M) is complete. Let (En)n�0 bea Cauchy sequence of evaluations on M . W.l.o.g. d(En; EN) � 1=2N+1 for all 0 � N � n.For each open ball B, (En(B))n�0 is a Cauchy sequence. Note that the sequence (En(B))is eventually constant as, for B 2 Balls�(M), En(B) = EN(B) for all n � N where1=2N � �. We de�ne a function F : Balls(M)! [0; 1] satisfying the conditions of Lemma5.3.21 (page 117) as follows: F (B) = limn!1 En(B)Then, F (B) = En(B) for all n � N and B 2 Balls 12N (M). We show that F satis�es theconditions of Lemma 5.3.21 (page 117).

5.3. PROOFS 1211. It is clear that F (M) = 1.2. Let B be an open ball and B1; : : : ; Bn be disjoint open balls with B1 [: : :[Bn � B.We choose some � > 0 such that B, Bi 2 Balls�(M), i = 1; : : : ; n, and some naturalnumber N with 1=2N < �. Then,F (B) = EN (B) � nXi=1 EN (Bi) = nXi=1 F (Bi):3. Let B 2 Balls�(M) and (Bi)i2I a family of disjoint open balls Bi with SBi = B. Let� > 0. We choose a natural number N with 1=2N < �. Then, F (B) = En(B) for alln � N . Because of Lemma 5.3.18 (page 117) there exist �nite subsets I 0n of I withXi2I0n En(Bi) � F (B)� 12 � �:We put In = I 0N[I 0N+1[: : :[I 0n. Then, In are �nite subsets of I with IN � IN+1 � : : :and ak;n = Xi2Ik En(Bi) � Xi2I0n En(Bi) � F (B)� 12 � �for all k � n. Since ak;n � ak+1;n � : : : � En(B) = F (B) the limit limk!1 ak;nexists. With an = limk!1 ak;nwe have: an � an;n � F (B)� 12 ��. Since Ik is �nite we may choose some �k > 0 suchthat Bi 2 Balls�k(M) for all i 2 Ik. For all n � N with 1=2n < �k, En(Bi) = F (Bi)for all i 2 Ik. Thus, ak;n = Xi2Ik En(Bi) = Xi2Ik F (Bi) = Ak:Then, Ak � Ak+1 � : : : � F (B) (since (Bi)i2Ik is a �nite family of pairwisedisjoint open balls in B). Hence, limk!1 Ak exists, i.e.Xi2K F (Bi) where K = [n�N Inis convergent. Moreover,Xi2K F (Bi) = limk!1 limn!1 ak;n = limn!1 limk!1 ak;n = limn!1 an � F (B)� 12 � �:Hence, there exists a �nite subset J of K with Pj2J F (Bj) � F (B)� �.We conclude that F satis�es the conditions of Lemma 5.3.21 (page 117). Hence, thereexists a unique evaluation E on M which extends F . Then, E(B) = F (B) = EN(B) forall B 2 Balls�(M) where � > 1=2N . Therefore, d(E;EN) � 1=2N and E = limEn.Recall that, forM to be a complete ultrametric space, the function Distr(M)! Eval(M),� 7! E�, is injective. Thus, Distr(M) can be viewed as a subspace of Eval(M).

122 CHAPTER 5. DENOTATIONAL MODELSTheorem 5.3.23 (cf. Theorem 5.1.16, page 97) Let M be a complete ultrametricspace. Then, Eval(M) is the completion of Distr(M).Proof: We have to show that fE� : � 2 Distr(M)g is a dense subspace of Eval(M).Let E 2 Eval(M). For all n � 0, there exists a countable subset Nn of M such thatE(B(x; 1=2n)) 6= 0 implies d(x; y) < 1=2n for some y 2 Nn (Lemma 5.3.20, page 117). Foreach ball B 2 Balls1=2n(M), we choose an element xB 2 B and put�n(y) = (E(B) : if y = xB for some B 2 Balls1=2n(M)0 : otherwise.Then, �n is a distribution on M and d(E�n ; E) � 1=2n. Hence, E = limE�n .5.3.4 The domain IMThis section gives the proof of Theorem 5.1.21 (page 98) that states that IP can be viewedas a subspace of IM and shows that the semantic operators for modelling restriction,relabelling and parallelism are non-expansive.Recall that IM denotes the unique �xed point of the functor Fcum = PowHoare�F cumAct �Eval :CUM! CUM where we deal with the isomorphism as an equality (Notation 5.1.20, page98). The following is standard.Notation 5.3.24 [The n-th projection proj IMn] The functions proj IMn : IM ! IM arede�ned as follows. Let proj IM0 : IM ! IM , proj IM0 (x) = ; for all x 2 IM andproj IMn+1 = Fcum �proj IMn � :Then, proj IMn+1(x) = f(a;Eval(proj IMn)(E)) : (a; E) 2 xg: We haveproj IMn � proj IMk = proj IMk � proj IMn = proj IMnfor all 0 � n � k and x = limn!1 proj IMn (x)for all x 2 IM . The distance on IM is given byd(x; y) = inf � 12n : proj IMn (x) = proj IMn (y) � :Let f : IM ! IM be a function. Then,� f is non-expansive i� proj IMn � f = proj IMn � f � proj IMn for all n � 1.� f is contracting i� proj IMn � f = proj IMn � f � proj IMn�1 for all n � 1.In particular, every function f : IM ! IM with proj IMn � f = f � proj IMn�1 for all n � 1 iscontracting.Recall that, for X to be a set, the set of functions X ! IM is supposed to be equippedwith the distance d(f1; f2) = supx2X d(f1(x); f2(x)). Then, X ! IM is a completeultrametric space (cf. Section 12.1.2, page 310). We often use the following fact.

5.3. PROOFS 123Lemma 5.3.25 Let X be a set. Every operator F : (X ! IM)! (X ! IM) withF �proj IMn � f� = proj IMn+1 � F (f)is contracting and hence has a unique �xed point.Proof: It is easy to see that F is contracting and hence has a unique �xed point(Banach's �xed point theorem).Lemma 5.3.26 For all n � 1 and x 2 IM , proj IMn (x) is a �nite set consisting of pairs(a; E�) where a 2 Act and � 2 Distr(IM) such that Supp(�) � proj IMn�1(IM).Proof: For simplicity, proj n = proj IMn .Claim 1: If E 2 Eval(IM) then Eval(proj n�1)(E) = E� for some distribution � 2Distr(IM) with Supp(�) � proj n�1(IM).Proof: IM can be written as disjoint union of the open ballsB(x; 1=2n�2), x 2 proj n�1(IM).By Lemma 5.3.20 (page 117), there exists a countable subset N of proj n�1(IM) withE(B(x; 1=2n�2)) 6= 0 implies x 2 N . For all opens U ,Eval(proj n�1)(E)(U) = E(proj�1n�1(U)) = Xx2N\U E(B(x; 1=2n�2)) = �[U]where � 2 Distr(IM) is given by �(x) = 0 if x =2 N , �(x) = E(B(x; 1=2n�2)) if x 2 N . cClaim 2: If E, E 0 2 Eval(IM) and d(Eval(proj n�1)(E); Eval(proj n�1)(E 0)) � 1=2n�1then Eval(proj n�1)(E) = Eval(proj n�1)(E 0):Proof: Because of Claim 1 it su�ces to show that d(E�; E�0) � 1=2n�1 implies � =�0 where �, �0 2 Distr(IM) such that Supp(�), Supp(�0) � proj n�1(IM). Let x 2proj n�1(IM). Then, B(x; 1=2n�2) \ proj n�1(IM) = fxg. Hence,�(x) = �[B(x; 1=2n�2)] = �0[B(x; 1=2n�2)] = �0(x)for all x 2 proj n�1(IM). Therefore, � = �0. cClaim 3: proj n(x) is a �nite set consisting of pairs (a; E�) where � 2 Distr(IM) withSupp(�) � proj n�1(IM).Proof: The elements of proj n(x) are of the form (a; E�) where � 2 Distr(IM) such thatSupp(�) � proj n�1(IM) (see Claim 1). Since proj n(x) is compact (as a subset of Act �Eval(IM)) and since proj n(x) � S�2projn(x) B(�; 1=2n) there exists a �nite subset � ofproj n(x) with proj n(x) � [�2� B(�; 1=2n):Note that B(�; �) is an open ball in Act � Eval(IM) 12 . We show that proj n(x) = �. Let(a; E�) 2 proj n(x). There exists � 2 � with d(�; (a; E�)) < 1=2n. � is of the form (b; E�)where � 2 Distr(IM) with Supp(�) � proj n�1(IM). Then, a = b and d(E�; E�) < 1=2n�1.Claim 2 yields � = �. Therefore, � = (a; E�) 2 �. Hence, proj n(x) = � is �nite. c

124 CHAPTER 5. DENOTATIONAL MODELSTheorem 5.3.27 (cf. Theorem 5.1.21, page 98) IP is a dense subspace of IM . Moreprecisely, there exists a unique function {IM : IP ! IM such that for all T 2 IP ,{IM(T) = f(a; EDistr({IM)(�)) : T a�!�g:This function {IM is injective and {IM(IP) is a dense subspace of IM .Proof: We shortly write proj n and { instead of proj IMn and {IM . Let F : (IP ! IM)!(IP ! IM) be given by F (f)(T) = f(a; EDistr(f)(�)) : T a�!�g. Note that { since T is�nitely branching { F (f)(T) is �nite and hence compact. We have to show that F hasa unique �xed point { and that this function { is injective and {(IP) a dense subspace ofIM . It is easy to see that F (proj n � f) = proj n+1 � F (f) for all functions f : IP ! IM .Hence, F is contracting (Lemma 5.3.25, page 123).De�nition: Let { be the unique �xed point of F (Banach's �xed point theorem).Claim 1: { is injective.Proof: Because of Lemma 3.4.8 (page 56) it su�ces to show that {(T) = {(T 0) impliesT �n T 0 for all n � 0. Since T , T 0 are �nitely branching (and therefore image-�nite) weget T � T 0. Hence, T = T 0 (Corollary 5.1.6, page 93).We show by induction on n that proj n({(T)) = proj n({(T 0)) i� T �n T 0. In the basis ofinduction (n = 0) there is nothing to show. In the induction step n =) n+1 we supposethat, for all T1, T 01 2 IP , proj n({(T1)) = proj n({(T 01)) i� T1 �n T 01 .1. Let proj n+1({(T)) = proj n+1({(T 0)) and T a�!�. Then, (a; E�) 2 proj n+1({(T)) where� = Distr(proj n � {)(�). Since (a; E�) 2 proj n+1({(T 0)) there exists a transitionT 0 a�!�0 with � = Distr(proj n � {)(�0). Let A 2 IP= �n, T1 2 A and x = proj n({(T1)).By induction hypothesis, A = fT 01 2 IP : x = proj n({(T 01))g:Hence, A = {�1(proj�1n (x)). Thus, �[A] = �(x) = �0[A]. By symmetry, T �n+1 T 0.2. Let T �n+1 T 0. By symmetry it su�ces to show that proj n+1({(T)) � proj n+1({(T 0)).Let (a; E) 2 proj n+1({(T)). There is a transition T a�!� with E = EDistr(projn�{)(�).Since T �n+1 T 0 there exists a transition T 0 a�!�0 with �[A] = �0[A] for all A 2 IP= �n.We show Distr(proj n � {)(�) = Distr(proj n � {)(�0):Let x 2 IM and A = {�1(proj�1n (x)). By induction hypothesis, A 2 IP= �n. Thus,Distr(proj n � {)(�)(x) = �[A] = �0[A] = Distr(proj n � {)(�0)(x). cClaim 2: {(IP) is a dense subspace of IM .Proof: Since x = limproj n(x) for all x 2 IM the set S proj n(M) is a dense subspace of IM .Hence, it su�ces to show that proj n(IM) � {(IP) for all n � 0. We use induction on n.The case n = 0 is clear. In the induction step n =) n+ 1 we suppose proj n(IM) � {(IP).Since { is injective there exists a unique function | : IM ! IP such that |�{ = idIP . Let x 2proj n+1(IM). By Lemma 5.3.26 (page 123), x is of the form x = f(ai; E�i) : i = 1; : : : ; kgwhere �i 2 Distr(IM) such that Supp(�i) � proj n(IM). Thus, Supp(�i) � {(IP) whichyields

5.3. PROOFS 125(*) Distr({ � |)(�i) = �i, i = 1; : : : ; k.Let X = n(ai; EDistr(|)(�i)) : i = 1; : : : ; ko and T = e�1(X) where e : IP ! Pow�n(Act �Distr(IP)) is the bijection such that (IP ; e) is the �nal coalgebra of Pow�n � FAct � Distr(Theorem 5.1.7, page 93). By Remark 12.1.3 (page 313) and (*):Eval({)(EDistr(|)(�i)) = EDistr({�|)(�i) = E�i ; i = 1; : : : ; k:Hence, {(T) = f(a;Eval({)(E)) : (a; E) 2 Xg = f(ai; E�i) : i = 1; : : : ; kg = x. Thus,x 2 {(IP). cRemark 5.3.28 In Claim 2 in the proof of Theorem 5.3.27 (page 124) we saw thatproj IMn (IM) � {IM(IP). This should be contrasted with the domain-theoretic setting whereproj IDn (ID) 6� {ID(IP) (cf. Lemma 5.3.16, page 116).Recall the de�nitions of the operators F IML , F IM` : (IM ! IM) ! (IM ! IM) and F IMk :(IM � IM ! IM)! (IM � IM ! IM) (see page 101).Lemma 5.3.29 The operators F IM` , F IML and F IMk are contracting and the unique �xedpoints are non-expansive.Proof: Let F 2 fF IM` ; F IML ; F IMk g. It is easy to see that F (proj IMn �f) = proj IMn+1�F (f):Hence, by Lemma 5.3.25 (page 123), F has a unique �xed point f . To see that f non--expansive we observe that F maps non-expansive functions to non-expansive functions.Since the set of non-expansive functions IM ! IM is a closed subspace of the completemetric space of all functions IM ! IM , the unique �xed point f is non-expansive.Remark 5.3.30 In the metric approach { where Eval(M) is a completion of Distr(M)(Theorem 5.3.23, page 122) { the product of evaluations E1 � E2 (de�ned as in Section12.1.4, page 314) can be de�ned without using the result of Heckmann [Heck95]; namely,as the canonical extension of the non-expansive operatorDistr(M)� Distr(M)! Distr(M �M), (�1; �2) 7! �1 � �2.(For the de�nition of �1 � �2 see Section 2.2, page 30.) An alternative de�nition of theproduct (which leads to the same operator) uses Lemma 5.3.21 (page 117): if E1, E2 areevaluations on M then E1 � E2 denotes the unique evaluation on M �M such that, forall open balls B, B0 of M , (E1 � E2)(B � B0) = E1(B) � E2(B0):315.3.5 Full abstractionIn this section we give the proof of the full abstraction result (Theorem 5.1.24, page102) and show the \consistency" of the partial order and metric semantics on ID and IM(Theorem 5.1.26, page 102).Notation 5.3.31 [The elements [[s]]decl] If s is a PCCS statement and decl a declara-tion then [[s]]decl denotes the bisimulation equivalence class of the operational meaning ofthe PCCS program hdecl ; si, i.e. of the probabilistic process O[[hdecl; si]].31Note that the open balls of the product space M �M have the form B � B0 where B, B0 are openballs of the same radius.

126 CHAPTER 5. DENOTATIONAL MODELSThe basic lemma for the full abstraction result (Theorem 5.1.24, page 102) is the following.Recall that� {ID : IP ! ID is the unique function with {ID(T) = f(a; EDistr({)(�)) : T a�!�gcl ,� {IM : IP ! IM the unique function such that {IM(T) = f(a; EDistr({)(�)) : T a�!�g.See Theorem 5.3.10 (page 111) and Theorem 5.3.27 (page 124).Lemma 5.3.32 Let X = IM or X = ID. Then, for each declaration decl :0. {IM([[nil]]decl) = ;, {ID([[nil]]decl) = ?ID.1. {X ([[a: (�Pi2I [pi]si)]]decl) = a: (�Pi2I [pi] {X([[si]]decl))2. {X([[s1 + s2]]decl) = {X([[s1]]decl) [{X([[s2]]decl)3. {X([[s1 k s2]]decl) = {X([[s1]]decl) k {X([[s2]]decl)4. {X([[s[`]]]decl) = {X([[s]]decl)[`]5. {X([[s n L]]decl) = {X([[s]]decl) n L6. {X([[Z]]decl)) = {X([[decl(Z)]]decl)Proof: 0., 1. and 2. are clear. 6. is clear since O[[hdecl ; Zi]] � O[[hdecl ; decl(Z)i]]:Hence, by Lemma 5.1.5 (page 92), [[Z]]decl = [[decl(Z)]]decl :In what follows, we shortly write proj n, { rather than projXn and {X and [[s]] instead of[[s]]decl . As before, we use the closure notation Acl for subsets of Act � Eval(IM) and forsubsets of f?g [Act �Eval(ID). When dealing with ID, Acl denotes the Scott-closure ofA (if A 6= ;) and ;cl = ?ID, as before. When dealing with IM , we put Acl = A. Then,{([[s]]) = n(a; EDistr({�[[�]])(�)) : s a�!decl�oclfor all s 2 Stmt . We show 3. By induction on n we show thatproj n({([[s1ks2]])) = proj n({([[s1]])) k proj n({([[s2]]))for all s1, s2 2 Stmt . Then, by the non-expansitivity/d-continuity of k and the fact thatx = limproj n(x) in IM and x = F proj n(x) in ID we obtain{([[s1ks2]]) = {([[s1]]) k {([[s2]]):The basis of induction (n = 0) is clear as ;k; = ; in IM and ?IDk?ID = ?ID in ID. In theinduction step n =) n + 1 we suppose thatproj n({([[t1kt2]])) = proj n({([[t1]])) k proj n({([[t2]]))for all t1, t2 2 Stmt . Let s1, s2 2 Stmt . Since EDistr(f)(�) = Eval(f)(E�) (Remark 12.1.3,page 313) and E�1��2 = E�1 � E�2 we have{([[s1ks2]]) = f(a; EDistr({�[[�]])(�)) : s1ks2 a�!�gcl= f(�; EDistr({�[[�k�]])(�1��2)) : s1 ��!decl �1; s2 ��!decl �2; � 6= �gcl[f(a; EDistr({�[[�ks2]])(�)) : s1 a�!decl �gcl[f(a; EDistr({�[[s1k�]])(�)) : s2 a�!decl �gcl .

5.3. PROOFS 127We de�ne functions f , g : Stmt � Stmt ! X byf(t1; t2) = proj n({([[t1]])) k proj n({([[t2]])),g(t1; t2) = proj n({([[t1 k t2]])).We have proj n+1({([[s1ks2]])) = [a2Act f(a; E�) : � 2 MagclwhereM� =M�1 [M�2 if � 6= � andM� =M�1 [M�2 [Msyn,Ma1 = fDistr(g(�; s2))(�) : s1 a�!decl �g,Ma2 = fDistr(g(s1; �)(�) : s2 a�!decl �g,Msyn = fDistr(g)(�1 � �2) : s1 ��!decl �1; s2 ��!decl �2; � 6= �g.On the other hand,proj n+1({([[s1]])) k proj n+1({([[s2]])) = [a2Act f(�;E�) : � 2 N a gclwhere N � = N �1 [N �2 if � 6= � and N � = N �1 [N �2 [Nsyn,N a1 = fDistr(f(�; s2))(�) : s1 a�!decl �g,N a2 = fDistr(f(s1; �)(�) : s2 a�!decl �g,Nsyn = fDistr(f)(�1 � �2) : s1 ��!decl �1; s2 ��!decl �2; � 6= �g.The induction hypothesis yields f(t1; t2) = g(t1; t2) for all t1, t2 2 Stmt . Thus,Ma1 = N a1 ,Ma2 = N a2 andMsyn = Nsyn. We conclude:proj n+1({([[s1ks2]])) = proj n+1({([[s1]])) k proj n+1({([[s2]])):The proofs of 4. and 5. are similar to the proof of 3.Recall that f IDdecl denotes the least �xed point of the d-continuous operator F IDdecl (see Section5.1.4, page 101). In the next lemma we show that { as in the metric case where f IMdecl isthe unique �xed point of F IMdecl { f IDdecl is unique as a �xed point of F IDdecl .Lemma 5.3.33 Let decl be a declaration. Then, f IDdecl is the unique �xed point of F IDdecl .Proof: It is easy to see that proj IDn+1 � F IDdecl(proj IDn � f) = proj IDn+1 � F IDdecl (f). Hence,if f , f 0 are �xed points of F IDdecl then (by induction on n) proj IDn � f = proj IDn � f 0. Hence,f(s) = Gn�0 proj IDn (f(s)) = Gn�0 proj IDn (f 0(s)) = f 0(s)for all s 2 Stmt . Therefore f = f 0.Theorem 5.3.34 (cf. Theorem 5.1.24, page 102) The denotational semantics DIDand DIM are fully abstract with respect to simulation and bisimulation respectively. Moreprecisely:(a) If P, P 0 2 PCCS then DID[[P]] = {ID([[P]]) and P vsim P 0 i� DID[[P]] � DID[[P 0]].(b) If P, P 0 2 GPCCS then DIM [[P]] = [[P]] and P � P 0 i� DIM [[P]] = DIM [[P 0]].

128 CHAPTER 5. DENOTATIONAL MODELSHere, IP is considered as a subspace of IM (Theorem 5.3.27, page 124) and {ID : IP ! IDis as in Theorem 5.3.10, page 111.Proof: Using Lemma 5.3.32 (page 126) it can be shown by structural induction onthe syntax of s 2 Stmt that FXdecl({X � [[�]]decl)(s) = {X ([[s]]decl) : By the uniqueness of fXdeclas a �xed point of FXdecl (Lemma 5.3.33, page 127), we get fXdecl = {X � [[�]]decl . Hence,DX [[hdecl ; si]] = fXdecl(s) = {X([[hdecl ; si]]):Lemma 5.1.5 (page 92) yields P vsim P 0 i� DID[[P]] � DID[[P 0]] and P � P 0 i� DIM [[P]] =DIM [[P 0]].Theorem 5.3.35 (cf. Theorem 5.1.26, page 102) There exists a unique function f :IM ! ID such that f(x) = f(a;Eval(f)(x)) : (a; E) 2 xgcl for all x 2 IM . This functionf satis�es f � DIM [[P]] � = DID[[P]] for all P 2 GPCCS.Proof: We de�ne a function f : IM ! ID as follows. We consider the functionF : (IM ! ID)! (IM ! ID); F (f)(x) = f(a;Eval(f)(x)) : (a; E) 2 xgcl :It is easy to see that F is d-continuous and F (proj IDn � f) = proj IDn�1 � F (f). Thus, Fsatis�es the conditions of Lemma 5.3.9 (page 111). Let f : IM ! ID be the unique �xedpoint of F . It is easy to see that f is a \homomorphism" with respect to the semanticoperators on IM and ID. Using the results of [BMC97] it can be shown that, for �xedguarded declaration decl , f � f IMdecl is a �xed point of F IDdecl . By Lemma 5.3.33 (page 127),f IDdecl is the unique �xed point of F IDdecl . Hence, f �f IMdecl = f IDdecl which yields the \consistencyresult" f � DIM = DIDjGPCCS .

Chapter 6Deciding bisimilarity and similarity
Bisimulation and simulation relations have proved very useful for the design and ab-straction. For mechanised purposes, the development of methods for showing that twoprocesses are bisimilar or related via simulation and the e�ciency of such methods is acrucial aspect. Several techniques for checking bisimulation equivalence for fully proba-bilistic processes have been proposed; see [JoSm90, BBS92, LaSk92] for axiomatic meth-ods and [HuTi92] for a decision procedure. The issue of axiomatizations for bisimulationand simulation in probabilistic systems with non-determinism has been considered in[HaJo90, Hans91, Yi94].1 As far as the author knows, [Bai96] and the forthcoming work[PSS98, BSV98] are the �rst attempts to formulate algorithmic methods that deal withbisimulation and simulation for concurrent probabilistic processes. In this chapter wepresent a revised version of [Bai96] where algorithms for deciding bisimulation equiva-lence and for computing the simulation preorder in �nite concurrent probabilistic systemsare proposed. Moreover, we show that a variant of the method for simulation is applicablefor fully probabilistic systems and the \satisfaction relation" of [JoLa91].Deciding bisimulation equivalence: Huynh & Tian [HuTi92] presented an O(k logn)algorithm for computing the bisimulation equivalence classes in �nite fully probabilisticsystems where n is the number of states and k the number of non-zero entries in thetransition probability matrix (P(s; a; t))s;a;t. The method of [HuTi92] is a modi�cation ofthe the partitioning/splitter-technique �a la [KaSm83, PaTa87] which performs a sequenceof re�nement steps that replace a given partition X by a �ner one, eventually resulting inthe set of bisimulation equivalence classes. As in the non-probabilistic case, the underlyingre�nement operation Re�ne(X) is based on a splitter of the current partition X . Thispartition/splitter-technique also works for reactive systems but fails for general concurrentprobabilistic systems. Our method for deciding bisimulation equivalence works { as in thenon-probabilistic or fully probabilistic case { with a partitioning technique but avoids theuse of splitters. It runs in time O(mn(logm+logn)) where m is the number of transitionsand n the number of states. In various applications, e.g. when the system arises from theinterleaving of l \sequential" probabilistic systems, we may suppose that the number m oftransitions is polynomial in n. In these cases we obtain the time complexity O(mn logn).1It should be mentioned that [Yi94] deals with a variant of action-labelled strati�ed systems whereintervals of probabilities { rather than precise probabilities { are used. The underlying notion of asimulation is di�erent from the one proposed by [SeLy94].129

130 CHAPTER 6. DECIDING BISIMILARITY AND SIMILARITYComputing the simulation preorder: The schema for computing the simulation pre-order of a �nite probabilistic system is the same as in the non-probabilistic case [HHK95].We start with the relation R = S � S and successively remove those pairs (s; s0) from Rfor which there is a step of s that cannot be \simulated" by a step of s0. In the probabilis-tic case, the test whether a step \simulates" another one amounts deciding whether twodistributions �, �0 are related via a weight function with respect to the current relationR, i.e. whether � �R �0 (see page 30). We show that the question whether � �R �0can be reduced to a maximum
ow problem in a suitable chosen network which yields anO((mn6+m2n3)= logn)) algorithm for computing the simulation preorder when applyingthe method of [CHM90] for solving the maximum
ow problem.Organization of that chapter: Section 6.1 presents an algorithm for deciding bisim-ulation equivalence where we �rst recall the results by Huynh & Tian [HuTi92] for fullyprobabilistic systems and then deal with concurrent probabilistic systems. Section 6.2gives an algorithm for computing the simulation preorder where we �rst consider concur-rent probabilistic systems (Section 6.2.2) and then the fully probabilistic case (Section6.2.3). We also show how our method for computing the simulation preorder can bemodi�ed for the \satisfaction relation" introduced by Jonsson & Larsen [JoLa91].In this chapter, we need the de�nitions of bisimulation and simulation (see Section 3.4,page 53 �) where the latter uses the de�nition of weight functions for distributions (seeSection 2.2, page 30). Moreover, we often use the notations for partitions as explainedin Section 2.1 (page 29). For the computation of certain equivalence classes we proposethe use of ordered balanced trees. Our notations can be found in Section 12.2 (page 314).Throughout this chapter, we deal with �nite and action-labelled systems.6.1 Computing the bisimulation equivalence classesThe main idea for computing the probabilistic bisimulation equivalence classes is theuse of a partitioning technique as proposed by Kanellakis & Smolka [KaSm83] (and itsimprovement by Paige & Tarjan [PaTa87]) for the non-probabilistic case. We start withthe trivial partition X = fSg and then successively re�ne X by splitting the blocks Bof X into subblocks, eventually resulting in the bisimulation equivalence classes. Thisschema is sketched in Figure 6.1 on page 131.In the non-probabilistic case, the re�nement operator Re�ne(X) depends on a \splitter" ofX . Intuitively, a splitter denotes a pair (a; C) consisting of an action a and a block C 2 Xthat prevents the induced equivalence RX to ful�ll the condition of a bisimulation; that is,a splitter is a pair (a; C) 2 Act �X such that there are states s, s0 2 S that are identi�edin X (i.e. s and s0 belong to the same block of X) and where s a�!C while s0 a6�! C.2 For(a; C) to be a splitter of X , the re�nement operator Re�ne(X) = Re�ne(X ; a; C) devideseach block B 2 X into the subblocks B(a;C) = fs 2 B : s a�!Cg and BnB(a;C) and returnsthe partition fB(a;C); B nB(a;C) : B 2 Xg n f;g:2Here, we write t a�!C i� t a�!u for some u 2 C.

6.1. COMPUTING THE BISIMULATION EQUIVALENCE CLASSES 131Computing the bisimulation equivalence classesInput: a �nite (non-probabilistic or probabilistic) system with state space SOutput: the set S= � of bisimulation equivalence classesMethod:X = fSg;While X can be re�ned do X := Re�ne(X);Return X .Figure 6.1: Schema for computing the bisimulation equivalence classesClearly, if X is coarser than S= � then s 6� s0 for all s 2 B(a;C) and s0 2 B n B(a;C).Hence, Re�ne(X ; a; C) is again coarser than S=X and strict �ner than X (provided that(a; C) is a splitter of X). Thus, after at most jSj re�nement steps the current partitioncoincides with S= �. This method can be implemented in time O(m logn) where n is thenumber of states and m the number of transitions (i.e. the size of �!) [PaTa87] (see also[Fern89]).6.1.1 The fully probabilistic caseThe partitioning/splitter method is adapted in [HuTi92] for fully probabilistic transitionsystems, thus yielding an O(k logn) algorithm for deciding bisimilarity in fully proba-bilistic transition systems where n is the number of states and k the number of tuples(s; a; t) such that P(s; a; t) > 0. In the worst case, we have k = jAct j � n2. If we supposeAct to be �xed then we obtain the time complexity O(n2 logn) for deciding bisimulationequivalence in fully probabilistic systems. Moreover, we saw in Theorem 3.4.19 (page61) that simulation equivalence �sim and bisimulation equivalence � coincide for fullyprobabilistic systems. Thus:Theorem 6.1.1 (cf. [HuTi92]) In fully probabilistic systems, bisimulation and simula-tion equivalence can be decided in time O(n2 logn) and space O(n2) where n is the numberof states.The basic idea is for the fully probabilistic case is to de�ne a splitter of a partition X tobe a pair (a; C) 2 Act �X such that P(s; a; C) 6= P(s0; a; C) for some states s, s0 that areidenti�ed in X . Then, the re�nement operator according to the splitter (a; C) replaceseach block B 2 X by the subblocks B= '(a;C) where s '(a;C) s0 i� P(s; a; C) = P(s0; a; C).6.1.2 The concurrent caseAs mentioned in [HuTi92], the partitioning/splitter technique can easily be modi�ed for re-active systems (with the same time complexity O(n2 logn)). In the general case, i.e. deal-ing with concurrent probabilistic systems, the splitter technique fails (see Example 6.1.4,

132 CHAPTER 6. DECIDING BISIMILARITY AND SIMILARITYComputing the bisimulation equivalence classes in reactive systemsInput: a �nite reactive system (S;Act ; Steps)Output: the set S= � of bisimulation equivalence classesMethod:X = fSg;While there exists a splitter (a; C) of X do X := Re�ne(X ; a; C);Return X . Figure 6.2: Partioning/splitter techniquepage 133). We propose a method that can be implemented in time O(mn(logm+ logn))where n is the number of states and m the number of transitions.In what follows, we �x a �nite set Act of actions and a �nite action-labelled concurrentprobabilistic system (S;Act ; Steps).De�nition 6.1.2 [The splitter-based re�nement operator] If X is a partition of Sand a 2 Act, B, C 2 X then Re�ne(B; a; C) = B= '(a;C)where the equivalence relation '(a;C)= �(a;C)\��1(a;C) is the kernel of the relation �(a;C) �B � B which is given by:s�(a;C) s0 i� whenever s a�!� then there exists s0 a�!�0 with �[C] = �0[C].For X to be a partition of S, a splitter of X is a pair (a; C) 2 Act � X such thatRe�ne(B; a; C) 6= fBg for some B 2 X .The method of [PaTa87] (or the method of [HuTi92] for fully probabilistic systems) mod-i�ed for reactive systems is sketched in Figure 6.2 on page 132. For the implementationof this method we propose the use of a queue Q of possible splitters, initially containingthe pairs (a; S), a 2 Act . As long as Q is nonempty, we take the �rst element (a; C) of Qand remove (a; C) from Q. For each B 2 X , we compute the probabilitiesps = (0 : if Stepsa(s) = ;�[C] : if Stepsa(s) = f�g ; s 2 B:We construct an ordered balanced tree Tree(B;a;C) for the values ps, s 2 B, with additionallabels v:states for each node v such that �nally v:states = fs 2 B : v:key = psg.3 Thenodes in the �nal tree represent Re�ne(B; a; C); more precisely,Re�ne(B; a; C) = fv:states : v is a node in Tree(B;a;C)g:If Re�ne(B; a; C) 6= fBg then for each B0 2 Re�ne(B; a; C) but one of the largest we addthe pairs (b; B0), b 2 Act , to the end of Q.4 Using an implementation similar to the one in3See Section 12.2, page 314, for the notations that we use for ordered balanced trees.4By the largest blocks we mean those blocks B0 2 Re�ne(B; a; C) where jB0j is maximal.

6.1. COMPUTING THE BISIMULATION EQUIVALENCE CLASSES 133s1
t1 u1 v1 w1

m
m m m m

s2
t2 v2 u2 w2

m
m m m m

a, �1 a, �1 a, �2 a, �2t t t t����	 @@@@R ����	 @@@@R����� AAAAU ����� AAAAU����� AAAAU ����� AAAAU12 12 12 12 12 12 12 12Figure 6.3: s1 6� s2, but s1 and s2 cannot be distinguished by splitters.[PaTa87] we obtain the time complexity O(n2 logn). For reactive systems, bisimulationequivalence � and simulation equivalence �sim are the same (Theorem 3.4.15, page 59).Hence:Theorem 6.1.3 In reactive systems, bisimulation and simulation equivalence can be de-cided in time O(n2 logn) and space O(n2) where n is the number of states.Before we present our method for computing the bisimulation equivalence classes in ar-bitrary �nite action-labelled concurrent probabilistic systems we give an example whichexplains why the splitter technique fails in the general case.Example 6.1.4 We consider a system as shown in Figure 6.3 (page 133) where we sup-pose that t1 � t2, u1 � u2, v1 � v2, w1 � w2 and that t1; u1; v1; w1 are pairwise non-bisimilar.5 Then, s1 6� s2. On the other hand, s1, s2 cannot be distinguished by splitters.6Thus, the algorithm for deciding bisimilarity based on the splitter technique would returnthat s1 and s2 are bisimilar.For the general case, we maintain the schema sketched in Figure 6.1 (page 131) but usea re�nement operator that does not depend on a splitter. In each re�nement step, wereplace each block B of the given partition X by the equivalence classes of B with respectto the equivalence relation �X which identi�es exactly those states s, s0 2 B such that foreach transition s a�!� there exists a transition s0 a�!�0 with �[C] = �0[C] for all C 2 X .Notation 6.1.5 [The vector �[X] and the equivalence �X] Let X be a partition ofS. �[X] denotes the vector (�[B])B2X . X is associated with the equivalence relation �Xon S that is given by:s �X s0 i� f(a; �[X]) : s a�!�g = f(a; �0[X]) : s0 a�!�0g.De�nition 6.1.6 [The re�nement operator] We de�neRe�ne(X) = [B2X B= �X :Lemma 6.1.7 Let X be a partition of S which is coarser than S= �. Then:(a) Re�ne(X) is a partition which is coarser than S= �.5The outgoing transitions of the states ti, ui, vi, wi are omitted in the picture.6I.e. s1 '(b;C) s2 for all actions b and all blocks C of a partition X of S that is coarser than S= �.

134 CHAPTER 6. DECIDING BISIMILARITY AND SIMILARITY(b) If Re�ne(X) = X then X = S= �.Proof: easy veri�cation.Lemma 6.1.7 ensures the total correctness of our schema for deciding bisimilarity sketchedin Figure 6.1 (page 131). We state our main result:Theorem 6.1.8 In concurrent probabilistic systems, bisimulation equivalence can be de-cided in time O(mn(logm+logn)) and space O(mn) where n is the number of states andm the number of transitions.Remark 6.1.9 In many situations, m is polynomial in n. For example, when the systemarises from the interleaving of l \sequential" probabilistic systems then m � l �n. In thesecases, the time complexity for deciding bisimulation equivalence is O(mn logn).In the remainder of this section we decribe how to implement the algorithm sketchedin Figure 6.1 (page 131) for concurrent probabilistic systems to obtain the desired timeand space complexity where we use the re�nement operator Re�ne(X) of De�nition 6.1.6(page 133). The main idea for the implementation of the operator Re�ne(X) is �rst tocompute the set of \step classes" with respect to X from which the sets B= �X , B 2 X ,can be derived.De�nition 6.1.10 [Step classes] Let X be a partition, B 2 X and a 2 Act. Then,Stepsa(B) = [s2B Stepsa(s):Two distributions �, �0 2 Stepsa(B) are called X -equivalent (denoted � �X �0) i��[X] = �0[X]. A step class of B with respect to X is a pair (a; h) consisting of an actiona 2 Act and a function h : B ! 2Distr(S) with h(s) � Stepsa(s) for all s 2 B such that[s2B h(s) 2 Stepsa(B)= �X :For B0 2 Re�ne(X), we de�ne a step class of B0 with respect to X to be a pair (a; h0)where a 2 Act and h0 = hjB0 for some step class (a; h) of B with respect to X whereB denotes the unique block in X which contains B0. StepClX (�) denotes the set of stepclasses of (�) with respect to X .Clearly, if B 2 X and s, s0 2 B then s �X s0 i�, for each step class (a; h) of B withrespect to X , h(s) 6= ; i� h(s0) 6= ;. Let X be the current partition for which we wantto compute Re�ne(X) and let Xold be the partition in the previous re�nement step.7 Foreach step class (a; h0) of a subblock B0 2 Re�ne(X) of B (with respect to X) there is stepclass (a; hold) of B with respect to Xold such that h0(s) � hold (s) for all s 2 B0. Moreprecisely, the subblocks B0 2 Re�ne(X) of B and their step classes with respect to X canbe derived from the step classes of B with respect to Xold as follows. For (a; hold) to be astep class of B with respect to Xold , let C(a;hold) be the set of all tuples (a; L; h) where� ; 6= L � B7I.e. we assume that the current partition X is Re�ne(Xold).

6.1. COMPUTING THE BISIMULATION EQUIVALENCE CLASSES 135� h : L! 2Distr(S) is a function with ; 6= h(s) � hold (s) for all s 2 L� there exists a real vector p = (pC)C2X such that{ �[X] = p for all � 2 h(s), s 2 L{ If s 2 B n L then h(s) \ f� 2 Distr(S) : �[X] = pg = ;.{ If s 2 L and � 2 hold (s) n h(s) then �[X] 6= p.For s, s0 2 B we have s �X s0 i�8(a; hold) 2 StepClXold (B) 8(a; L; h) 2 C(a;hold) [s 2 L i� s0 2 L].We reformulate this observation as follows. Let (a1; L1; h1); : : : ; (ar; Lr; hr) be an enumer-ation of [(a;hold)2StepClXold (B) C(a;hold):Let L1i = Li, L0i = B nLi and Lb = Lb11 \Lb22 \ : : :\Lbrr if b = (b1; : : : ; br) 2 f0; 1gr. Then,B= �X = fLb : b 2 f0; 1grg n f;g:Moreover, for the new subblock L(b1;:::;br) (where b = (b1; : : : ; br)) we haveStepClX (L(b1;:::;br)) = f(ai; h0i) : i = 1; : : : ; r; bi = 1gwhere h0i : L(b1;:::;br) ! 2Distr(S) is given by h0i(s) = hi(s). (I.e. h0i = hijL(b1;:::;br) is therestriction of hi on the states of L(b1;:::;br).) Clearly, for computing the sets Lb and theirstep classes, the tuples (ai; Li; hi) where Li = B and (ai; hi) 2 StepClX (B) are not ofimportance. Therefore, we divide the tuples (ai; Li; hi) into two classes:� OldClX (B) denotes the set of tuples (ai; Li; hi) that represent an \old step class"(i.e. Li = B and (ai; hi) 2 StepClXold (B)).OldClX (B) = n(a; B; hold) 2 C(a;hold) : (a; hold) 2 StepClX (B)o� NewClX (B) the set of tuples (ai; Li; hi) that represent a \new step class" (i.e. eitherLi 6= B or (ai; hi) =2 StepClXold (B)).NewClX (B) = n(a; L; h) 2 C(a;hold) : (a; hold) 2 StepClX (B); (L; h) 6= (B; hold)o :For the test whether �[X] = �0[X] we use the following facts. Let �, �0 2 Distr(S) suchthat �[Xold] = �0[Xold] and B 2 X , Bold 2 Xold .(1) If B 2 Xold (i.e. B is a block that has not been re�ned in the last re�nement step)then �[B] = �0[B].(2) If Bold is re�ned into the subblocks B1; : : : ; Bk+1 2 X then�[Bi] = �0[Bi], i = 1; : : : ; k + 1 i� �[Bi] = �0[Bi], i = 1; : : : ; k.Because of (1), we only have to consider the \new" blocks, i.e. the blocks B 2 X n Xold .Because of (2), for computing Re�ne(X), it su�ces to consider for each block Bold 2Xold n X all subblocks B 2 X of Bold but one of the largest. These observations (1) and(2) lead to the use of a set New � X n Xoldsuch that:

136 CHAPTER 6. DECIDING BISIMILARITY AND SIMILARITYComputing the bisimulation equivalence classes in concurrent probabilistic systemsInput: a �nite action-labelled concurrent probabilistic system (S;Act ; Steps)Output: the set S= � of bisimulation equivalence classesMethod:(0) compute Xinit , New init and StepClXtrivial (B) for all B 2 Xinit(1) X := Xinit ; New := New init ;(2) While New 6= ; do begin(2.1) New 0 := ; and X 0 := ;;(2.2) For all B 2 X do(2.2.1) compute NewClX (B) and OldClX (B) with the method of Figure6.6 (page 142);(2.2.2) compute B= �X , NewB and StepClX (C) for C 2 B= �X with themethod explained on page 139;(2.2.3) New 0 := New [NewB and X 0 := X 0 [B= �X ;(2.3) X := X 0; New := New 0;(3) Return X .Figure 6.4: Algorithm for deciding bisimulation equivalence in concurrent systems(*) If Bold 2 Xold n X (i.e. the re�nement operation Re�ne(Xold) splits the block Boldinto two or more subblocks) then there exist k � 1 and B1; : : : ; Bk 2 New such that{ B1; : : : ; Bk � Bold{ Bold n (B1 [: : : [Bk) 2 X n New{ jBold n (B1 [: : : [Bk)j � jBij, i = 1; : : : ; k.Then (by (1) and (2)), if �, �0 2 Distr(S) such that �[Xold] = �0[Xold] then�[X] = �0[X] i� �[C] = �0[C] for all C 2 New .The algorithm for computing the bisimulation equivalence classes is shown in Figure 6.4,page 136.Initialization (step (0) in Figure 6.4 (page 136)): We skip the �rst re�nement stepand start with the partition Xinit = S= � where s � s0 i� act(s) = act(s0).8 Xinit canbe computed with the following method. We choose with a �xed enumeration a1; : : : ; akof Act and construct a binary tree Tree by successively inserting nodes and edges. Eachnode v is labelled by� its depth v:depth in Tree,� a subset v:actions of Act ,� the names v:left and v:right of the left and right son of v in Tree.8I.e. we deal with the initial partition Xinit = Re�ne(fSg) rather than trivial partition fSg.

6.1. COMPUTING THE BISIMULATION EQUIVALENCE CLASSES 137In the case where v does not have a left (right) son v:left (v:right) is unde�ned (?). Eachnode v of depth k is a leaf and is additionally labelled by� a subset v:states of S,� a natural number v:counter that counts the number of elements in v:states.Initially, Tree consists of its root v0 where v0:depth = 0, v0:actions = ;, v0:left =v0:right = ?. Then, for each state s 2 S, we traverse the tree starting in the rootv0. If we have reached a node v with v:depth = i < k then� if Stepsai+1(s) 6= ; then{ if v:left 6= ? then we go to v:left{ if v:left = ? then we create a node w with w:depth = i+1, w:actions = v:actions [fai+1g and w:left = w:right = ?, put v:left := w and go to w� if Stepsai+1(s) = ; then{ if v:right 6= ? then we go to v:right{ if v:right = ? then we create a node w with w:depth = i+ 1, w:actions = v:actionsand w:left = w:right = ?, put v:right := w and go to w.In both cases, when creating a leaf w (i.e. when v:depth = i = k�1), we put w:states := ;and w:counter := 0. If we have reached a leaf v (i.e. if v:depth = k) then we insert s intov:states (i.e. we put v:states := v:states [fsg) and increment v:counter . Then, the leavesof the �nal tree represent the blocks of Xinit , i.e.Xinit = fv:states : v is a leaf in Treeg:Moreover, we use the components v:counter to select some of the largest initial blocks,i.e. we choose some leaf v where v:counter is maximal and putNew init = Xinit n fv:statesg:The initial step classes are taken with respect to the \previous" partition Xtrivial = fSgand are obtained byStepClXtrivial (v:states) = f(a; Stepsajv:states) : a 2 v:actionsg :Note that � �Xtrivial �0 for all �, �0 2 Distr(S).Example 6.1.11 We consider the system of Figure 6.5 (page 138) and compute theinitial partition Xinit . We use the ordering a1 = a, a2 = b, a3 = c of Act and constructthe following tree.
B1 B2 B3 B4
s ss s s s����� HHHHjJJĴ JJĴ

�BBBN BBBN ���
 BBBN B1 = fs1; s2; s3; s4gB2 = ft1; t2; t3; t4gB3 = fwgB4 = fu1; u01; u2; u02; u002; v; v1; v2; v3; v4gWe obtain Xinit = fB1; B2; B3; B4g, New init = fB1; B2; B3g andStepClXtrivial (B1) = f(a; h1)g h1(si) = f�1ui; �ig; i = 1; 2;h1(s3) = f�1t3g; h1(s4) = f�4gStepClXtrivial (B2) = f(b; h2)g h2(ti) = f�1vig, i = 1; 2; 3; 4StepClXtrivial (B3) = f(c; h3)g h3(w) = f�1vg

138 CHAPTER 6. DECIDING BISIMILARITY AND SIMILARITYs1u1 t1v1 u01
u2 s2

t2 t4v v4v2 u02 u002
s3t3 s4

wv3
kk kk l

k k
k kk kk n n

kk k
kkba a, �1

b b
a a, �4

c
a, �2

b
12 12 12 18 38 13 23s s s���	 @@@@R @@@@R���	 ?
? ? ?? ??
������
 BBBBBBN

� JJJJJĴ? ������
 BBBBBBN

Figure 6.5:and StepClXtrivial (B4) = ;.The re�nement step (step (2) in Figure 6.4 (page 136)): As before, let X =Re�ne(Xold) be the current partition and Xold the partition of the previous re�nementstep. Moreover, New is a proper subset of X n Xold that satis�es condition (*) (see page136).Step (2.2.1) in Figure 6.4 (page 136): Let C1; : : : ; Cl be an enumeration of New . Foreach B 2 X , we compute NewClX (B) and OldClX (B) with the method sketched in Figure6.6 (page 142). We use a set Q of tuples hj; b; a; L; hi where 0 � j � l, b 2 fold ; newg,a 2 Act , L � B and h : L! 2Distr(S) is a function with h(s) � Stepsa(s) such that:� If b = old then L = B and (a; h) 2 StepClXold (B)� For all s, s0 2 L and � 2 h(s), �0 2 h(s0), �[Ci] = �0[Ci], i = 1; : : : ; j.The elements of Q can be viewed as nodes of a forest (a collection of trees) where theroots are the nodes of the form h0; old ; a; B; hold i with (a; hold) 2 StepClXold (B). The �rstcomponent j of a node hj; b; a; L; hi stands for the depth of that node. The sons of thenode hj; b; a; L; hi are of the form hj + 1; b0; a; L0; h0i where L0 � L and h0(s) � h(s) forall s 2 L0. More precisely, if hj + 1; bi; a; Li; hii, i = 1; : : : ; r, are the sons of hj; b; a; L; hithen we have: b1 = : : : = br = (new : if r � 2b : if r = 1.Moreover, if H = Ss2L h(s) and Hi = Ss2Li hi(s), i = 1; : : : ; r, then(**) fH1; : : : ; Hrg = H= �j+1X where � �j+1X �0 i� �[Cj+1] = �0[Cj+1].The nodes on the path from the root to a node of the form hj; old ; a; B; hi are the nodeshi; old ; a; B; hi, i = 0; 1; : : : ; j. The leaves are{ all nodes of the form hl; b; a; L; hi (i.e. all nodes of depth l where l = jNew j){ all nodes hj; b; a; L; hi where jLj = 1.99For these nodes, the possible splittings of the step classes of the set L are not of interest since wehave found a bisimulation equivalence class consisting of a single state.

6.1. COMPUTING THE BISIMULATION EQUIVALENCE CLASSES 139A leaf of the form hl; old ; a; B; hi represents an element of OldClX (B) (because (a; h) 2StepClXold (B)). This case corresponds to step (1.7) where the ordered balanced tree Tconstructed in step (1.2) consists of its root. Leaves of the form hj; new ; a; L; hi stand for\new" step classes.Step (2.2.2) in Figure 6.4 (page 136): Having obtained the sets NewClX (B) andOldClX (B), we derive B= �X as described on page 135 where we only consider the tuples(a; L; h) 2 NewClX (B) (rather than all tuples (a; L; h) 2 S(a;hold) C(a;hold)). We choose anenumeration (a1; L1; h1); : : : ; (ar; Lr; hr) of NewClX (B) and construct a binary tree TreeBsuch that each leaf v of depth r is labelled by the set v:states = Lv1 \ : : : \ Lvr wherev0v1 : : : vr = v is the path from the root of TreeB to v andLvi = (Li : if vi is the left son of vi�1B n Li : if vi is the right son of vi�1.The construction of this tree is similar to the initialization step. We start with the treeconsisting of its root. Then, for each state s 2 B, we traverse the tree starting in its root.If we reached a node v of depth i < r then we go to the left son v:left if s 2 Li+1 andto the right son v:right if s =2 Li+1 (possibly inserting the left or right son if necessary).If he have reached a leaf (a node v of depth r) then we insert s into the set v:states.Thus, B= �X= fv:states : v is a leafg. As in the initialization step, we use an auxiliarycomponent v:counter for the leaves such that v:counter = jv:statesj. Finally, we choosesome leaf w in TreeB where w:counter is maximal and de�neNewB = fv:states : v is a leaf in TreeB, v 6= wg:For all blocks C 2 B= �X , the step classes with respect to X (the set StepClX (C)) arethe pairs (a; hjC) where (a; L; h) 2 NewClX (B)[OldClX (B) for some L � B with C � L.Example 6.1.12 We consider the system of Figure 6.5 (page 138) and compute thebisimulation equivalence classes. The initialization step yieldsXinit = fB1; B2; B3; B4g, New init = fB1; B2; B3gStepClXtrivial (Bi) = f(ai; hi)g, i = 1; 2; 3, where a1 = a, a2 = b, a3 = c, hi(�) = Stepsai(�)and StepClXtrivial (B4) = ; (see Example 6.1.11 on page 137). Here,B1 = fs1; s2; s3; s4g, B2 = ft1; t2; t3; t4g, B3 = fwg, B4 = S n (B1 [B2 [B3).In the �rst re�nement step, for each block B 2 New init , we compute NewClXinit (B) andOldClXinit (B) with the method explained in Figure 6.6 (page 142). Here, we assume theenumeration B1 = C1, B2 = C2, B3 = C3 of New init . Let us consider the block B = B1.In step (1.2) of Figure 6.6 (page 142), for the element h0; old ; a; B1; h1i of Q, we constructan ordered balanced tree for the values�1u1[B1] = �1u2[B1] = �1t3 [B1] = �4[B1] = �1[B1] = �2[B1] = 0which yields a tree consisting of its root. Thus, in step (1.4) of Figure 6.6 (page 142),we insert the element h1; old ; a; B1; h1i into Q which { again in step (1.2) { leads to theconstruction of an ordered balanced tree for the values�1u1 [B2] = �1u2[B2] = 0; �1t3 [B2] = 1; �4[B2] = 23 ; �1[B2] = �2[B2] = 12 .

140 CHAPTER 6. DECIDING BISIMILARITY AND SIMILARITYThis tree might be of the following form.
v1 v0 v2 v3k k k k

���� AAAU AAAU v0:key = 1=2 v0:states = fs1; s2g v0:steps(si) = f�igv1:key = 0 v1:states = fs1; s2g v1:steps(si) = f�1uigv2:key = 2=3 v2:states = fs4g v2:steps(s4) = f�4gv3:key = 1 v3:states = fs3g v3:steps(s3) = f�1t3gWe get V 1 = fv2; v3g and V �2 = fv0; v1g. Thus, in step (1.4) of Figure 6.6 (page 142),we add the elementsh2; new ; a; fs1; s2g; h1;1i and h2; new ; a; fs1; s2g; h1;2ito Q where h1;1(si) = f�ig and h1;2(si) = f�1uig, i = 1; 2. In step (1.5) of Figure 6.6 (page142), the tuples (a; fs4g; v2:steps) and (a; fs3g; v3:steps) are inserted into NewClXinit (B1).Then, again in step (1.2) of Figure 6.6 (page 142), for the elements h2; new ; a; fs1; s2g; h1;1iand h2; new ; a; fs1; s2g; h1;2i of Q we construct ordered balanced trees for the values�1[B3] = �2[B3] = 0 and �1u1[B3] = �1u2 [B3] = 0 respectively. In both cases, the re-sulting tree consists of a single node; thus, in step (1.6) of Figure 6.6 (page 142), thetuples (a; fs1; s2g; h1;1) and (a; fs1; s2g; h1;2) are inserted into NewClXinit (B1). Hence, weobtain OldClXinit (B1) = ; andNewClXinit (B1) = f(a; fs1; s2g; h1;1); (a; fs1; s2g; h1;2); (a; fs3g; h03); (a; fs4g; h04)gwhere h03(s3) = f�1t3g, h04(s4) = f�4g. In step (2.2.2) of the main algorithm (Figure 6.4,page 136), we apply the method described on page 139 and construct the tree TreeB1which is of the following form. ss ss ss s sfs1; s2g fs3g fs4g
����� HHHHjHHHHj��	@@R QQQs���+AAU ���@@RThus, we obtain B1= �Xinit = ffs1; s2g; fs3g; fs4gg, NewB1 = ffs3g; fs4gg andStepClXinit (fs1; s2g) = f(a; h1;1); (a; h1;2)gStepClXinit (fsig) = f(a; h0i)g ; i = 3; 4:where h1;1, h1;2, h03 and h04 are as above.For the blocks B 2 fB2; B3; B4g, we obtain NewClXinit (Bi) = OldClXinit (B4) = ; andOldClXinit (B2) = f(b; B2; StepsbjB2)g; OldClXinit (B3) = f(c; B3; StepscjB3)g:In step (2.2.1) of the main algorithm (Figure 6.4, page 136), we apply the method ofFigure 6.6 (page 142) and obtain NewClXinit (Bi) = OldClXinit (B4) = ; andOldClXinit (B2) = f(b; B2; StepsbjB2)g, OldClXinit (B3) = f(c; B3; StepscjB3)g

6.1. COMPUTING THE BISIMULATION EQUIVALENCE CLASSES 141For all three blocks B2; B3; B4, in step (2.2.2) of the main algorithm (Figure 6.4, page136), the construction of the tree TreeBi is skipped because NewClXinit (Bi) = ;. Hence,we get Bi= �Xinit = fBig, NewBi = ; and StepClXinit (Bi) = StepClXtrivial (Bi), i = 1; 2. Insummary, the �rst re�nement step yields the partitionX = Re�ne(Xinit) = ffs1; s2g; fs3g; fs4g; B2; B3; B4gand New = fB1; B2; B3g. In the second re�nement step, all trees constructed in step(2.2.1) of the main algorithm of Figure 6.4 (i.e. in step (1.2) of method of Figure 6.6(page 142)) consist of a single node. Thus, B= �X = fBg, NewB = ; for all B 2 X . Instep (3), our algorithm returns X as the set of bisimulation equivalence classes.Complexity: Let n = jSj be the number of states, m the number of transitions, i.e. m =Ps2S jSteps(s)j. It is clear that our method can be implemented in space O(nm). Clearly,the initialization (step (0) of Figure 6.4, page 136) takes O(n � jAct j) = O(n) time as,for each state s 2 S, we traverse a tree of depth jAct j.10 In what follows, let N be thetotal number of re�nement steps (the number of executions of the loop in step (2) inFigure 6.4) and let Xi be the partition which we obtain in the (i+ 1)-st re�nement step,i.e. X0 = Xinit Xi+1 = Re�ne(Xi), i = 0; 1; : : : ; N � 1, XN = S= �. Let Cost i(2:2:1) be thecost for the executions of step (2.2.1) of the main algorithm (Figure 6.4, page 136) wherewe range over all blocks B 2 Xi, i = 0; 1; : : : ; N � 1 and letCost (2:2:1) = N�1Xi=0 Cost i(2:2:1)be the total cost caused by step (2.2.1). Similarly, we de�ne Cost (2:2:2) to be the totalcost that arises from the executions of step (2.2.2) of Figure 6.4 where we range over allre�nement steps. We show in Section 6.3 (Lemma 6.3.4 (page 155) and Lemma 6.3.6(page 157)): Cost (2:2:1) = O(mn(logm+ logn)); Cost (2:2:2) = O(mn):Thus, we obtain the time complexity O(mn(logm+logn)) for computing the bisimulationequivalence classes.

10Recall that we assume Act to be �xed.

142 CHAPTER 6. DECIDING BISIMILARITY AND SIMILARITY
Computing NewClX (B) and OldClX (B)Input:{ a partition X and B 2 X{ an enumeration C1; : : : ; Cl of New{ StepClXold (B) (the step classes of B with respect to the previous partition)Method:(0) We set NewClX (B) := ;, OldClX (B) := ; andQ := nh0; old ; a; B; holdi : (a; hold) 2 StepClXold (B)o ;(1) While Q 6= ; do(1.1) Choose some hj; b; a; L; hi 2 Q and set Q := Q n fhj; b; a; L; hig;(1.2) Construct an ordered balanced tree T for p� = �[Cj+1], � 2 h(s), s 2 L whereeach node v is labelled by a record (v:key; v:states; v:steps) such that{ v:states = fs 2 B : v:key = �[Cj+1] for some � 2 h(s)g,{ v:steps is the function that assigns to each state s 2 v:states the setv:steps(s) = f� 2 h(s) : v:key = �[Cj+1]g;We de�ne: V �2 := fv : v node in T with jv:statesj � 2g;V 1 := fv : v node in T with jv:statesj = 1g;(1.3) If T consists of two or more nodes then b0 := new else b0 := b;(1.4) If j < l then Q := Q [nhj + 1; b0; a; v:states; v:stepsi : v 2 V �2o;(1.5) If j < l ^ b0 = new thenNewClX (B) := NewClX (B) [n(a; v:states; v:steps) : v 2 V 1o ;(1.6) If j = l ^ b0 = new thenNewClX (B) := NewClX (B) [f(a; v:states; v:steps) : v node in Tg;(1.7) If j = l ^ b0 = old then OldClX (B) := f(a; B; v:steps)g where v is the root ofT ;(2) Return NewClX (B) and OldClX (B).Figure 6.6:

6.2. COMPUTING THE SIMULATION PREORDER 1436.2 Computing the simulation preorderWe present an algorithm that computes the simulation preorder of a �nite action-labelledconcurrent probabilistic system (S;Act ; Steps). The schema of our algorithm is as inthe non-probabilistic case [HHK95]: We start with the trivial preorder R = S � S andthen successively remove those pairs (s; s0) from R where s has a transition that cannot be\simulated" by a transition of s0. This schema is sketched in Figure 6.7 (page 144). In thenon-probabilistic case, s vR s0 i� for each transition s a�!t there is a transition s0 a�!t0 with(t; t0) 2 R. For (S;Act ; Steps) to be an action-labelled concurrent probabilistic systemand s, s0 2 S, the relation vR is given by: s vR s0 i� for each transition s a�!� there is atransition s0 a�!�0 with � �R �0.11 In the fully probabilistic case, s vR s0 is de�ned as inDe�nition 3.4.16 (page 60), i.e. s vR s0 i� either s is terminal or P(s; �) �R0 P(s0; �) whereR0 = fha; ti; ha; t0i) : (t; t0) 2 R; a 2 Actg.For non-probabilistic systems, the schema of Figure 6.7 can be implemented in timeO(mn) [HHK95]. It seems to be hard to modify the method of [HHK95] for the probabilis-tic case because it successively removes those pairs (s; s0) of R where s is an a-predecessorof some state t (in the sense that there is a transition s a�!t) and s0 does not have ana-successor in ft0 : (t; t0) 2 Rg. The problem in the probabilistic case is that the in-duced predecessor/successor relations on states12 does not give enough information. Eventhe probabilities for the a-successors/predecessors of the states do not contain the neces-sary information for computing the simulation preorder since there might be non-similarstates that cannot be distinguished with these predecessor/successor relations (cf. Remark3.4.11, page 57).In the probabilistic case, we implement the schema of Figure 6.7 in such a way that thetest whether s vR s0 is done with the help of a method for deciding whether � �R �0 forsome distributions �, �0 on a �nite set X and a binary relation R on X. We show thatthe question whether � �R �0 can be reduced to a maximum
ow problem in a suitablechosen network.We proceed in the following way. In Section 6.2.1, we explain how to test whether � �R �0via a maximum
ow problem. Then, in Section 6.2.2 we describe our algorithm forconcurrent probabilistic systems while Section 6.2.3 deals with fully probabilistic systems.6.2.1 The test whether � �R �0We show that the question whether two distributions are related via a weight function(i.e. whether � �R �0) can be reduced to a maximum
ow problem in a suitable chosennetwork.Networks and their maximum
ow: We brie
y recall the basic de�nitions of networks.For further details about networks and maximum
ow problems see e.g. [Even79]. Anetwork is a tuple N = (N;E;?;>; c) where (N;E) is a �nite directed graph (i.e. N is aset of nodes, E � N � N a set of edges) with two speci�ed nodes ? (the source) and >(the sink) and a capacity cap, i.e. a function cap : E ! IR�0 which assigns to each edge11Here, �R is the weight-function-based relation de�ned as in Section 2.2, page 30.12E.g. in concurrent probabilistic systems, s is an a-predecessor of t i� �(t) > 0 for some � 2 Stepsa(s)

144 CHAPTER 6. DECIDING BISIMILARITY AND SIMILARITYComputing the simulation preorderInput: a �nite (probabilistic or non-probabilistic) system with state space SOutput: the simulation preorder vsim on SMethod:R := S � S;While there exists (s; s0) 2 R with s 6vR s0 do R := R n f(s; s0)g;Return R.Figure 6.7: General schema for computing the simulation preorder(v; w) 2 E a non-negative real number cap(v; w). A
ow function f for N is a functionwhich assigns to each edge e a real number f(e) such that:{ 0 � f(e) � cap(e) for all edges e.{ Let in(v) be the set of incoming edges to node v and out(v) the set of outgoing edgesfrom node v. Then, for each node v 2 N n f?;>g:Xe2in(v) f(e) = Xe2out(v) f(e)The
ow Flow(f) of f is given byFlow(f) = Xe2out(?) f(e) � Xe2in(?) f(e):The maximum
ow in N is the supremum (maximum) over the values Flow(f) where franges over all
ow functions in N . Algorithms to compute the maximum
ow are givene.g. in [FoFu62, Dini70, MPM78, CHM90].The test whether � �R �0: Let S be a �nite set, R a subset of S � S and let �,�0 2 Distr(S). Let S = ft : t 2 Sg where t are pairwise distinct \new" states (i.e. t =2 S).We choose new elements ? and > not contained in S [S, ? 6= >. We associate with(�; �0) the following network N (�; �0; R). The nodes are the elements of S [S and ? (thesource) and > (the sink), i.e. N = f?;>g [S [S. The edges areE = f(s; t) : (s; t) 2 Rg [f (?; s) : s 2 S g [f (t;>) : t 2 S g:I.e. the underlying graph (N;E) is of the form
? >sn

s2s1 sn
s2s1... ...k kkk

k
mm
m�������*�������:HHHHHHHj
HHHHHHHjXXXXXXXz�������*

-
-�������*ZZZZZZZ~�������:ZZZZZZZ~XXXXXXXz

6.2. COMPUTING THE SIMULATION PREORDER 145where S = fs1; : : : ; sng and where the arrows between the nodes si and the nodes sjdescribe the relation R in the sense that there is an arrow from si to sj i� (si; sj) 2 R.The capacities cap(e) 2 [0; 1] are given by:cap(?; s) = �(s), cap(t;>) = �0(t), cap(s; t) = 1.As in(?) = ; we get Flow(f) = Xs2Supp(�) f(?; s)for each
ow function f in N (�; �0; R).Lemma 6.2.1 � �R �0 i� the maximum
ow in N (�; �0; R) is 1.Proof: First we assume that � �R �0. For each
ow function f in N (�; �0; R):Flow(f) = Xs2S f(?; s) � Xs2S cap(?; s) = Xs2S �(s) = 1:Let weight be a weight function for (�; �0) with respect to R. We de�ne a
ow functionf as follows: f(?; s) = �(s), f(t;>) = �0(t) and f(s; t) = weight(s; t). Then,Flow(f) = Xs2Supp(�) f(?; s) = Xs2Supp(�) �(s) = 1:Hence, the maximum
ow of N (�; �0; R) is 1.Next, we assume that the maximum
ow is 1. Let f be a
ow function with Flow(f) = 1.Since f(?; s) � cap(?; s) = �(s) and sinceXs2S f(?; s) = Flow(f) = 1 = Xs2S �(s)we get f(?; s) = �(s) for all s 2 S. Similarly, we get f(t;>) = �0(t) for all t 2 S. Letweight(s; t) = f(s; t) for all (s; t) 2 R and weight(s; t) = 0 if (s; t) =2 R. Then,Xt2S weight(s; t) = Xt2S f(s; t) = f(?; s) = �(s);and similarly, Ps2S weight(s; t) = �0(t). Hence, weight is a weight function for (�; �0)with respect to R. Thus, � �R �0.Lemma 6.2.1 (page 145) yields a method for deciding whether � �R �0. We constructthe network N (�; �0; R) and compute the maximum
ow with well-known methods (seeFigure 6.8, page 146).Example 6.2.2 Let S = ft; ug, R = f(t; t); (u; u); (u; t)g and �, �0 2 Distr(S) with�(t) = 13 ; �(u) = 23 ; �0(t) = �0(u) = 12 :The associated network N (�; �0; R) is of the following form.? >tu utk kkk mm���*HHHj -- HHHj���*�������*1323 1212

146 CHAPTER 6. DECIDING BISIMILARITY AND SIMILARITYTest whether � �R �0Input: a nonempty �nite set S, distributions �, �0 2 Distr(S) and R � S � SOutput: \Yes" if � �R �0, \No" otherwise.Method:compute the maximum
ow F of the network N (�; �0; R);if F < 1 then return \No" else return \Yes".Figure 6.8: Test whether � �R �0The
ow function f withf(?; t) = f(t; t) = 13 , f(?; u) = 23 , f(u; t) = 16 , f(u; u) = f(u;>) = f(t;>) = 12yields the maximum
ow Flow(f) = 1. Thus, � �R �0.To our knowledge, the best known algorithm for computing the maximum
ow in anetwork is those of [CHM90] which has time and space complexity O(n3= logn) andO(n2) respectively where n is the number of nodes in the network. Hence:Lemma 6.2.3 The test whether � �R �0 can be done in time O(n3= logn) and spaceO(n2) where n = jSj.Remark 6.2.4 Another possibility for testing whether � �R �0 is to consider the follow-ing linear inequality system with the variables xs;t, (s; t) 2 R:Xt2S(s;t)2R xs;t = �(s) for all s 2 SXs2S(s;t)2R xs;t = �0(s) for all t 2 Sand xs;t � 0 for all (s; t) 2 R. Then, � �R �0 i� the system above has a solution. Inthat case, the solution (xs;t)(s;t)2R yields a weight function for (�; �0) with respect to R.The above system has jRj = O(n2) variables and jRj + 2jSj = O(n2) equations. To ourknowledge, there is no method for solving inequality systems of this type that beat thetime complexity O(n3= logn).6.2.2 The concurrent caseIn the sequel, (S;Act ; Steps) is a �nite action-labelled concurrent probabilistic system. IfR is a binary relation on S and s, s0 2 S thens vR s0 i� whenever s a�!� then there is some s0 a�!�0 with � �R �0.The algorithm for computing the simulation preorder is sketched in Figure 6.9 (page148). We �rst compute the set R = f(s; s0) 2 S � S : act(s) � act(s0); s 6= s0g: If

6.2. COMPUTING THE SIMULATION PREORDER 147R = f(s; s0) : s 6= s0g then all states are similar and we are done. In what follows, wesuppose that R does not contain all pairs (s; s0), s 6= s0. We organize R as a queue Q wherethe ordering in the initial queue is arbitrary. We use the usual operators Front(Q) whichyields the �rst element of Q, Remove(Q) which removes the �rst element of Q (both underthe assumption that Q is not empty) and Add(Q; x) which adds x at the end of Q. For(s; s0) 2 R and (a; �) 2 Steps(s), we use a set Sim(s;a;�)(s0) of distributions �0 2 Stepsa(s0)that are still candidates to match the transition s a�!�, i.e. � 6�R �0 is not yet detected.Initially, we deal with Sim(s;a;�)(s0) = Stepsa(s0). A distribution �0 2 Stepsa(s0) is removedfrom Sim(s;a;�)(s0) just in the moment where � 6�R �0 is detected. Then, � 6�R �0 in allfollowing iterations. We represent the set Sim(s;a;�)(s0) as a list consisting of (pointers to)elements of Stepsa(s0). For these lists Sim(s;a;�)(s0), we use the operations First(�) whichyields the �rst element of (�) and Next(�) which removes the �rst element of (�), i.e. thelist pointer is shifted to the second element.In what follows, we refer to R as the set of pairs (s; s0) that are contained in Q. By aniteration, we mean the execution of steps (1) and (2) (including the substeps (2.1)-(2.6)).We say a pair (s; s0) is investigated in some iteration if it is those element of Q that ischosen in the else-branch of step (1).Initially, we de�ne last to be the last element ofQ. In all iterations, last is either unde�ned(last = ?) or the left most element (s; s0) of Q such that { after the last investigationof (s; s0) { no element (t; t0) is removed from Q. Hence, if we investigate (s; s0) where(s; s0) = last and obtain s vR s0 then we have t vR t0 for all pairs (t; t0) 2 R. Thus,R is the simulation preorder (cf. step (2.3)). If s 6vR s0 for the element (s; s0) which isinvestigated then we set last = ? (step (2.5)) and \wait" for the next pair (t; t0) in Qwhich we do not remove from Q (step (2.4.2)).

148 CHAPTER 6. DECIDING BISIMILARITY AND SIMILARITY
Computing the simulation preorderInput: a �nite action-labelled concurrent probabilistic system (S;Act ; Steps)Output: the simulation preorder vsimMethod:(0) [Initialization](0.1) Q := ;;(0.2) For all (s; s0) 2 S � S with s 6= s0 and act(s) � act(s0) do(0.2.1) Add(Q; (s; s0));(0.2.2) last := (s; s0);(0.2.3) For all (a; �) 2 Steps(s) do Sim(s;a;�)(s0) := Stepsa(s0);(1) If Q = ; then go to (3) else begin (s; s0) := Front(Q); Remove(Q); end;(2) For all (a; �) 2 Steps(s) do(2.1) sim := false;(2.2) While :sim and Sim(s;a;�)(s0) 6= ; do(2.2.1) �0 := First(Sim(s;a;�)(s0));(2.2.2) If � �R �0 then sim := true else Next(Sim(s;a;�)(s0));(2.3) If sim and last = (s; s0) then go to (3);(2.4) If sim and last 6= (s; s0) then(2.4.1) Add(Q; (s; s0));(2.4.2) If last = ? then last := (s; s0);(2.5) If :sim then last := ?;(2.6) go to (1);(3) Return R [f(s; s) : s 2 Sg where R is the set of pairs that are contained in Q.Figure 6.9: Algorithm for computing the simulation preorder

6.2. COMPUTING THE SIMULATION PREORDER 149Example 6.2.5 We apply our algorithm for computing the simulation preorder (Figure6.9, page 148) to the system shown in Figure 6.10 (page 149). In the initialization step(step (0)) we obtain the queue Q containing the pairs{ (si; sj), (si; v), (v; si), (v; v0), i; j = 1; 2, i 6= j, v, v0 2 fv1; v2; wg, v 6= v0{ (u; u0), u, u0 2 U , u 6= u0{ (t1; t2), (t2; t1){ (u; t1), (u; si), (u; v), u 2 U , v 2 fv1; v2; wg, i = 1; 2.Here, U = fuk1; uh2 : k = 0; : : : ; 4; h = 0; 1; 2g denotes the set of terminal states. The pairss1u01 t1
v1u21 u31 u41 u11

s2t2 v2u12u02w
u22

�
���
�� �
��
�
���
�� �
��

�
�� �
��
�
���
�� �
���
���
���
��

�
��

s
s s

s
�������� HHHHHHHj����	 @@@R

?

?����	 @@@R
? ?

	� �? 	� �?������+ @@@@R����� AAAAU
����� AAAAU

?
#"-a

b c
a

a; � a
a aa a; � b c14 34

13 23 38 58
12 12

Figure 6.10:(s2; s1), (si; w), (w; vj), (si; vj), i, j = 1; 2, are removed during their �rst investigation.For instance:� For the pair (w; v1) the algorithm computes the maximum
ow of the network? >wu22 u21�
�� �
���
���
�� �
�����*HHHj �������: -3858 1which is 5=8. Thus, there is no transition of v1 that can \simulate" the transitionw a�!�.� For the pair (s2; s1) the algorithm tries to �nd a transition of s1 which can \simulate"the transition s2 a�!�1t2. As � 6�R �1t2 for all � 2 Stepsa(s1) = f�1u01; �1s1; �g the pair(s2; s1) is removed from R.The �rst investigation of (s1; s2) yieldsSim(s1;a;�1u01)(s2) = f�1t2 ; �1s2gSim(s1;a;�1s1)(s2) = f�1s2g; Sim(s1;a;�)(s2) = f�1t2g

150 CHAPTER 6. DECIDING BISIMILARITY AND SIMILARITYas � 6�R �1s2 and �1s1 6�R �1t2 .We suppose that initially the pair (t2; t1) is the last element of Q (i.e. last = (t2; t1) afterthe initialization step). Then, the �rst investigation of (t2; t1) yields t2 6vR t1 (as (w; v1)is already removed from Q). After the removement of (t2; t1) we have x vR y for all(x; y) 2 R. Hence, if (x; y) is the element of Q which is investigated immediately after theremovement of (t2; t1) then the algorithm sets last = (x; y) after the (second) investigationof (x; y). After investigating all remaining elements of Q once more, we reach again thepair (x; y) = last . Thus, the condition of step (2.3) is ful�lled and the algorithm returnsthe simulation preorder which consists of the following pairs.{ (s1; s2), (t1; t2){ (vi; sj), (w; sj), (vi; w), i, j = 1; 2{ (u; x), u 2 U , x 2 fs1; s2; t1; t2; v1; v2; wgand all pairs (x; x), x 2 S.Complexity: Let n = jSj be the number of states and m the number of transitions,i.e. m = Ps2S jSteps(s)j. For s 2 S and a 2 Act , let ms = jSteps(s)j, ma;s = jStepsa(s)j.(Then, m = Ps2Sms.)We suppose a representation of (S;Act ; Steps) which contains for each state s 2 S and eachaction a 2 Act a pointer to a list whose elements represent the distributions � 2 Stepsa(s).Then, the initialization step (i.e. the computation of the initial set R, the sets Sim(s;a;�;s0)and last) takes O(n2 � jAct j) = O(n2) time. We suppose that step (2.2.2) is executed N -times. Then, the time complexity of our algorithm is O(N � n3= logn) if the test whether� �R �0 is done by computing the maximum
ow in N (�; �0; R) with the algorithm of[CHM90]. We show that N � mn3 +m2.13If in step (2.3) the condition sim ^ last = (s; s0) is ful�lled, i.e. t vR t0 for all (t; t0) 2 R,then we reach step (3) where the algorithm halts. Hence, at most after n2 iterationseither some pair (s; s0) is removed from R or the algorithms halts. Thus, each pair (s; s0)is investigated at most n2-times. For each pair (s; s0) and (a; �) 2 Steps(s), there areat most ma;s0 unsuccessful attempts to �nd �0 2 Stepsa(s0) with � �R �0 (since as soonas � 6�R �0 is detected �0 is removed from Sim(s;a;�)). Ranging over all iterations where(s; s0) is investigated and for �xed (a; �) 2 Steps(s), step (2.2.2) is executed at mostN(s;a;�;s0)-times where N(s;a;�;s0) = n2 +ma;s0 : We obtainN � Xs2S Xa2Act X�2Stepsa(s) Xs02S N(s;a;�;s0) � Xs2S X(a;�)2Steps(s) (n3 +m) = mn3 +m2:The space complexity is O(mn+n2) as the representation of the transition relation takesO(mn) space, the representation of R (i.e. the queue Q) O(n2) space. For each of thelists Sim(s;a;�)(s0) we need O(ma;s0) space. Summing up over all s0, a, s, we needO0@ Xs2S Xa2Act Xs02S ma;s0 1A = O(mn)space for the representation of the lists Sim(s;a;�)(s0). We obtain:13Intuitively, the number of unsuccessful tests whether � �R �0 is bounded by m2 while mn3 is anupper bound for the number of successful tests whether � �R �0.

6.2. COMPUTING THE SIMULATION PREORDER 151Theorem 6.2.6 In concurrent probabilistic systems, the simulation preorder can be com-puted in time O((mn6 +m2n3)= logn) and space O(mn + n2) where n is the number ofstates and m the number of transitions.The following remark (Remark 6.2.7) shows that each algorithm for computing the simu-lation preorder which is based on the schema sketched in Figure 6.7 (page 144) and whichtests whether s vR s0 via the condition(*) 8 s a�!� 9 s0 a�!�0 : � �R �0has to test whether � �R �0 for
(m2) pairs (�; �0).14 Thus, for the worst case complexitythe number of unsuccessful tests whether � �R �0 in step (2.2.2) cannot be reduced.However, it might be possible to improve the algorithm, e.g. by replacing (*) by a simplercondition or by reducing the number of successful tests in step (2.2.2).Remark 6.2.7 Let (S;Act ; Steps) be an action-labelled concurrent probabilistic systemwhere S = fs0; : : : ; skg [fs; s0g, si vsim sj i� i � j and jSteps(si)j � 1, i = 0; : : : ; k.15Moreover, we suppose that there is some action a such that:- Stepsb(s) = Stepsb(s0) = ; for all b 6= a- If � 2 Stepsa(s), �0 2 Stepsa(s0) then there is no weight function for (�; �0) with respectto the simulation preorder vsim.Then, for all pairs (�; �0) 2 Stepsa(s)�Stepsa(s0) we have to test whether � �R �0. Sincem = ms +ms0 + k we get for �xed k:
(ms �ms0) =
(m2). Thus, the number of testswhether � �R �0 is
(m2).Dealing with a reactiv system, we have N(s;a;�;s0) � n2 and N � jAct j �n4 (where N is thenumber of tests whether � �R �0) We obtain:Theorem 6.2.8 In reactive systems, the simulation preorder can be computed in timeO(n7= logn) and space O(n2) where n is the number of states.6.2.3 The fully probabilistic caseIn what follows, we �x a �nite action-labelled fully probabilistic system (S;Act ;P). Recallthat s vR s0 i� either s is terminal or P(s; �) �R0 P(s0; �) whereR0 = fha; ti; ha; t0i) : (t; t0) 2 R; a 2 Actg(see De�nition 3.4.16, page 60). For s, s0 2 S and R � S � S we de�ne N (s; s0; R) to bethe network (N;E; cap) whereN = f?;>g [Act � (S [S), S = ft : t 2 SgE = f(?; ha; ti); (ha; ti;>) : t 2 S; a 2 Actg [f(ha; ti; ha; ui) : (t; u) 2 Rgcap(?; ha; ti) = P(s; a; t), cap(ha; ti;>) = P(s0; a; t), cap(ha; ti; ha; ui) = 1.14Here,
(�) denotes asymptotic lower bounds.15E.g. Steps(s0) = ; and Steps(si) = f(a; �i)g where �i(s0) = 1=i and �i(si) = 1� 1=i.

152 CHAPTER 6. DECIDING BISIMILARITY AND SIMILARITYSimilarly to Lemma 6.2.1 (page 145) it can be shown thats vR s0 i� either s is terminal or the maximum
ow in N (s; s0; R) is 1.Thus, the simulation preorder of a fully probabilistic system can be computed by thefollowing method. We start with the preorderR = f(s; s0) 2 S � S 0 : if s0 is terminal then s is terminalg:As long as there is a pair (s; s0) 2 R where s 6vR s0 we remove (s; s0) from R.16 Thismethod can be implemented similar to the one proposed in Section 6.2 (Figure 6.9, page148). The time complexity is as in the reactive case. We obtain:Theorem 6.2.9 In fully probabilistic systems, the simulation preorder of can be computedin time O(n7= logn) and space O(n2) where n is the number of states.In many applications, one wants only to give lower and upper bounds on the preoba-bilities of an acceptable system behaviour rather than the exact probabilities. Jonsson& Larsen [JoLa91] de�ne a notion of \satisfaction relation" that relates the states of agiven fully probabilistic system and the states of a fully probabilistic speci�cation systemwhich prescribes intervals of allowed probabilities. Note that in contrast to [JoLa91] wedeal with action-labelled systems while [JoLa91] deals with systems where the states arelabelled by atomic propositions. We modify the de�nitions of [JoLa91] as follows.De�nition 6.2.10 [Action-labelled fully probabilistic speci�cation systems] Anaction-labelled fully probabilistic speci�cation system is a tuple (S;Act ;P) where S is a�nite set of states, Act a �nite set of actions and P : S � Act � S ! 2[0;1] is a functionsuch that, for all s, t 2 S and a 2 Act, P(s; a; t) is a closed interval contained in [0; 1].De�nition 6.2.11 [The satisfaction relation sat] Let (S;Act ;P) be a �nite action-labelled fully probabilistic system and (S;Act ;P) an action-labelled fully probabilistic spec-i�cation system. If R � S�S and s 2 S, s 2 S then we de�ne the relation satR � S�Sas follows: s satR s i� either s is terminal or there exsits a weight function for (s; s) withrespect to R, i.e. a function weight : S � Act � S ! [0; 1] such that for all a 2 Act andt 2 S, t 2 S:1. If weight(t; a; t) > 0 then (t; t) 2 R.2. Xu2S weight(t; a; u) = P(s; a; t); Xu2S weight(u; a; t) 2 P(s; a; t):A satisfaction relation for (S;Act ;P) and (S;Act ;P) is a binary relation R � S � Ssuch that s satR s for all (s; s) 2 R. We write s sat s0 i� (s; s) is contained in somesatisfaction relation for (S;Act ;P) and (S;Act ;P).The relation sat � S � S can be computed similar to the way in which we compute thesimulation preorder vsim of a fully probabilistic system; the only di�erence being the useof networks with lower and upper bounds, see e.g. [Even79]. We start with the relationR = S � S and successively remove those pairs (s; s) from R where :(s satR s). For16The test s 6vR s0 can be done by computing the maximum
ow in N (s; s0; R).

6.3. PROOFS 153the test whether s satR s we compute the maximum
ow in the network N (s; s; R) =(N;E; capl; capu) where capl, capu are functions that assign to each edge e 2 E the lowerbound capl(e) and upper bound capu(e) of the possible
ow through e and whereN = f?;>g [Act � (S] S)E = f(?; ha; ti); (ha; ui;>) : t 2 S; a 2 Act ; u 2 Sg [f(ha; ti; ha; ui) : (t; u) 2 Rgcapl(?; ha; ti) = capl(ha; ti; ha; ui) = 0; capl(ha; ti;>) = min P(s; a; t)capu(?; ha; ti) = P(s; a; t); capu(ha; ti;>) = max P(s; a; t);capu(ha; ti; ha; ui) = 1:Similarly to Lemma 6.2.1 (page 145), s satR s i� either s is terminal or the maximum
ow in N (s; s; R) is 1. The problem of �nding the maximum
ow in a network with lowerand upper bounds can be reduced to the computation of the maximum
ow in a \usual"network of the same asymptotic size (see e.g. [Even79]). Hence:Theorem 6.2.12 For a �nite action-labelled fully probabilistic system (S;Act ;P) anda �nite action-labelled fully probabilistic speci�cation system (S;Act ;P), the satisfactionrelation sat � S�S can be computed in time O((n+n)7= log(n+n)) and space O((n+n)2)where n = jSj and n = jSj.6.3 ProofsThis section completes the proof of Theorem 6.1.8 (page 134) by showing that the totalcost Cost (2:2:1) of step (2.2.1) and Cost (2:2:2) of step (2.2.2) in the algorithm for comutingthe bisimulation equivalence classes with the method sketched in Figure 6.4 (page 136)are O(mn(logm+ logn)) and O(mn) respectively.Lemma 6.3.1 Let X be a nonempty �nite set and (X0; : : : ;Xr) a sequence of partitionson X such that Xi is �ner than Xi�1, i = 1; : : : ; r. Then,rXi=0 jX 0i j � 2(jXj � 1)where X 0i = Xi n Xi�1, i = 0; : : : ; r, and X�1 = fXg.Proof: Let KX be the set of �nite sequences X = (X0; : : : ;Xr) of partitions of X suchthat r � 0 and Xi is �ner than Xi�1, i = 0; : : : ; r. If X = (X0; : : : ;Xr) 2 KX then wede�ne KX = Pi jX 0i j where X 0i = Xi n Xi�1, i = 0; : : : ; r. We setKX = maxnKX : X 2 KXo :We show by induction on jXj that KX � 2(jXj � 1). The case jXj = 1 is clear. LetjXj � 2. By induction hypothesis, KB � 2jBj � 2 for all nonempty proper subsets B

154 CHAPTER 6. DECIDING BISIMILARITY AND SIMILARITYof X. Clearly, for each sequence X = (X0; : : : ;Xr) 2 KX : If X 0i = ;, i = 0; : : : ; r, thenKX = 0. Otherwise we may suppose w.l.o.g. that X 00 6= ;. If r = 0 thenKX = jX 00j � jXj � 2(jXj � 1):Now we assume that X 00 6= ; and r � 1. Then,(*) XB2X 00 jBj � jXj; jX 00j � 2:For B 2 X 00, let XB = (XB1 ; : : : ;XBr) where XBi = fC 2 Xi : C � Bg. Then, XB 2 KBand X 0i = SB2X 00(XBi n XBi�1), i = 1; : : : ; r. By induction hypothesis,KXB � KB � 2jBj � 2:Hence, by (*): KX = jX 00j + XB2X 00KXB � jX 00j + 2 � XB2X 00 jBj � 2 � jX 00j� 2jXj � jX 00j � 2jXj � 2:Thus, KX � 2(jXj � 1).Lemma 6.3.2 Let X be a nonempty �nite set and (X0; : : : ;Xr) a sequence of partitions onX such that Xi is �ner than Xi�1, i = 1; : : : ; r. Let X�1 = fXg. For each i 2 f0; : : : ; rg,let Yi be a proper subset of Xi n Xi�1 such that:(*) For each C 2 Xi�1 n Xi there is some A 2 Xi n Yi with A � C, and jBj � jAj for allB 2 Yi with B � C.Then, rXi=0 jYij � 2(jXj � 1) and rXi=0 XB2Yi jBj � jXj log jXj:Proof: By Lemma 6.3.1 (page 153):Xi jYij � Xi jXi n Xi�1j � 2(jXj � 1):We show by induction on jXj that each element x 2 X is contained in SB2Yi B for atmost log jXj indices i 2 f0; : : : ; rg. This yieldsrXi=0 XB2Yi jBj = Xx2X Xi2I(x) 1 � Xx2X log jXj = jXj log jXjwhere I(x) = f0 � i � r : x 2 B for some B 2 Yig.We have to show that jI(x)j � log jXj for all x 2 X. First we observe that (*) yieldsjBj � jXj=2 for all B 2 Y0[: : :[Yr. If jXj = 1 then there is nothing to show since Yi = ;for all i. Let jXj � 2 and x 2 X. We may suppose that I(x) 6= ;, i.e. x 2 Si SB2Yi B.

6.3. PROOFS 155Let i be the smallest index � 0 such that x 2 B for some B 2 Yi (i.e. i = min I(x)). Byinduction hypothesis, jfi+ 1; : : : ; rg \ I(x)j � log jBj:Since jBj � jXj=2 we get jI(x)j � 1 + log jBj = log(2jBj) � log jXj.As before, we assume (S;Act ; Steps) to be a �nite action-labelled concurrent proba-bilistic system. n = jSj denotes the number of states, m the number of transitions,i.e. m = Ps2S jSteps(s)j. For a 2 Act , ma is the number of a-transitions, i.e. ma =Ps2S jStepsa(s)j. (Then, m = Pa2Act ma.) Recall that we assume Act to be �xed. Hence,we treat jAct j as a constant.Let X0 = Xinit ;X1; : : : ;XN be the sequence of partitions that are obtained by our algorithm(Figure 6.4, page 136). I.e.X0 = Xinit , Xi = Re�ne(Xi�1), i = 0; : : : ; N � 1, and XN = S= �where X�1 = Xtrivial = fSg. Let New i denote the set New in the (i + 1)-st re�nementstep. I.e. New0 = New init andNew i = [B2Xi�1 NewB; i = 1; : : : ; N � 1:Let Ci1; : : : ; Cili be the enumeration of New i and let C1; : : : ; Cl be the sequenceC01 ; : : : ; C0l0; C11 ; : : : ; C1l1 ; C12 ; : : : ; C2l2 ; : : : ; CN�11 ; : : : ; CN�1lN�1 :Lemma 6.3.3 We have l � 2(n� 1) andlXi=1 jCij � n logn:Proof: We consider the set X = S and the partitions X0 = Xinit ;X1; : : : ;XN of X.Then, New i is a proper subset of Xi nXi�1 such that for each C 2 Xi�1 nXi there is someA 2 Xi n New i with A � C and jBj � jAj for all B 2 New i where B � C (cf. condition(*) on page 136). Lemma 6.3.2 (page 154) yields:l = N�1Xi=0 jNew ij � 2(n� 1)and lXi=1 jCij = N�1Xi=0 XB2New i jBj � n logn(where we deal with Yi = New i.)Lemma 6.3.4 Ranging over all re�nement steps, the executions of step (2.2.1) in Figure6.4 on page 136 (i.e. the computations of NewCl�(�) and OldCl�(�) with the method ofFigure 6.6, page 142) take O(mn(logm+ logn)) time.

156 CHAPTER 6. DECIDING BISIMILARITY AND SIMILARITYProof: It su�ces to show that, ranging over all blocks B 2 X0 [: : : [XN�1, theconstruction of the ordered balanced trees in step (1.2) of Figure 6.6 (page 142) takesO(mn(logm + logn)) time.For each i 2 f1; : : : ; lg, we have to compute the probabilities �[Ci], � 2 Sa;s Stepsa(s). For�xed i and �, the computation of �[Ci] takes O(jCij) time. Summing up over all distribu-tions �, for �xed i, the computation of the values �[Ci] takes O(jCijm) time. Summingup over all blocks Ci and using Lemma 6.3.3 (page 155), we get the time complexityO(mn logn) for the computation of the values �[Ci], i = 1; : : : ; l, � 2 Sa;s Stepsa(s).For each i 2 f1; : : : ; lg, we construct an ordered balanced tree for the values �[Ci], � 2 Hand H is of the form H = Ss2L h(s) for some tuple (a; L; h). In that case, we speak aboutthe (i; H)-execution of step (1.2) in Figure 6.6 (page 142). Let Exec(i) be the set of allsets H for which there exists an (i; H)-execution of step (1.2) in Figure 6.6. Then:{ If H1, H2 2 Exec(i) then H1 = H2 or H1 \H2 = ;.{ For �xed i and H, there is at most one (i; H)-execution.Let T(i;H) be the ordered balanced tree which is constructed in the (i; H)-execution. IfjT(i;H)j denotes the number of nodes in T(i;H) then the (i; H)-execution causes the costO(K(i;H)) where K(i;H) = jHj log �jT(i;H)j+ 1�(and where the cost for computing the values �[Ci], � 2 H, are neglected). The total costof all executions of step (1.2) in Figure 6.6 are O(K) whereK = lXi=1 XH2Exec(i) K(i;H) = lXi=1 XH2Exec(i) jHj log �jT(i;H)j+ 1� :We show thatK � 2nm logm. Exec(i+1) consists of pairwise disjoint sets H 0 � Distr(S),each of them contained in some H 2 Exec(i) (cf. condition (**) on page 138). For i < lwe de�ne Split(i; H) = fH 0 : H 0 2 Exec(i + 1); H 0 � Hg:Then, Exec(i+ 1) = SH2Exec(i) Split(i; H). Hence,(I) K = XH2Exec(1) K 0(1;H)where K 0(l;H) = K(l;H) and, for i = 1; 2; : : : ; l � 1,K 0(i;H) = jHj log �jT(i;H)j+ 1� + XH02Split(i;H) K 0(i+1;H0):By induction on i we show that(II) K 0(Cl�i;H) � (i+ 1)jHj log(jHj+ 1) for all H 2 Exec(l � i).In the basis of induction (i = 0) we have jT(l;H)j � jHj. Hence,K 0(l;H) � jHj log(jHj+ 1):Induction step: Let 1 � i � l � 1, H 2 Exec(l � i) and Split(l � i; H) = fH1; : : : ; Hrg.By induction hypothesis,

6.3. PROOFS 157K 0(l�i+1;Hj) � i � jHjj log(jHjj+ 1), j = 1; : : : ; r.Since jH1j+ : : :+ jHrj � jHj and jT(l�i;H)j � jHj we getK 0(l�i;H) � jHj log�jT(l�i;H)j+ 1� + i � rXj=1 jHjj log (jHjj+ 1)� jHj log(jHj+ 1) + i � jHj log(jHj+ 1) = (i+ 1)jHj log(jHj+ 1):Since Exec(1) = fSs2S Stepsa(s) : a 2 Actg n f;g we getXH2Exec(1) jHj = Xa2Act Xs2S jStepsa(s)j = m:Hence, by (I) and (II):K = XH2Exec(1)K 0(1;H) � XH2Exec(1) l � jHj log jHj � lm logm:By Lemma 6.3.3 (page 155), we have l � 2n. Therefore,K � lm logm � 2nm logm:Thus, we get the time complexity O(mn logm) for the constructions of the trees in step(1.2) in Figure 6.6 (page 142) where we neglect the cost for computing the values �[Ci].Adding the cost for the computations of the values �[Ci] we obtain the time complexityO(mn(logm + logn)) for all executions of step (2.2.1) in the main algorithm.Lemma 6.3.5 N�1Xi=0 XB2Xi jNewClXi j � 2(m� 1):Proof: Let Mi = PB2Xi jNewClXi(B)j. Then, Mi = Pa2Act jHa;ij whereHa;i = ([s2Lh(s) : B 2 Xi; (a; L; h) 2 NewClXi(B)) :We consider the set Xa = Ss2S Stepsa(s) of all a-labelled transitions in (S;Act ; Steps).The sets Ha;i can be extended to partitions Xa;i of Xa such that Xa;i is �ner than Xa;i�1and Ha;i � Xa;i n Xa;i�1 (cf. condition (**) on page 138). Thus,N�1Xi=0 Mi = Xa2Act N�1Xi=0 jHa;ij � Xa2Act N�1Xi=0 jX 0a;ij� 2(jXj � 1) � Xa2Act 2(ma � 1) = 2(m� 1)by Lemma 6.3.1 (page 153). Here, X 0a;i = Xa;i n Xa;i�1.Lemma 6.3.6 Summing up over all re�nement steps, the executions of step (2.2.2) inFigure 6.4 on page 136 (the computations of B= �X with the method decsribed on page139) take O(nm) time.

158 CHAPTER 6. DECIDING BISIMILARITY AND SIMILARITYProof: We de�ne Ki = maxfjNewClXi(B)j : B 2 Xig. In the (i + 1)-st re�nementstep (i.e. in the computation of Xi+1 = Re�ne(Xi)), step (2.2.2) causes the cost O(n �Ki)since, for each state s 2 S, we traverse a binary tree of height � Ki. By Lemma 6.3.5(page 157): N�1Xi=0 Ki � N�1Xi=0 XB2Xi jNewClXij � 2(m� 1):Thus, step (2.2.2) causes the cost O(nm).

Chapter 7Weak bisimulation for fullyprobabilistic processes
In the non-probabilistic case, weak [Miln80, Park81, Miln89] or branching [vGlWe89]bisimulation equivalence are fundamental for veri�cation methods that exploit abstractionfrom internal computation as { being compositional with respect to parallel compositionand other operators { they make it possible to replace components by equivalent ones thatare minimized with respect to their internal behaviour. Clearly, also in the probabilisticsetting, appropriate notions of weak equivalence together with e�cient decision proceduresare highly desirable. Testing equivalences for fully probabilistic systems that abstractfrom internal computations are proposed by Ivan and Linda Christo� [Chri90a, Chri90b,ChCh91, Chri93] (who also present polynomial time decision procedures) and Cleavelandet al [CSZ92, YCDS94]. For the latter, the authors present a proof technique but donot investigate the decidability. Segala & Lynch [SeLy94] introduce notions of weakand branching bisimulation for concurrent probabilistic systems that appear as naturalextensions of weak and branching equivalences for non-probabilistic systems. Recent workshows that weak [PSS98] and branching [BSV98] bisimulation equivalence are decidable for�nite concurrent probabilistic systems. This chapter (whose main results are developedin team work with Holger Hermanns [BaHe97]) proposes notions of weak bisimulationand branching bisimulation in the fully probabilistic setting and presents a polynomialdecision procedure.Weak bisimulation in non-probabilistic systems: The weak bisimulation equiva-lence classes of a �nite (non-probabilistic) labelled transition system (S;Act ;�!) canbe computed as the (strong) bisimulation equivalence classes of the induced system(S; (Act n f�g) [f"g;=)). Here, the \double arrow relation"=) � S � ((Act n f�g) [f"g)� Sis de�ned with the help of the transitive, re
exive closure (��!)� of internal transitions.1Thus, the problem of deciding weak bisimulation equivalence is reduced to the compu-tation of the transitive, re
exive closure (��!)� of the internal transitions and deciding1For the empty word ", the transition relation "=) agrees with (��!)� (i.e. s "=) t asserts that t isreachable from s via internal actions) while �=) = (��!)� ��! (��!)�.159

160 CHAPTER 7. WEAK BISIMULATION(strong) bisimulation equivalence in a �nite system. Using the transitive closure operationfrom [CoWi87] and the partitioning/splitter technique by [PaTa87] the time complexity fordeciding weak bisimulation equivalence is O(n2:3) where n is the number of states. Groote& Vaandrager [GroVa90] propose an algorithm for computing the branching bisimulationequivalence classes of a non-probabilistic system which works with a variant of the parti-tioning/splitter technique �a la [PaTa87] that uses both transition relations �! and =)and runs in time O(nm) where n is the number of states and m the number of transitions(i.e. the size of �!).Weak bisimulation in fully probabilistic systems: This chapter introduces notionsof weak bisimulation and branching bisimulation for fully probabilistic systems. Thebasic idea is to replace Milner's \double arrow relation" s �=) t by the probabilities toreach state t from s via a sequence of transitions labelled by a trace of the form � ��� �.In contrast to the non-probabilistic case where branching bisimulation is strictly �nerthan weak bisimulation, weak and branching bisimulation equivalence coincide for �nitefully probabilistic systems. The proposed notion of weak (or branching) bisimulationequivalence is decidable for �nite systems. We present an algorithm to compute the weakbisimulation equivalence classes with a modi�cation of the partitioning/splitter technique�a la [KaSm83, PaTa87]. The time complexity of our method is cubic in the number ofstates; thus, it meets the worst case complexity for deciding branching bisimulation in thenon-probabilistic case [GroVa90] (where, in the worst case, O(m) = O(n2)). Moreover,weak bisimulation is shown to be a congruence with respect to the operators of PLSCCS(see Section 4.3, page 83 �) with the exception of the probabilistic choice operator.2Therefore, weak bisimulation is applicable for mechanised compositional veri�cation ofprobabilistic systems that work with the lazy product P1
 P2 as parallel composition.Organization of that chapter: Section 7.1 introduces weak and branching bisimula-tions. In Section 7.2 we present our algorithm for deciding weak bisimulation equivalence.Section 7.3 discusses the connection between weak (and branching) bisimulation equiv-alence and other equivalences for fully probabilistic systems. The congruence result isestablished in Section 7.4. Most of the proofs for the results of this chapter are givenin the appendix (Section 7.5). The proofs use the regularity of certain matrices (withcolumns and rows for each state of the underlying system). Thus, the main results areonly established for �nite systems. It is an open question whether our results carry overto arbitrary fully probabilistic systems (with possibly in�nitely many states).This chapter makes use of the notations for partitions as explained in Section 2.1 (page29) and for ordered balanced trees (see Section 12.2, page 314). Moreover, we often usethe probabilities Prob(s;
; t) for s to reach a C-state via a path whose trace belong to
(see Section 3.3.1, page 49). Throughout this chapter, we deal with action-labelled fullyprobabilistic systems.
2The fact that weak (and branching) bisimulation equivalence are not preserved by probabilistic choiceis not surprising as already in the non-probabilistic case, weak and branching bisimulation equivalencefail to be congruences with respect to non-deterministic choice.

7.1. WEAK AND BRANCHING BISIMULATION 1617.1 Weak and branching bisimulationIn this section we de�ne weak and branching bisimulation for fully probabilistic systems.While in the non-probabilistic case branching bisimulation equivalence is strictly �ner thanweak bisimulation equivalence, these two relations coincide for �nite fully probabilisticsystems (Theorem 7.1.10, page 163).7.1.1 Weak bisimulationFor the de�nition of weak bisimulation, we replace Milner's \double arrow" relation "=)= (��!)� (where s "=) t states that s can move to t via internal steps) by the probabilityProb(s; � �; t) to reach state t from s via internal actions. Similarly, for � 2 Act n f�g, wedeal with the probabilities Prob(s; � ��� �; t) rather than Milner's weak transition relations�=) = (��!)� ��! (��!)�.3De�nition 7.1.1 [Weak bisimulation] A weak bisimulation on an action-labelled fullyprobabilistic system (S;Act ;P) is an equivalence relation R on S such that for all (s; s0) 2R and all equivalence classes C 2 S=R:(1) Prob(s; � �; C) = Prob(s0; � �; C)(2) Prob(s; � ��� �; C) = Prob(s0; � ��� �; C) for all � 2 Act n f�g.Two states s, s0 are called weakly bisimilar (denoted by s � s0) i� (s; s0) 2 R for someweak bisimulation R.Remark 7.1.2 Note that Prob(s; � �; C) = 1 if s 2 C. Hence, condition (1) is alwaysful�lled for the equivalence class C of s and s0 with respect to R.In Section 7.5.1 (Lemma 7.5.16, page 185) we show that, for �nite systems, � is a weakbisimulation. Two fully probabilistic processes P = (S;Act ;P; sinit), P 0 = (S 0;Act ;P0; s0init)are said to be weakly bisimilar i� their initial states sinit and s0init are weakly bisimilar inthe composed system which is de�ned as explained in Section 3.5 (page 61).Example 7.1.3 We consider the simple communication protocol of Example 3.3.2 (page48) and the fully probabilistic system for the sender shown in Figure 3.2 on page 48.Using weak bisimulation equivalence asthe underlying implementation relation thesender can be veri�ed against the speci�ca-tion given by the fully probabilistic processshown on the right. s0inits0wait send!, 1ack?, 1�� �
�� �
AA��� AA���For this, we have to show that the initial states sinit and s0init are weakly bisimilar.Let R be the equivalence on S = fsinit ; sdel ; swait ; slost ; s0init ; s0waitg such that S=R =fCI ; CWg where CI = fsinit ; s0initg is the equivalence class of the initial states and CW =fsdel ; swait ; slost ; s0waitg the equivalence class of the other states. For sI 2 CI and sW 2 CW ,3See Section 3.3.1, page 49, for the de�nition of Prob(s;
; t).

162 CHAPTER 7. WEAK BISIMULATIONwe have: Prob(sI ; � �; CI) = 1; Prob(sW ; � �; CI) = 0;Prob(sI ; � �; CW) = 0; Prob(sW ; � �; CW) = 1;Prob(sI ; � � send ! � �; CI) = 0; Prob(sW ; � � send ! � �; CI) = 0;Prob(sI ; � � ack? � �; CI) = 0; Prob(sW ; � � ack? � �; CI) = 1;Prob(sI ; � � send ! � �; CW) = 1; Prob(sW ; � � send ! � �; CW) = 0;Prob(sI ; � � ack? � �; CW) = 0; Prob(sW ; � � ack? � �; CW) = 0:Hence, R is a weak bisimulation. In particular, the initial states sinit of the sender ands0init of its speci�cation are weakly bisimilar.In the non-probabilistic case, it holds for weakly bisimilar states s; s0 that if s �1:::�k=) tthen s0 �1:::�k=) t0 such that t and t0 are weakly bisimilar. Here, �1:::�k=) denotes (��!)� �1�!(��!)� : : : (��!)� �k�! (��!)�. This result carries over to �nite fully probabilistic systems.Theorem 7.1.4 Let (S;Act ;P) be a �nite action-labelled fully probabilistic system and
 a regular expression of the form � ��1� ��2� � : : : � ��k or � ��1� ��2� � : : : � ��k� �. Then:If s � s0 then Prob(s;
; C) = Prob(s0;
; C) for all C 2 S= �.Proof: see Section 7.5.1, Theorem 7.5.17 (page 186).7.1.2 Branching bisimulationVan Glabbeek & Weijland [vGlWe89] introduce branching bisimulation which is strictly�ner than weak bisimulation. The basic idea of branching bisimulation is that in orderto simulate a step s ��! t by an equivalent state s0, s0 is allowed to perform arbitrarymany internal actions leading to a state s00 which is still equivalent to s and s0 (i.e. theintermediate states on the path from s0 to s00 also fall in the equivalence class of s and s0)and then to perform � reaching a state t0 which is equivalent to t. In the probabilisticcase, we require that for equivalent states s, s0, the probabilities for s and s0 to performinternal actions inside the equivalence class of s and s0 and then to perform a visibleaction � leading to state of a certain equivalence class C are the same.Notation 7.1.5 [The symbols ba, a 2 Act] For a 2 Act, letba = (a : if a 6= �" : if a = � .Recall that " denotes the empty word in Act�. Hence, � �ba = � � if a = � .Notation 7.1.6 [The probabilities ProbR(s; � �ba; C)] Let (S;Act ;P) be an action-la-belled fully probabilistic system, R an equivalence relation on S, s 2 S, C � S anda 2 Act. Then, PathRful(s; � �ba; C) denotes the set of fulpaths � 2 Path ful(s) such thatthere is some k � 0 with� (s; �(i)) 2 R, i = 1; : : : ; k � 1,� trace(�(k)) 2 � �ba,

7.1. WEAK AND BRANCHING BISIMULATION 163� �(k) 2 C.Let ProbR(s; � �ba; C) = Prob(PathRful(s; � �ba; C)), ProbR(s; � �ba; t) = Prob((s; � �ba; ftg).Remark 7.1.7 For s 2 C, Path ful(s) = PathRful(s; � �; C). Hence, ProbR(s; � �; C) = 1 ifs 2 C.Example 7.1.8 For the relation R in Example 7.1.3, page 161, we haveProbR(s; � �ba� �; C) = Prob(s; � �ba� �; C)for all states s and C 2 fCI; CWg and a 2 f�; send !; ack?g.For the system shown on the right and the\identity relation" R (i.e. the equivalence re-lation R with (x; y) 2 R i� x = y) we haveProbR(s; � ��; v) = 0 while Prob(s; � ��; v) =1=2. v ut s
�� �� �� ���� �� �� �� �, 12� , 12�, 1? ���	 @@@R

De�nition 7.1.9 [Branching bisimulation] Let (S;Act ;P) be an action-labelled fullyprobabilistic system. A branching bisimulation on (S;Act ;P) is an equivalence relationR on S such that for all (s; s0) 2 R, C 2 S=R:(1) ProbR(s; � �; C) = ProbR(s; � �; C)(2) ProbR(s; � ��;C) = ProbR(s; � ��;C) for all � 2 Act n f�g.Two states s, s0 are called branching bisimilar (denoted s �br s0) i� (s; s0) 2 R for somebranching bisimulation R.In Section 7.5.1, Lemma 7.5.15 (page 185) we show that, for (S;Act ;P) to be �nite,branching bisimulation equivalence �br is a branching bisimulation. In contrast to thenon-probabilistic case, branching bisimulation equivalence and weak bisimulation equiva-lence coincide for �nite systems.Theorem 7.1.10 Let (S;Act ;P) be a �nite action-labelled fully probabilistic system ands, s0 2 S. Then, s � s0 i� s �br s0.Proof: see Section 7.5.1, Corollary 7.5.13 (page 184).The classical example for distinguishing weak and branching bisimulation equivalence isthe system shown in Figure 7.1 on page 164 (see [vGlWe89]). In the non-probabilisticcase, s and s0 are weakly but not branching bisimilar. If we add non-zero probabilities(which turn the system of Figure 7.1 into a fully probabilistic system) then s and s0 areno longer weakly bisimilar. This can be seen as follows. We assume s � s0. Then,1 = Prob(s; � ��� �; T) = Prob(s0; � ��� �; T) where T denotes the weak bisimulationequivalence class of t. Clearly, v00 6� t as t can perform
 (sinceP(t;
) > 0) while v00 cannot(since Prob(v00; � �
) = 0). Hence, v00 =2 T and therefore P(s0; �; t0) = 1, P(s0; �; v00) =0. Contradiction (as we added non-zero probabilities to the non-probabilistic system ofFigure 7.1).

164 CHAPTER 7. WEAK BISIMULATION

wv uts
�� ���� �� �� ���� ���� ��

w0v0 u0t0 s0 v00w00�� ���� �� �� ���� �� �� �� �
�	�
 �	
��
�

��
�
� ����	 @@@R?

? ??���� AAAU ���� AAAU
Figure 7.1: Distinguishing weak and branching bisimulation in the non-probabilistic case7.2 Decidability of weak bisimulation equivalenceIn this section we develop an algorithm to compute the weak bisimulation equivalenceclasses. The general idea of our algorithm is to use a partitioning/splitter-techniquesimilar to the ones proposed by Kanellakis & Smolka [KaSm83] resp. Paige & Tarjan[PaTa87] for deciding strong bisimulation in the non-probabilistic case (cf. the schemasketched in Section 6.1, Figure 6.1 on page 131). The algorithm starts with some \simple"partition Xinit that is coarser than � and then successively re�nes the given partition Xwith the help of a \splitter" of X , eventually resulting in the set of weak bisimulationequivalence classes. The crucial point is the de�nition of a splitter. A possible candidatefor a \splitter" of a partition X is a pair (a; C) 2 Act �X that violates the condition forX to be a weak bisimulation, i.e.(*) Prob(s; � �ba� �; C) 6= Prob(s0; � �ba� �; C) for some B 2 X and s, s0 2 B.One idea for a partioning/splitter-algorithm would be to re�ne X according to a splitterin the sense of (*), i.e. to replace X by Re�ne 0(X ; a; C) = fB= '(a;C): B 2 Xg wheres '(a;C) s0 i� Prob(s; � �ba� �; C) = Prob(s0; � �ba� �; C).The probabilities Prob(s; � �ba� �; C) can be computed by solving the linear equation systemxs = 1 if a = � and s 2 Cxs = 0 if Path ful(s; � �ba� �; C) = ;xs = Xt2S P(s; �; t) � xt + P(s; a; C)if Path ful(s; � �ba� �; C) 6= ; and a 6= � _ s =2 C.(cf. Proposition 3.3.4, page 49). The test whether Path ful(s; � �ba� �; C) = ; can be doneby a reachability analysis of the underlying directed graph, e.g. with a depth �rst searchlike method. Then,
(n3:8) is an asymptotic lower bound for the time complexity ofthis method.4 Here, we present an alternative method that runs in time O(n3). The4Here, n is the number of states. Note that in the worst case we need n re�nement steps and in eachre�nement step we have to solve a linear equation system with n variables and n equations (which takes
(n2:8) time with the method of [AHU74]).

7.2. DECIDABILITY OF WEAK BISIMULATION EQUIVALENCE 165basic idea is to replace (*) by a condition that asserts that X violates the conditions of abranching bisimulation. For this, we use an alternative de�nition of a splitter that is basedon an characterization of branching bisimulations which uses the conditional probabilitiesPX (s; a; C) to reach a block C from a state s via an action a within one step under thecondition that the system does not make an internal move inside the block that contains s.These conditional probabilities can be computed by simple arithmetic operations. Thus,the use of this kind of splitters has the advantage that in the re�nement steps we do nothave to solve linear equation systems.7.2.1 The algorithmIn what follows, we �x a �nite action-labelled fully probabilistic system (S;Act ;P) anda partition X of S. We say that X is a weak (branching) bisimulation i� the inducedequivalence relation RX is a weak (branching) bisimulation.Notation 7.2.1 [The set Sterm of terminal states] Sterm denotes the set of terminalstates (i.e. all states s 2 S where P(s; a; t) = 0 for all a 2 Act and t 2 S).Notation 7.2.2 [The set SX] We de�ne SX = fs 2 S n Sterm : P(s; �; [s]X) < 1g.5Thus, SX contains all states that, with non-zero probability, can either perform somethingvisible (in the case where P(s; �) < 1) or silently step into a di�erent class (in the casewhere P(s; �; t) > 0 for some t =2 [s]X).Notation 7.2.3 [The conditional probabilities PX (s; a; t)] If s 2 SX and (a; C) 2Act � X with (a; C) 6= (�; [s]X) then we de�nePX (s; a; C) = P(s; a; C)1�P(s; �; [s]X) :PX (s; a; C) is the conditional probability for s to reach C via action a under the conditionthat in state s the system does not make a � -move inside the block [s]X of s (i.e. thesystem either performs a visible action or makes a � -move to another block). We getthe following alternative characterization of branching bisimulations that refers to theconditional transition probabilities PX (�) rather than the values ProbRX (�).Lemma 7.2.4 X is a branching bisimulation i�, for all B 2 X with B \ SX 6= ;:(1) PX (s; a; C) = PX (s0; a; C)for all s, s0 2 B \ SX and (a; C) 2 Act �X with (a; C) 6= (�; B).(2) If s0 2 B n SX then there exists a �nite path � with- �rst(�) = s0,- �(i) 2 B n SX , i = 0; 1; : : : ; j�j � 1,- last(�) 2 B \ SX .Moreover, if X is a branching bisimulation then for all B 2 X with B \ SX 6= ; ands 2 B:5Recall that [s]X denotes the unique block in X that contains s (cf. Section 2.1, page 29).

166 CHAPTER 7. WEAK BISIMULATION� ProbRX (s; � �; C) = PX (B; �; C) for all C 2 X� ProbRX (s; � ��;C) = PX (B; �; C) for all � 2 Act n f�g and C 2 X .Here, PX (B; a; C) = (PX (t; a; C) : if (a; C) 6= (�; B) and t 2 B \ SX1 : if (a; C) = (�; B).Proof: see Section 7.5.1, Lemma 7.5.9 (page 181).Remark 7.2.5 Let X be a branching bisimulation and B 2 X such that B \ SX = ;.For all s 2 B, either s is terminal or P(s; �; B) = 1. In either case, ProbRX (s; � ��;C) = 0and ProbRX (s; � �; C) = 0 if C 2 X n fBg. Hence, if we put PX (B; �; B) = 1 andPX (B; a; C) = 0 if (a; C) 6= (�; B). then we getProbRX (s; � �ba; C) = PX (B; a; C)for all s 2 B, C 2 X and a 2 Act .Example 7.2.6 Consider the system of Figure 7.2 (page 167) and the partition X =fB1; B2; B3g where B1 = fs0; s; s0g, B2 = ft; t0g and B3 = fw;w0; v; v0g. We show thatall blocks of X satisfy the conditions of Lemma 7.2.4. We have Sterm = fw;w0; vg,P(s0; �; [s0]X) = 1 and P(v0; �; [v0]X) = 1. Thus, SX = fs; s0; t; t0g.� For the block B1, we �rst consider the states s and s0. We have:PX (s; �; B2) = PX (s0; �; B2) = 12 ; PX (s; �; B3) = PX (s0; �; B3) = 12and PX (s; a; C) = PX (s0; a; C) = 0 for all (a; C) =2 f(�; B2); (�;B3)g. Hence, B1satis�es condition (1). Second we show condition (2) for B1. For this, we have toconsider the state s0 2 B1 n SX . The �nite path leading from s0 to a state of B1 \ SXis given by s0 �! s.� For the block B2 = ft; t0g we get: PX (t; �; B3) = PX (t0; �; B3) = 1 and PX (t; a; C) =PX (t0; a; C) = 0 for all (a; C) 6= (�;B3). Hence, B2 satis�es (1). As B2 \ SX = ;, B2ful�lls condition (2).� As B3 \ SX = ; for the block B3 there is nothing to show.Lemma 7.2.4 yields that X is a branching bisimulation.Remark 7.2.7 If X is a branching bisimulation, B 2 X and s, s0 2 B \ SX thenP(s; �; B)1�P(s; �; B) 6= P(s0; �; B)1�P(s0; �; B)is possible. For instance, for the states s and s0 in Example 7.2.6 (Figure 7.2 on page 167)we have s �br s0 but P(s; �; B1)=(1�P(s; �; B1)) = 0 whileP(s0; �; B1)=(1�P(s0; �; B1)) =1=2 (where B1 = fs0; s; s0g is the branching bisimulation equivalence class of s and s0).De�nition 7.2.8 [Splitter] A splitter of a partition X is a tuple (a; C) consisting of anaction a 2 Act and some C 2 X such that there exists some B 2 X with (�; B) 6= (a; C)and PX (s; a; C) 6= PX (s0; a; C) for some states s, s0 2 B \ SX .

7.2. DECIDABILITY OF WEAK BISIMULATION EQUIVALENCE 167
wt vss0
�� ���� �� �� ���� ���� ��� , 1� , 12 �, 12�, 1 t0w0

s0 v0�� ���� ��
�� �� �� ��� , 13 �, 13 � , 13 � , 1�, 1���	 @@@R?

? ?���	 @@@R
� �	� �
��

Figure 7.2:The main idea for re�ning a given partition X via a splitter (a; C) is to isolate in eachB 2 X with (�; B) 6= (a; C) those states s, s0 2 B \ SX where PX (s; a; C) = PX (s0; a; C).By condition (2) of Lemma 7.2.4, each such equivalence class A of B \ SX has to beenriched with exactly those states s 2 B n SX that can reach A via internal actions andthat cannot reach any other equivalence class A0 of B \ SX without passing A.Notation 7.2.9 [The set Split(B; a; C)] Let (a; C) be a splitter of a partition X andB 2 X such that (�; B) 6= (a; C). We de�neSplit(B; a; C) = (B \ SX)= �Xwhere, for s, s0 2 B \ SX , s �X s0 i� PX (s; a; C) = PX (s0; a; C).Notation 7.2.10 [The closure A] Let (a; C) be a splitter of a partition X and B 2 Xsuch that (�; B) 6= (a; C). If A 2 Split(B; a; C) then we de�ne the closure A of A in Xwith respect to (a; C) to be the largest set V � B which contains A and such that for alls 2 V n A:� P(s; �; V [A) = 1� There exists a �nite path � with- �rst(�) = s,- �(i) 2 V , i = 0; 1; : : : ; j�j � 1,- last(�) 2 A.Notation 7.2.11 [The residuum Res(B; a; C)] Let X , a, B and C be as before. Theresiduum of B with respect to (a; C) is given byRes(B; a; C) = fB0g n f;g where B0 = B n [A2Split(B;a;C)A:Remark 7.2.12 Note that the residuum Res(B; a; C) is either empty (if all states s 2SnSX are contained in some closure A) or a singleton set consisting of all states s 2 BnSXthat do not belong to any closure A. If A 2 Split(B; a; C) then A consists of A and allstates s 2 B n SX such that� last(�) 2 A for some � 2 �(s)� Whenever � 2 � and last(�) 2 SX then last(�) 2 A.Here, �(s) = f� 2 Path�n(s) : �rst(�) = s; �(i) 2 B n SX , i = 0; 1; : : : ; j�j � 1g.

168 CHAPTER 7. WEAK BISIMULATIONNotation 7.2.13 [The re�nement operator Re�ne(�)] Let X be a partition, (a; C) asplitter of X . For B 2 X , we de�ne:� If (a; C) = (�; B) then Re�ne(B; a; C) = fBg.� If (a; C) 6= (�; B) thenRe�ne(B; a; C) = fA : A 2 Split(B; a; C)g [Res(B; a; C):We de�ne Re�ne(X ; a; C) = SB2X Re�ne(B; a; C).Clearly, for each partition X which is coarser than S= �br and each splitter (a; C) of X ,the partition Re�ne(X ; a; C) is coarser than S= �br and strictly �ner than X .Our re�nement operator preserves condition (2) of Lemma 7.2.4 (page 165). More pre-cisely, if B 2 X such that B\SX = ; and condition (2) of Lemma 7.2.4 is ful�lled then allblocks A 2 Re�ne(B; a; C) ful�ll condition (2). Moreover, if X is a partition that ful�llscondition (2) of Lemma 7.2.4 and that is coarser than S= �br and there is no splitter forX then X = S= �br = S= �. These observations lead to the following algorithm. Westart with a \simple" partition X that satis�es condition (2) of Lemma 7.2.4 and that iscoarser than �. Then { as long as X can be re�ned (i.e. as long as there exists a splitterfor X) { we apply the re�nement operator to X , eventually resulting in the partitionX = S= �.As the initial partition has to ful�ll condition (2) of Lemma 7.2.4 we cannot start with the\trivial" partition X = fSg that identi�es all states as it might violate condition (2). Forinstance, for a system with two states, a terminal state t and a state s with P(s; �; t) = 1,the trivial partition Xtrivial = ffs; tgg does not have a splitter. Hence, if we would startwith Xtrivial then our algorithm would return that s and t are weakly bisimilar which isnot the case. Our initial partition consists two blocks: the weak bisimulation equivalenceclass of the terminal states and its complement. (Of course, if one of these blocks is emptythen we only start with one block.) To be precise, the weak bisimulation equivalence classof the terminal states consists of all \divergent" states, i.e. all states that cannot reach astate where a visible action can be performed with some non-zero probability.De�nition 7.2.14 [Divergent states] A state s is called divergent i� Path ful(s; � ��) =; for all � 2 Act n f�g. Let Div be the set of divergent states.Note that Sterm � Div . Our algorithm for computing the weak bisimulation equivalenceclasses is sketched in Figure 7.3 on page 169.Example 7.2.15 Partitioning the system from Example 7.2.6 (Figure 7.2, page 167)proceeds as follows. The initial partition is X = ffs0; s; s0; t; t0g; fw;w0; v; v0gg. Then,SX = fs; s0; t; t0g. (�; fw;w0; v; v0g) and (�; fs0; s; s0; t; t0g) are splitters of X . For thesplitter (�; fw;w0; v; v0g) we obtainPX (s; �; fw;w0; v; v0g) = 12 = 131� 13 = PX (s0; �; fw;w0; v; v0g)and PX (t; �; fw;w0; v; v0g) = 0 = PX (t0; �; fw;w0; v; v0g). Hence, the split operator sepa-rates s and s0 from t and t0. More precisely, we get:Split(fs0; s; s0; t; t0g; �; fw;w0; v; v0g) = ffs; s0g; ft; t0gg;Split(fw;w0; v; v0g; �; fw;w0; v; v0g) = ffw;w0; v; v0gg:

7.2. DECIDABILITY OF WEAK BISIMULATION EQUIVALENCE 169Computing the weak bisimulation equivalence classesInput: a �nite action-labelled fully probabilistic system (S;Act ;P)Output: the set S= � of weak bisimulation equivalence classesMethod:Compute the set Div of divergent states;X := fDiv ; S nDivg n f;g;While X contains a splitter (a; C) do X := Re�ne(X ; a; C);Return X .Figure 7.3: Schema for computing the weak bisimulation equivalence classesThe closure operator yields fs; s0g = fs0; s; s0g. Hence, we get the partitionRe�ne(X ; �; fw;w0; v; v0g) = ffs0; s; s0g; ft; t0g; fw;w0; v; v0ggfor which no splitter exists. Thus, our algorithm returns Re�ne(X ; �; fw;w0; v; v0g) as theset of weak bisimulation equivalence classes.7.2.2 Time complexityIn what follows, n = jSj. We suppose that the alphabet Act is �xed (thus, we treat thesize jAct j as a constant).Theorem 7.2.16 The algorithm of Figure 7.3 (page 169) can be implemented in timeO(n3) and space O(n2).Proof: Clearly, Div can be computed by a reachability analysis in the underlyingdirected graph. We compute all states that can reach a state of ft 2 S : P(t; �) >0 for some � 2 Act n f�gg, e.g. by a depth �rst search. Thus, the computation of theinitial partition X needs O(n2) time and space.Initialization of the re�ne step: Let X be the current partition. We compute thevalues P(s; a; C) and PX (s; a; C) for each s 2 S, a 2 Act and C 2 X . The set SX canbe derived from the probabilities PX (s; �; C), s 2 C. For each pair (a; C) (where a 2 Actand C 2 X) and A 2 X we computemin(A; a; C) = mins2A PX (s; a; C); max(A; a; C) = maxs2A PX (s; a; C):Then, (a; C) is a splitter of X i� min(A; a; C) < max(A; a; C) for some A with (a; C) 6=(�; A). If there is no splitter of X then X = S= �. Otherwise we choose some splitter(a; C) of X .Re�nement step: For allB 2 X with (�; B) 6= (a; C) we compute the set Re�ne(B; a; C)as follows. We construct an ordered binary tree Tree(B) by successively inserting the

170 CHAPTER 7. WEAK BISIMULATIONvalues PX (s; a; C), s 2 B \ SX . (See Section 12.2, page 314 for the notations that weuse for ordered balanced trees.) Each node v of Tree(B) is represented as a record withcomponents v:key and v:states. For each state s 2 B \ SX , we traverse the tree Tree(B)starting in the root and we search for the value PX (s; a; C).� If we reach a node v with v:key = PX (s; a; C) then we insert s into v:states.� Otherwise, PX (s; a; C) is not yet represented in Tree(B) and we insert a node v withv:key = PX (s; a; C) and v:states = fsg.In the �nal tree, v:states is the set of states s 2 B \ SX with PX (s; a; C) = v:key . Thus,the nodes of the �nal tree Tree(B) represent the sets A 2 Split(B; a; C). More precisely,Split(B; a; C) = fv:states : v is a node in Tree(B)g:We derive Re�ne(B; a; C) as follows. Let GB be the directed graph (B;EB) where (s; t) 2EB i� P(t; �; s) > 0 and t 2 B n SX . We compute the sets A, A 2 Split(B; a; C), by thefollowing breadth �rst search like method. We use three kinds of labels for the states:� label(s) = ? i� s 2 B n SX and s is not yet visited.� label(s) = A 2 Split(B; a; C) i� s is reachable in GB from some state in A but thereis no other A0 2 Split(B; a; C) where a path from a state of A0 to s in GB is alreadydetected.� label(s) = � i� there are two sets A, A0 2 Split(B; a; C) such that s is reachable froma state in A and from a state in A0. (In particular,, all successors of a �-labelled statein GB are also labelled by �.)Initially, we de�ne label(s) = A for all s 2 A and A 2 Split(B; a; C) and label(s) = ?for all s 2 B n SX . We use a queue Q which initially contains the states s 2 A, A 2Split(B; a; C). While Q is not empty we take the �rst element s of Q, remove s from Qand, if label(s) 6= � then, for all t 2 B n SX with (s; t) 2 EB, we do:(1) If label(t) = ? then we add t to Q and set label(t) = label(s).(2) If label(t) 2 Split(B; a; C), label(t) 6= label(s), then we set label(u) = � for u = t andall successors u of t in GB.6Then, A = fs 2 B : label(s) = Ag, Res(B; a; C) = ffs 2 B : label(s) 2 f?; �ggg n f;g.Complexity: It is clear that the method described above can be implemented in spaceO(n2). We show that the time complexity of our method is O(n3). First, we observe thatthere are at most n iterations of the re�nement step. Thus, it su�ces to show that eachre�nement step takes time O(n2).Clearly, for each iteration (i.e. each re�nement step), the initialization requires O(n2)time.7 Ranging over all B, the construction of the trees Tree(B) (thus, the computationof the sets Split(B;A;C)) takes O(n logn) time if one uses some kind of ordered balancedtrees (see Section 12.2, page 314). We show that, ranging over all B 2 X , the sets A and6For this, we might use a depth �rst search starting in t to �nd all successors of t. States that arealready labelled by � are ignored.7Note that, for each tuple (s; a; C), we have to calculatePt2C P(s; a; t). Hence, for �xed a and rangingover all s 2 S, C 2 X , we get the time complexity O(n2). Since we suppose Act to be �xed, the valuesP(s; a; C) can be computed in time O(n2).

7.3. CONNECTION TO OTHER EQUIVALENCES 171Res(B; a; C) can be derived in time O(n2): For �xed B 2 X , the directed graph GB canbe constructed in time O(jBj2). Each state s 2 B is added to Q at most once.8 Each statet which is visited by a depth �rst search in step (2) is labelled by �. Thus, it can never bevisited in step (2) once again. As a consequence, each state causes time costs (at most)of order 2n in the computation of Re�ne(B; a; C): as an element of Q and as a state withlabel 6= � that is visited in step (2). Either case involves O(n) computations. Summingup over all s 2 B, the computation of Re�ne(B; a; C) has time complexity O(jBj �n). So,we obtain Re�ne(X ; a; C) in time O(n2).7.3 Connection to other equivalencesIn this section we discuss how the proposed notion of weak bisimulation equivalence relatesto other equivalences for fully probabilistic systems.Clearly, weak bisimulation � is strictly coarser than (strong) bisimulation �a la Larsen &Skou [LaSk89] (De�nition 3.4.3, page 54) which does not abstract from internal moves.Formally, if (S;Act ;P) is a fully probabilistic system and s, s0 are bisimilar states thens and s0 are weakly bisimilar. Moreover, if the system is � -free (i.e. P(t; �) = 0 for allstates t) then weak bisimulation equivalence � and (strong) bisimulation equivalence �coincide.9 Of course, we cannot expect � to be comparable with strong trace, failure orready equivalence in the sense of Jou & Smolka [JoSm90] as � abstracts from the internalsteps while the equivalences of [JoSm90] do not treat the � -steps in a special way andare strictly coarser than strong (and weak) bisimulation for � -free systems. For instance,the states s and s0 of the system below are strongly trace equivalent but not (strongly orweakly) bisimilar.
v uts�� �� �� ���� ���� �� v0t01

s0 t02u0�� ���� ��
�� �� �
�	�
 �	

�, 1�, 1
, 1 �, 1�, 1 �, 1
, 1���	 @@@R? ? ?���� AAAUVice versa, the states s and s0 of the system (fs; s0; tg; f�; �g;P) where P(s; �; s0) =P(s0; �; t) = 1 and P(�) = 0 in all other cases are weakly bisimilar but not strong trace,failure or ready equivalent in the sense of [JoSm90]. Dealing with the \weak" counterpartsof the equivalences proposed in [JoSm90], Theorem 7.1.4 (page 162) yields that, for �nitesystems, � is strictly �ner than weak trace, failure or ready equivalence. Here, e.g. s, s0are called weakly trace equivalent i�Prob(s; � ��1� � : : : � ��k� �) = Prob(s0; � ��1� � : : : � ��k� �)for all k � 0 and �1; : : : ; �k 2 Act n f�g.Christo� [Chri90b, Chri90a] and Cleaveland et al [CSZ92] (see also [YCDS94]) introducetesting equivalences for �nite action-labelled fully probabilistic processes that relate two8Note that only states with label ? can be added to Q.9Note that, for (S;Act ;P) to be � -free, Prob(s; �����; C) = P(s; �; C).

172 CHAPTER 7. WEAK BISIMULATIONprocesses in terms of the reliability in certain environments. While [Chri90b] deal withdeterministic environments [CSZ92] consider probabilistic testing scenarios. Both abstractfrom internal computations. In the remainder of this section we discuss the relationbetween these testing preorders and our notion of weak bisimulation. For this, we �x a�nite action-labelled fully probabilistic system (S;Act ;P).Testing equivalence �a la Christo�: We show that weak bisimulation� is stronger thanthe testing equivalences introduced by Christo� [Chri90b] (see also [Chri90a, ChCh91]).[Chri90b] distinguishes fully probabilistic processes through the conditional probabilitiesof certain deterministic testing scenarios. The several testing scenarios lead to the de�ni-tions of probabilistic trace equivalence =tr, weak probabilistic testing equivalence =wte andstrong probabilistic testing equivalence=ste. As shown in [Chri90b], =tr � =wte � =ste. Weshow that weak bisimulation equivalence � is stronger than strong probabilistic testingequivalence =ste (and thus, it is also stronger than =wte and =tr).We brie
y recall the de�nition of strong probabilistic testing equivalence. More precisely,we use an equivalent characterization of =ste which is given in [ChCh91].Notation 7.3.1 [The set O�erings] Let O�erings be the set of nonempty subsets ofAct n f�g (the set of o�erings) and O�erings� the set of (�nite) strings of o�erings. "O�denotes the empty string of o�erings.For L1; : : : ; Lk 2 O�erings and �1; : : : ; �r 2 Act n f�g, Q(s; L1 : : : Lk; �1 : : : �r; t) denotesthe probability for performing the string � ��1 : : : � ��r ending up in t when o�ered a stringof L1 : : : Lk. The formal de�nition of Q(�) is as follows.Notation 7.3.2 [The values Q(s; ~L; ~�;C)] The functionQ : S � O�erings� � (Act n f�g)� � 2S ! [0; 1]is de�ned as follows. Let s 2 S, C � S, L 2 O�erings, � 2 Act n f�g, ~L 2 O�erings�,~� 2 (Act n f�g)�. Q(s; "O� ; ~�;C) = 0 if ~� 6= "Q(s; ~L; "; C) = (1 : if s 2 C0 : otherwiseQ(s; L~L; �~�;C) = Xu2S Q(s; L; �; C) �Q(u; ~L; ~�;C)Q(s; L; �; C) = 0 if � =2 LIf � 2 L then the values Q(s; L; �; C), s 2 S, C � S are the unique solution of thefollowing linear equation system.1. Q(s; L; �; C) = 0 if Prob(s; � ��;C) = 0.2. If Prob(s; � ��;C) > 0 thenQ(s; L; �; C) = P(s; �; C)P(s; �) +P(s; L) + Xu2S P(s; �; u)P(s; �) +P(s; L) �Q(s; L; �; C):Note that Prob(s; � ��;C) > 0, � 2 L implies P(s; �) +P(s; L) > 0.

7.3. CONNECTION TO OTHER EQUIVALENCES 173
u s t�� �� �� �� �� �� v0 u0w0 s0 t0�� �� �� ���� �� �� �� �
�	�, 34 �, 14 � , 12 �, 12�, 12 �, 12���	 @@@R ���	 @@@R���	 @@@R

Figure 7.4: s =ste s0 but s 6� s0Notation 7.3.3 [The values Q(s; ~L; ~�)] If ~L 2 O�erings� and ~� 2 (Act n f�g)� thenwe put Q(s; ~L; ~�) = Q(s; ~L; ~�; S):De�nition 7.3.4 [The testing equivalence =ste, cf. [Chri90b, ChCh91]]s =ste s0 i� Q(s; ~L; ~�) = Q(s0; ~L; ~�) for all ~L 2 O�erings�, ~� 2 (Act n f�g)�.Theorem 7.3.5 � is strictly �ner than =ste.Proof: In Section 7.5.2, Theorem 7.5.19 (page 188), we show that � is �ner than=ste. To see that =ste and � do not coincide consider the fully probabilistic system ofFigure 7.4 (page 173). Then, s =ste s0 as, for instance,Q(s; f�; �g; �) = 34 = 12 + 12 � 12 = Q(s0; f�; �g; �)and Q(s; f�g; �) = 1 = Q(s0; f�g; �). On the other hand,Prob(s0; � ��; S) = 3=4 > 1=2 = Prob(w0; � ��; S):Hence, s0 6� w0. Thus, Prob(s0; � �;W) = 1=2 > 0 = Prob(s; � �;W) where W is the weakbisimulation equivalence class of w0. Thus, s 6� s0.[ChCh91] presents algorithms for deciding the three kinds of equivalences which are basedon solving linear equation systems and run in time O(n4) where n is the number of statesof the underlying system. In contrast to this, the use of weak (or branching) bisimulationhas the advantage that it allows the use of the conditional probabilitiesPX (�) which can becomputed by simple arithmetic operations (rather than solving linear equation systems).Testing equivalences �a la Cleaveland et al [CSZ92]: [CSZ92] (see also [YCDS94]present quantitative extensions of the non-probabilistic testing preorders by de Nicola &Hennessy [dNHe83, Henn88]. Given a test T { which is represented by a fully probabilis-tic system equipped with a set of success states { the probability for a fully probabilisticprocess P to pass the test T is de�ned as the probability measure of the set of \inter-action sequences" leading to a success state. Intuitively, given a class of tests, two fullyprobabilistic processes P, P 0 are testing equivalent with respect to a certain class of testsi� P and P 0 pass all tests T of that class with the same probability. [CSZ92] considertwo classes of tests:� The class Tests0 of � -free tests which yields the testing equivalence denoted by �0.� The class Tests of all tests that do not contain \� -loops" which yields the testingequivalence denoted by �.

174 CHAPTER 7. WEAK BISIMULATION

xwu vts
�� ���� ���� �� �� ���� ���� ���, 1�, 12 �, 12
, 1 �, 1 w0u0

t01 s0 t02v0x0�� ���� ��
�� �� �� �� �
�	�
 �	�
 �	
�, 12 �, 12�, 1
, 1 �, 1�, 1

���	 @@@R?
? ?���	 @@@R ? ?? ?Figure 7.5: s � s0 but s 6� s0The exact de�nition (more precisely, an alternative characterization) of �0 is given inSection 7.5.2 (page 188 �) where we prove that �0 is coarser than �. For the precisede�nition of � see [CSZ92] or [YCDS94].Theorem 7.3.6(a) � is strictly �ner than �0.(b) � and � are not comparable.Proof: In Section 7.5.2, Theorem 7.5.27 (page 191), we show that � is �ner than�0. As shown in [YCDS94], the states s and s0 of the system shown in Figure 7.5 (page174) are testing equivalent with respect to � (and hence, testing equivalent with respectto �0). On the other hand, s and s0 are not weakly bisimilar as Prob(s; � ��� �; T) = 1while Prob(s0; � ��� �; T) = 0 where T denotes the weak bisimulation equivalence class oft. (Note that neither t01 nor t02 is weakly bisimilar to t.) The states s0 and s00 of the systemshown below are weakly bisimilar while s0 6� s00.s0 s00 u�� �� �� �� �� ��� , 1 �, 1 tsuccess u�� ���� �� �� ��� , 12 �, 12- - ���	 @@@RFor instance, the test T shown on the right distinguishes the states s0 and s00. Theprobability for s0 to pass the test T is 3/4 while the probability for s00 to pass T is 1/2.7.4 CompositionalityWe establish the congruence result (Theorem 7.4.2, page 175) stating the compositional-ity of weak bisimulation equivalence with respect to the operators of PLSCCS .10 Moreprecisely, we show that weak bisimulation equivalence � is a congruence with respect tothe PLSCCS operators action pre�xing, restriction, relabelling, lazy product and guardedprobabilistic choice.10Recall the syntax and semantics of the lazy synchronous calculus PLSCCS which was introduced inSection 4.3 (page 83 �).

7.4. COMPOSITIONALITY 175In what follows, we shrink our attention to �nitary PLSCCS programs, i.e. programs Pwhere the associated fully probabilistic process O[[P]] is �nite (or can be identi�ed with a�nite process).Notation 7.4.1 [Finitary PLSCCS programs] A PLSCCS program hdecl ; si is called�nitary i� there are only �nitely many statements t 2 Stmt0 that are reachable from s in(Stmt0;Act0;Pdecl). A declaration decl : ProcVar ! StmtPLSCCS is called �nitary i�, foreach Z 2 ProcVar, hdecl ; Zi is �nitary.If P is �nitary then O[[P]] can be identi�ed with the �nite fully probabilistic process thatarises from O[[P]] by removing all statements t 2 Stmt0 that are not reachable from theinitial state. Clearly, if decl is �nitary then, for each statement s, hdecl ; si is �nitary.11 ForPLSCCS programs P, P 0, we de�ne P � P 0 i� O[[P]] � O[[P 0]]. For �xed declaration decl ,we de�ne the relations �decl for PLSCCS statements by s �decl s0 i� hdecl ; si � hdecl ; s0i.Theorem 7.4.2 Weak bisimulation equivalence is preserved by the PLSCCS operatorsaction pre�xing, restriction, relabelling and lazy product. More precisely, if decl is a�nitary declaration, then for all PLSCCS statements s, s0, si, s0i:(a) If s �decl s0 then a:s �decl a:s0, s n L �decl s0 n L and s[`] �decl s0[`].(b) If si �decl s0i, i = 1; 2, then s1
 s2 �decl s01
 s02; and thus,s1
 s2 �decl s01
 s02:(c) Weak bisimulation equivalence is a congruence with respect to guarded probabilisticchoice, i.e. if si �decl s0i, i 2 I, then�Xi2I [pi]ai:si �decl �Xi2I [pi]ai:s0i:Proof: Part (a) is an easy veri�cation. We show (b) and (c). More precisely, we�x a �nitary declaration decl , some �nite subsets S1, S2, of Stmt0 that contain 0 andthat are closed with respect to the transition relation induced by Pdecl (i.e. if t 2 Si andPdecl(t; a; u) > 0 then u 2 Si). We show thatR = n(s1
 s2; s01
 s02) : si; s0i 2 Si; si �decl s0i; i = 1; 2ois a bisimulation (in the sense of De�nition 3.4.3, page 54). Here, we put t
0 = 0
 t = 0and t �decl 0 i� O[[hdecl ; ti]] � (Stmt0;Act0;Pdecl ; 0). For subsets C1 of S1 and C2 of S2,we de�ne C1
 C2 = fs1
 s2 : s1 2 C1; s2 2 C2g:Clearly, R is an equivalence relation on S1
 S2. Each equivalence class C 2 S=R is ofthe form C = C1
 C2 where Ci 2 Si= �decl , i = 1; 2. Let a 2 Act , C = C1
 C2 2 S=R11A su�cient condition which guarantees that decl is �nitary is the \simplicity" of decl in the sensethat, for all process variables Z, Z 0 2 ProcVar , there is no occurrence of Z 0 in decl (Z) that is containedin a substatement of the form t[`], t n L or t1
 t2.

176 CHAPTER 7. WEAK BISIMULATIONand (s; s0) 2 R where s = s1
 s2, s0 = s01
 s02, si �decl s0i, i = 1; 2. Then, by Theorem7.1.4 (page 162) and Corollary 4.3.2 (page 84):Pdecl(s; a; C) = X(�1 ;�2)2Syna Probdecl(s1; � ��1; C1) � Probdecl (s2; � ��2; C2)= X(�1;�2)2Syna Probdecl(s01; � ��1; C1) � Probdecl (s02; � ��2; C2) = Pdecl(s0; a; C):Similarly, Corollary 4.3.3 (page 84) yields that Pdecl(s; 0; C0) = Pdecl(s0; 0; C0) whereC0 = [0]R is the equivalence class of 0 with respect to R. We conclude Pdecl(s; a; C) =Pdecl(s0; a; C) for all a 2 Act0 and C 2 S=R. Hence, R is a bisimulation. In particular,whenever (s; s0) 2 R then s �decl s0. This yields the claim of part (b). Part (c) canbe derived from Theorem 7.1.4 (page 162) and the fact that, for C � Stmt0 and s =�Pi2I [pi]ai:si, Probdecl(s; � �a; C) = Xi2I� pi � Probdecl(si; � �a; C) + Xj2J pjwhere I� = fi 2 I : ai = �g and J = fi 2 I : ai = a; si 2 Cg.Example 7.4.3 We consider the PLSCCS program Sender
Receiver of Example 4.3.6on page 86 which we verify against the speci�cationSpec def= produce:consume:Spec:Clearly, the operational semantics of Sender
 Receiver (shown in Figure 4.14 on page88) and the operational semantics of Spec are weakly bisimilar. On the other hand, ourcongruence result (part (b) of Theorem 7.4.2) allows us to use \modular veri�cation"(i.e. to verify the components Sender and Receiver separately) avoiding the constructionof O[[Sender
 Receiver]] and usingSender Spec def= produce:deliver !wait :ack?:Sender Specas the speci�cation for the sender. Clearly, O[[Sender]] (shown in Figure 4.13 on page 87)and O[[Sender Spec]] are weakly bisimilar. Thus, by Theorem 7.4.2 (page 175):Sender
 Receiver � Sender Spec
 Receiver :It is easy to see that Spec � Sender Spec
Receiver which yields that Sender
Receiverand Spec are weakly bisimilar (by the transitivity of �).Of course, we cannot expect weak bisimulation equivalence to be a congruence for thesynchronous parallel composition of PSCCS as PSCCS does not treat the internal action� in any distinguished way. For example, if s1 = �:nil, s01 = �:�:nil and s2 = �:nil thens1 � s2 can make a � � �-move while s01 � s2 preforms � � �. Thus, if � � � 6= � � � thens1� s2 and s01� s2 are not weakly bisimilar while s1 and s01 are. The counterexample thatdemonstrates that weak bisimulation equivalence is not a congruence for the probabilisticchoice operator is almost the same as the counterexample in the non-probabilistic casewhich shows that weak bisimulation equivalence is not preserved by non-deterministicchoice. Consider the PLSCCS statements s1 = �:nil, s01 = �:�:nil, s2 = �:nil and

7.5. PROOFS 177s = h12i s1 � h12i s2, s0 = h12i s01 � h12i s2.Then, s1 �decl s01 but s 6�decl s0 as s reachs via internal actions the weak bisimulationequivalence class C of s1 = �:nil with probability 1=2 while s0 cannot move to a statethat is weakly bisimilar to s1. Formally, we haveProbdecl (s; � �; C) = 12 > 0 = Probdecl (s0; � �; C)where C is the weak bisimulation equivalence class of s1 and decl an arbitrary declaration.7.5 ProofsIn this section we give the proofs of the main results of that chapter. In what follows,we �x a �nite action-labelled fully probabilistic system (S;Act ;P). We use the followingnotations: If R is an equivalence relation on S and
 a regular expression such thatProb(s;
; C) = Prob(s0;
; C) for all (s; s0) 2 R and C 2 S=R then we de�ne for allA 2 S=R: Prob(A;
;C) = Prob(s;
; C) where s 2 A. We simply write [s] to denote theweak bisimulation equivalence class of s (i.e. [s] = [s]�).7.5.1 Weak and branching bisimulation equivalenceIn this section we give the proof of Theorem 7.1.10 (page 163) which states that � = �brand the proof of Theorem 7.1.4 (page 162).De�nition 7.5.1 [Completeness of a weak bisimulation] Let R be a weak bisimula-tion. R is called complete i�� Whenever s 2 S, C 2 S=R and Prob(s; � �; C) = 1 then s 2 C.� If Div 6= ; then Div 2 S=R.Note that, if R is a complete weak bisimulation and A 2 S=R, A 6= Div , then A\Div = ;(in particular, A does not contain terminal states) and there is a state s 2 A withP(s; �; A) < 1. Thus, A \ SX 6= ; where X = S=R is the induced partition.12Lemma 7.5.2 s � s0 i� (s; s0) 2 R for some complete weak bisimulation R.Proof: It su�ces to show that each weak bisimulation is contained in some completeweak bisimulation. For R to be a weak bisimulation, we de�ne J (R) to be the smallestequivalence relation on S which contains R and such that:� If Prob(s; � �; [s0]R) = 1 then (s; s0) 2 J (R)� If Div 6= ; then (s; s0) 2 J (R) for all s, s0 2 Div .Let R0 = R, Ri+1 = J (Ri) and R0 = SiRi. It is easy to see that R0 is a complete weakbisimulation.12Here, SX is as in Notation 7.2.2, page 165.

178 CHAPTER 7. WEAK BISIMULATIONNotation 7.5.3 [The matrices AR and A0R] For R to be a complete weak bisimula-tion, we de�ne matrices AR and A0R as follows: Let A1; : : : ; Ak be an enumeration of thoseequivalence classes Ai 2 S=R which contain some state si 2 SnSterm with P(si; �; Ai) < 1.(Then, fA1; : : : ; Akg = S=R n fDivg.) Let AR be the following matrix:AR = (Prob(Ai; � �; Aj))1�i;j�kWe de�ne A0 = Div. In the case where A0 = ; we de�ne Prob(A0; � �; A0) = 1 andProb(A0; � �; Aj) = Prob(Aj; � �; A0) = 0if j � 1. Let A0R = (Prob(Ai; � �; Aj))0�i;j�k.Independent on whether or not Div = ;, the matrix A0R is of the formA0R = 0BBBB@ 1 �0... AR0 1CCCCA :Note that Sterm � Div = A0. Hence, Ai \ Sterm = ;, i = 1; : : : ; k.Lemma 7.5.4 If R is a complete weak bisimulation then AR and A0R are regular. More-over: For all l 2 f1; : : : ; kg and all b0; : : : ; bl�1; bl+1; : : : ; bk 2 [0; 1], the equation systemxl = 0; kXi=0 xi � Prob(Ai; � �; Aj) = bj; j = 0; : : : ; k; j 6= lhas at most one solution.Proof: Let A0; : : : ; Ak be as in Notation 7.5.3 (page 178). For each h 2 f1; : : : ; kg we�x some state sh 2 Ah with P(sh; �; Ah) < 1. Let
C = (P(sh; �; Ai))1�h;i�k and E = 0BBBBBBBBB@

1� e1 0 0 : : : 00 1� e2 0 : : : 0...0 0 0 : : : 1� ek
1CCCCCCCCCAwhere ej = kXi=1 P(sj; �; Ai) � Prob(Ai; � �; Aj):We show that C �AR + E = AR: Let dh;j be the element of C �AR + E in the h-throw and j-th column.� For j = 1; : : : ; k we have:dj;j = kXi=1 P(sj; �; Ai) � Prob(Ai; � �; Aj) + 1� ej = 1 = Prob(Aj; � �; Aj):

7.5. PROOFS 179� For h, j = 1; : : : ; k and h 6= j:Prob(Ah; � �; Aj) = Prob(sh; � �; Aj) = kXi=1 P(sh; �; Ai) � Prob(Ai; � �; Aj) = dh;j:Note that Prob(A0; � �; Aj) = 0 for all j � 1.This yields C�AR + E = AR. Thus, E = (I�C)�AR where I denotes the k�k-identitymatrix. Next we show that ej > 0, j = 1; : : : ; k.� If Prob(Ai0; � �; Aj) 6= 0 for some i0 2 f1; : : : ; kg n fjg with P(sj; �; Ai0) > 0 thenej � kXi=1i6=i0 P(sj; �; Ai) + P(sj; �; Ai0) � Prob(Ai0; � �; Aj) < P(sj; �) � 1since Prob(Ai0 ; � �; Aj) < 1 because R is complete.� If Prob(Ai; � �; Aj) = 0 for all i 2 f1; : : : ; kg n fjg with P(sj; �; Ai) > 0 thenej = P(sj; �; Aj) � Prob(Aj; � �; Aj) = P(sj; �; Aj) < 1:Thus, in both cases, ej < 1. Hence, E is regular which yields the regularity of AR. It isclear that the regularity of AR implies the regularity of the \full" matrix A0R. Note thatA0R (and thus the inverse matrix (AR0)�1 of A0R) are of the form:A0R = 0BBBB@ 1 �0... AR0 1CCCCA (AR0)�1 = 0BBBB@ 1 �0... A�1R0 1CCCCAMoreover, E �A�1R = I�C. Thus, (1� ej) � aj;j = 1�P(sj; �; Aj) > 0 where (AR0)�1 =(ai;j)0�i;j�1. Hence,(*) aj;j > 0, j = 1; : : : ; k.Next we show that the equation system of above has at most one solution. LetL = f(b0; : : : ; bl�1; t; bl+1; : : : ; bk) : t 2 IRgwhere IR denotes the set of real numbers. Let H = f(x0; : : : ; xk) 2 IRk+1 : xl = 0g andL0 = fy � (AR0)�1 : y 2 Lg. Then, H \ L0 is the set of solution of the equation systemunder consideration. We show that either H \ L0 = ; or H \ L0 consists of a singlepoint. First we observe that H and L (and thus L0 and H \ L0) are a�ne spaces withdim(H) = k and dim(L) = dim(L0) = 1 where dim(X) denotes the dimension of X.Hence, if H \ L0 6= ; then� either dim(H \ L0) = 0 (i� H \ L0 consists of a single point)� or dim(H \ L0) = 1 (i� L0 � H).

180 CHAPTER 7. WEAK BISIMULATIONTherefore, it su�ces to show that L0 6� H. We suppose that L0 � H. Then, there are realvectors a, c such that L0 = fa+ t �c : t 2 IRg where a = (a0; : : : ; ak) and c = (c0; : : : ; ck)with al = cl = 0 and c 6= 0. By de�nition of L0 we have L = fx �A0R : x 2 L0g. Hence,bj = kXi=0 ai � Prob(Ai; � �; Aj) + t � kXi=0 ci � Prob(Ai; � �; Aj)for all j = 0; : : : ; k, j 6= l and t 2 IR. Thus,kXi=0 ci � Prob(Ai; � �; Aj) = 0 if j 6= l.Hence, c def= kXi=0 ci � Prob(Ai; � �; Al) 6= 0(since, otherwise the rows of A0R would be linear dependent in contradiction to the reg-ularity of A0R). W.l.o.g. c = 1. Then, c is the l-th row of (AR0)�1. In particular,0 = cl = al;l. But this contradicts the constraint al;l > 0 from (*).We show that � coincides with another kind of bisimulation equivalence that we callright-branching bisimulation.Notation 7.5.5 [Right-branching bisimulation] A right-branching bisimulation isan equivalence relation R on S such that Prob(s; � �ba; C) = Prob(s0; � �ba; C) for all (s; s0) 2R, a 2 Act and all equivalence classes C 2 S=R. s �rbr s0 i� (s; s0) 2 R for some right-branching bisimulation R.Lemma 7.5.6 s �rbr s0 implies s � s0. More precisely: Each right-branching bisimu-lation is a weak bisimulation.Proof: Let R be a right-branching bisimulation. We show that R is a weak bisimu-lation. Let � 2 Act n f�g, s 2 S and C 2 S=R. Then, for all B 2 S=R and s 2 B:Prob(s; � ��� �; C) = Xt2S Prob(s; � ��; t) � Prob(t; � �; C)= XA2S=R Prob(B; � ��;A) � Prob(A; � �; C):Hence, if (s; s0) 2 R then Prob(s; � ��� �; C) = Prob(s0; � ��� �; C) for all C 2 S=R and� 2 Act n f�g.Lemma 7.5.7 s � s0 implies s �rbr s0. More precisely: Each complete weak bisimu-lation is a right-branching bisimulation.Proof: Let R be a complete weak bisimulation. We �x some � 2 Act n f�g and showthat Prob(s; � ��;A) = Prob(s0; � ��;A) for all s � s0 and all A 2 S=R. (Ranging overall �, we obtain that R is a right-branching bisimulation. Thus, � � �rbr.)

7.5. PROOFS 181By the regularity of A0R (Lemma 7.5.4, page 178): Whenever we �x a real vector a (oflength k+1) then the linear equation system x �A0R = a has a unique solution. For s 2 Sand j = 0; 1; : : : ; k we have:Prob(s; � ��� �; Aj) = Xt2S Prob(s; � ��; t) � Prob(t; � �; Aj)= kXi=0 Prob(s; � ��;Ai) � Prob(Ai; � �; Aj):Thus, for �xed l: For all states s 2 Al, the vector (Prob(s; � ��;Ai))0�i�k is a solution ofthe linear equation system x �A0R = a where a = (aj)0�j�k and aj = Prob(Al; � ��� �; Aj).By the regularity of A0R: If (s; s0) 2 R (i.e. s, s0 2 Al for some l) then Prob(s; � ��;Ai) =Prob(s0; � ��;Ai), i = 0; : : : ; k.Lemma 7.5.8 s �br s0 implies s � s0. More precisely: Each branching bisimulationis a weak bisimulation.Proof: Let R be a branching bisimulation. It su�ces to show that R is a right-branching bisimulation (Lemma 7.5.6, page 180). For r � 1 and A, C 2 S=R, A 6= C, let�r be the set of tuples (C0; : : : ; Cr) such that� Ci 2 S=R, i = 0; 1; : : : ; r,� C0 = A, Cr = C,� Ci 6= Ci+1, i = 0; : : : ; r � 1.Then, for all s 2 A:Prob(s; � �; C) = 1Xr=1 X(C1;:::;Cr)2�r r�1Yi=0 ProbR(Ci; � �; Ci+1)Hence, Prob(s; � �; C) = Prob(s0; � �; C) for all s, s0 2 A. Similarly,Prob(s; � ��;C) = Prob(s0; � ��;C)for all s, s0 2 A, � 2 Act n f�g and C 2 S=R.Lemma 7.5.9 (cf. Lemma 7.2.4, page 165) Let R be an equivalence relation on S.Then, R is a branching bisimulation if and only if for all C 2 S=R, a 2 Act and (s; s0) 2R:(1) If P(s; �; [s]R), P(s0; �; [s0]R) < 1 and (a; C) 6= (�; [s]R) thenP(s; a; C)1�P(s; �; [s]R) = P(s0; a; C)1�P(s0; �; [s0]R) :(2) If P(s; �; [s]R) = 1 then� either P(t; �; [t]R) = 1 for all t 2 [s]R� or there exists a �nite path � starting in s with �(i) 2 [s]R, i = 1; : : : ; j�j andP(last(�); �; [s]R) < 1.

182 CHAPTER 7. WEAK BISIMULATIONIn this case: If s 2 S with P(s; �; [s]R) < 1 thenProbR(s; � �ba; C) = P(s; a; C)1�P(s; �; C)for all a 2 Act, C 2 S=R with (a; C) 6= (�; [s]R).Proof: Let T = Sterm [ft 2 S n Sterm : P(t; �; [t]R) = 1g (i.e. T = S n SX whereX = S=R).\if": Let A 2 S=R with A � T . Then, for all s 2 A:ProbR(s; � �ba; C) = (1 : if a = � and C = A0 : otherwiseThen, ProbR(t; � �ba; C) = ProbR(t0; � �ba; C) for all t, t0 2 A. Let A, C 2 S=R such thatA 6� T . Then, the matrix I�CA is regular where I is the jAj � jAj-identity matrix andCA = (P(s; �; t))s;t2A. This can be seen as follows: If (I�CA) � x = 0, x = (xs)s2A, thenxs = Pt2AP(s; �; t) � xt for all s 2 A. If we suppose that x 6= 0 then we may assumew.l.o.g. that xs > 0 for some s 2 A (otherwise we deal with �x rather than x). Let Wbe the set of states s 2 A where xs is maximal. Then, for all s 2 W , P(s; �; A) = 1 andxs = xt if P(s; �; t) > 0. Thus, W � T and, if s 2 W then P(s; �; t) > 0 implies t 2 W .Hence, there is no �nite path � starting in s with �(i) 2 A, i = 0; 1; : : : ; j�j � 1, andP(last(�); �; A) < 1. This contradicts (2).Let a 2 Act such that (a; C) 6= (�; A). Then,ProbR(s; � �ba; C) = Xt2A P(s; �; t) � ProbR(t; � �ba; C) + P(s; a; C):Hence, the vector (ProbR(s; � �ba; C))s2A solves the equation system (I�CA) �x = b whereb = (bs)s2A and bs = P(s; a; C). On the other hand, for all s 2 A:(*) P(s; a; C) = = Xt2A P(s; �; t) �P(s; a; C) + P(s; a; C)(1�P(s; �; A)):Let x = P(s; a; C)=(1�P(s; �; A)) where s 2 A n T . (*) yields:x = Xt2A P(s; �; t) � x + P(s; a; C) for all s 2 A.(Note that P(s; a; C) = 0 and P(s; �; A) = 1 for s 2 A\T .) Hence, the vector x = (xs)s2Awhere xs = x for all s 2 A solves the equation system (I�CA) �x = b. By the regularityof I�CA we get ProbR(s; � �ba; C) = x for all s 2 A. This yields that R is a branchingbisimulation and ProbR(s; � �ba; C) = x = P(s; a; C)1�P(s; �; A)for all s 2 A n T .\only if": Let R be a branching bisimulation, A, C 2 S=R and a 2 Act such that(a; C) 6= (�; A). Let xa;C = ProbR(A; � �ba; C):

7.5. PROOFS 183Then, xa;C = P(s; �; A) � xa;C + P(s; a; C) for all s 2 A. Hence, if s 2 A \ T thenxa;C = P(s; a; C)1�P(s; �; A) :If s 2 A \ T and A 6� T then xa;C 6= 0 for some pair (a; C) as above. Thus,ProbR(s; � �ba; C) = xa;C > 0:Then, there exists a �nite path �0 starting in s of length r � 1 with trace(�0) 2 � �a,�0(i) 2 A, i = 0; 1; : : : ; r� 1 and last(�0) 2 C. Let � be the (r� 1)-th pre�x of �0. Then,�(i) 2 A, i = 1; : : : ; r � 1 and P(last(�); �; A) < 1 (since P(last(�); a; C) > 0).Proposition 7.5.10 s � s0 i� s �rbr s0Proof: follows by Lemma 7.5.6 (page 180) and Lemma 7.5.7 (page 180).Notation 7.5.11 [The conditional probabilities PR(�)] Let R be an equivalence re-lation on S. PR : S � Act � S ! [0; 1]is given by: PR(s; a; t) = 0 if P(s; �; [s]R) = 1 or s 2 Sterm . For s 2 S n Sterm withP(s; �; [s]R) < 1, PR(s; a; t) = P(s; a; t)1�P(s; �; [s]R) if a 6= � or t =2 [s]R.and PR(s; �; t) = 0 if t 2 [s]R. For C � S, a 2 Act and s 2 S, letPR(s; a; C) = Xt2C PR(s; a; t):Clearly, PR(�) = PX (�) (de�ned as in Notation 7.2.3, page 165) for the induced partitionX = S=R.Lemma 7.5.12 s � s0 implies s �br s0. More precisely: Each complete weak bisimu-lation is a branching bisimulation.Proof: Let R be a complete weak bisimulation. It su�ces to show that R ful�lls theconditions (1), (2) of Lemma 7.5.9 (page 181). Let T = Sterm [ft 2 S : P(t; �; [t]R) = 1g.Condition (2): Let A 2 S=R, A 6= Div . There exists a 2 Act and C 2 S=R with(�; A) 6= (a; C) such that Prob(A; � �ba; C) 6= 0. Hence, for each s 2 T there is a �nite path� with trace(�) 2 � �ba and last(�) 2 C. Let i be the smallest index such that �(i) =2 T .(Such an index i exists by de�nition of T .) Then, i � 1 and �(i) 2 A n T . (Note that�(i� 1) 2 T implies �(i) 2 A.)Condition (1): Let A0; : : : ; Ak be as in Notation 7.5.3 (page 178). Let C 2 S=R, Aj 6= C,s 2 Aj. Then, Prob(s; � �; C) = kXi=0P(s; �; Ai) � Prob(Ai; � �; C):

184 CHAPTER 7. WEAK BISIMULATIONNote that Prob(C; � �; C) = 1. Now we suppose that s 2 Aj n T . Then,Prob(s; � �; C)1�P(s; �; Aj) = kXi=0 P(s; �; Ai)1�P(s; �; Aj) � Prob(Ai; � �; C)= kXi=0i6=j P(s; �; Ai)1�P(s; �; Aj) � Prob(Ai; � �; C) + P(s; �; Aj)1�P(s; �; Aj) � Prob(Aj; � �; C)= kXi=0i6=j PR(s; �; Ai) � Prob(Ai; � �; C) + P(s; �; Aj)1�P(s; �; Aj) � Prob(s; � �; C)Here, we use the fact that Prob(s; � �; C) = Prob(Aj; � �; C). We obtain:Prob(s; � �; C) = Prob(s; � �; C) � 11�P(s; �; Aj) � P(s; �; Aj)1�P(s; �; Aj)!= kXi=0i6=j PR(s; �; Ai) � Prob(Ai; � �; C)Thus, for each s 2 Aj n T , the vector (PR(s; �; Ai))0�i�k solves the equation systemxj = 0; kXi=0 xi � Prob(Ai; � �; C) = Prob(Aj; � �; C):Lemma 7.5.4 (page 178) yields PR(s; �; C) = PR(s0; �; C) for all s; s0 2 Aj and C 2 S=R,C 6= Aj. Let PR(Aj; �; C) = PR(s; �; C) where s 2 Aj \ T .For all � 2 Act n f�g and s 2 Aj:Prob(s; � ��;C) = kXi=0 P(s; �; Ai) � Prob(Ai; � ��;C) + P(s; �; C)As before, we obtain for s 2 Aj n T :Prob(s; � ��;C) = kXi=0i6=j PR(s; �; Ai) � Prob(Ai; � ��;C) + PR(s; �; C):Then, for all s 2 Aj n T , � 2 Act and C 2 S=R:Prob(Aj; � ��;C) = kXi=0i6=j PR(Aj; �; Ai) � Prob(Ai; � ��;C) + PR(s; �; C)We obtain PR(s; �; C) = PR(s0; �; C) for all s, s0 2 Aj n T .Corollary 7.5.13 (cf. Theorem 7.1.10, page 163) s � s0 i� s �br s0.

7.5. PROOFS 185Lemma 7.5.14 Let R1, R2 be branching bisimulations. Then, R = (R1 [R2)� is abranching bisimulation.Proof: We show that R ful�lls the conditions (1) and (2) of Lemma 7.5.9 (page 181).First we observe that for j 2 f1; 2g, each equivalence class C 0 2 S=R can be written asC 0 = C0 [: : : [Cr where Ci 2 S=Rj.Condition (1): Let B, C0; : : : ; Cr 2 S=Rj such that Ci \ Ch = ; if i 6= h. Let s, s0 2 C0with P(s; �; C0), P(s0; �; C0) < 1 and a 2 Act with a 6= � if C0 = B and C 0 = C0[: : :[Cr.Then: P(s; a; B) � (1�P(s0; �; C 0)) = P(s; a; B) � 1� rXi=0P(s0; �; Ci)!= P(s; a; B) � 1�P(s0; �; C0)� rXi=1 P(s; �; Ci)1�P(s; �; C0) � (1�P(s0; �; C0))!= (1�P(s0; �; C0)) �P(s; a; B) � 1� rXi=1 P(s; �; Ci)1�P(s; �; C0)!= P(s0; a; B) � (1�P(s; �; C0)) � 1� rXi=1 P(s; �; Ci)1�P(s; �; C0)!= P(s0; a; B) � 1� rXi=0P(s; �; Ci)! = P(s0; a; B) � (1�P(s; �; C 0))Now we assume that C 0 2 S=R. Hence, for all B0 2 S=R, a 2 Act such that a 6= � ifC0 � B0: If P(s; �; C 0), P(s0; �; C 0) < 1. then:P(s; a; B0)1�P(s; �; C 0) = rXi=0 P(s; a; Bi)1�P(s; �; C 0) = rXi=0 P(s0; a; Bi)1�P(s0; �; C 0) = P(s0; a; B0)1�P(s0; �; C 0)if B0 = B0 [: : : [Bm where Bi 2 S=Rj and Bi \ Bh = ; if i 6= h.Condition (2): Let P(s; �; [s]R) = 1. We may assume that P(s; �; [s]Rj) < 1, j = 1; 2, andthat P(t; �; C 0) < 1 for some t 2 C 0 where C 0 = [s]R. (In the case where P(s; �; [s]Rj) = 1for some j we apply Lemma 7.5.9 (page 181) to Rj and obtain the claim.) There is somea 2 Act , B0 2 S=R with B0 6= C 0 if a = � and P(t; a; B0) > 0. By de�nition of R there isa sequence s = s0; s1; : : : ; sl = t with (si; si+1) 2 R1 [R2, i = 1; : : : ; l. It can easily shownby induction on i that Prob(si; � �ba; B0) > 0, i = 0; : : : ; l, Hence, there is a �nite path �with �rst(�) = s, �(i) 2 C 0, i = 0; 1; : : : ; j�j and P(last(�); �; C 0) < 1.Lemma 7.5.15 �br is a branching bisimulation.Proof: Let R1; : : : ; Rr be an enumeration of all branching bisimulations (on the �xedfully probabilistic system (S;Act ;P)). Let R = (SiRi)�. By induction on r and usingLemma 7.5.14 (page 185), it can be shown that R is a branching bisimulation. Thus,R � �br. On the other hand, �br = SiRi (by de�nition of �br). Hence, �br � R.Thus, �br = R is a branching bisimulation.Lemma 7.5.16 � is a weak bisimulation.

186 CHAPTER 7. WEAK BISIMULATIONProof: Lemma 7.5.8 (page 181), Lemma 7.5.15 (page 185) and Corollary 7.5.13 (page184) yield that � = �br is a weak bisimulation.Theorem 7.5.17 (cf. Theorem 7.1.4, page 162) If s � s0. then, for all C 2 S= �,k � 1 and �1; : : : ; �k 2 Act n f�g:(a) Prob(s; � ��1� ��2� � : : : � ��k; C) = Prob(s0; � ��1� ��2� � : : : � ��k; C)(b) Prob(s; � ��1� ��2� � : : : � ��k� �; C) = Prob(s0; � ��1� ��2� � : : : � ��k� �; C)Proof: We prove part (a) by induction on k. In the basis of induction (k = 1) wehave to show that Prob(s; � ��;C) = Prob(s0; � ��;C) for all visible actions � and all weakbisimulation equivalence classes C. This follows immediately by Proposition 7.5.10 (page183) and Lemma 7.5.16 (page 185). In the induction step k � 1 =) k we assume thatk � 2, �1; : : : ; �k 2 Act n f�g and
 = � ��2� � : : : � ��k. Then,� Prob(t;
; C) = Prob(t0;
; C) for all t � t0 and C 2 S= �� Prob(s; � ��1; A) = Prob(s0; � ��1; A) for all A 2 S= �(induction hypothesis). Thus:Prob(s; � ��1
;C) = XA2S=� Prob(s; � ��1; A) � Prob(A;
;C)= XA2S=� Prob(s0; � ��1; A) � Prob(A;
;C) = Prob(s0; � ��1
;C):Here, we use the fact that Path ful(u; � ��1
;C) can be written as disjoint union of thesets �A(u), A 2 S= �, where �A is the set of fulpaths � such that� trace(�(k)) 2 � ��1,� �(k) 2 A,� � = �(k) �
 where
 2 Path ful(�(k);
; C)for some k � 0. Part (b) can be derived from (a):Prob(s;
; C) = XA2S=� Prob(s; � ��1� � : : : � ��k; A) � Prob(A; � �; C)= XA2S=� Prob(s0; � ��1� � : : : � ��k; A) � Prob(A; � �; C) = Prob(s0;
; C):where
 = � ��1� � : : : � ��k� �.7.5.2 � and the testing equivalences =ste and �0We complete the proofs of Theorem 7.3.5 (page 173) and Theorem 7.3.6 (page 174) byshowing that � is �ner than the testing equivalences =ste and �0.Lemma 7.5.18 If A, C 2 S= �, s, s0 2 A, L � Act n f�g and � 2 L thenQ(s; L; �; C) = Q(s0; L; �; C):

7.5. PROOFS 187Proof: First we observe that, for all A, B 2 S= � = S= �br, s, s0 2 A with P(s; �; A),P(s0; �; A) < 1 and � 2 Act n f�g:� P(s; �; S n A) + P(s; L)1�P(s; �; A) = P(s0; �; S n A) + P(s0; L)1�P(s0; �; A)� P(s; �; B)1�P(s; �; A) = P(s0; �; B)1�P(s0; �; A)In particular, P(s; �; S nA) + P(s; L) = 0 i� P(s0; �; S nA) + P(s0; L) = 0. If A = Divthen we put P0(A; �;B) = 0 and rA = 1. For A 2 S= �, A 6= Div , we de�neP0(A; �;B) = P(s; �; B)1�P(s; �; A) ; rA = P(s; �; S n A) +P(s; L)1�P(s; �; A)where s 2 A such that P(s; �; A) < 1. Let (qA)A2S=� be the unique solution of thefollowing equation system.1. qA = 0 if rA = 0 or Prob(A; � ��;C) = 0.2. If rA > 0 and Prob(A; � ��;C) > 0 thenqA = 1rA �0BB@P0(A; �; C) + XB2S=�B 6=A P0(A; �; B) � qB1CCA :The uniqueness of the equation system above is an easy veri�cation. For all A 2 S= �such that rA > 0 and Prob(A; � ��;C) > 0 and s 2 A with P(s; �; A) > 0 we have:P(s; �; S n A) +P(s; L) > 0and 1� P(s; �; A)P(s; �) +P(s; L)! � qA = P(s; �; S n A) +P(s; L)P(s; �) +P(s; L) � qA= P(s; �; S n A) +P(s; L)P(s; �) +P(s; L) � 1rA � 0BB@P0(A; �; C) + XB2S=�B 6=A P0(A; �; B) � qB1CCA= 1�P(s; �; A)P(s; �) +P(s; L) �0BB@P0(A; �; C) + XB2S=�B 6=A P0(A; �; B) � qB1CCA= 1P(s; �) +P(s; L) �0BB@P(s; �; C) + XB2S=�B 6=A P(A; �; B) � qB1CCA= P(s; �; C)P(s; �) +P(s; L) + XB2S=�B 6=A P(s; �; B)P(s; �) +P(s; L) � qB:

188 CHAPTER 7. WEAK BISIMULATIONThus, qA = P(s; �; C)P(s; �) +P(s; L) + XB2S=� P(s; �; B)P(s; �) +P(s; L) � qB:For A 2 S= � and s 2 A, let qs = qA and rs = rA. Then, the vector (qs)s2S solves thefollowing regular linear equation system. If Prob(s; � ��;C) = 0 or rs = 0 then qs = 0.Otherwise, qs = P(s; �; C)P(s; �) +P(s; L) + Xu2S P(s; �; u)P(s; �) +P(s; L) � qu:It is easy to see that, if rs = 0 then Q(s; L; �; C) = 0. Thus, the vector (Q(s; L; �; C))s2Sis also a solution of the equation system above. Hence,qs = Q(s; L; �; C) for all s 2 S.We conclude: Q(s; L; �; C) = qA = Q(s0; L; �; C) for all s, s0 2 A, A 2 S= �.Theorem 7.5.19 (cf. Theorem 7.3.5, page 173) � is �ner than =ste.Proof: As observed in [Chri90b], s =ste s0 i�Q(s; L1 : : : Lk; �1 : : : �k) = Q(s0; L1 : : : Lk; �1 : : : �k)for all L1; : : : ; Lk 2 O�erings and �1; : : : ; �k 2 Act n f�g. By induction on k and usingLemma 7.5.18 (page 186) we obtain that, if s � s0 thenQ(s; L1 : : : Lk; �1 : : : �k; C) = Q(s0; L1 : : : Lk; �1 : : : �k; C)for all C 2 S= �. Summing up over all C 2 S= � we obtainQ(s; L1 : : : Lk; �1 : : : �k) = Q(s0; L1 : : : Lk; �1 : : : �k):Hence, s =ste s0.Notation 7.5.20 [The set Distr 0(X)] For X to be a set, let Distr0(X) be the set con-sisting of all distributions on X and the function � : X ! [0; 1] with �(x) = 0 for allx 2 X.Notation 7.5.21 [Probabilistic traces] A probabilistic trace is a �nite sequence� = h�1; �1ih�2; �2i : : : h�k; �kiover Distr 0(Actnf�g)�(Actnf�g). "PrTr denotes the empty probabilistic trace, ProbTracesthe collection of all probabilistic traces.Notation 7.5.22 [The normalizator norm(s; �)] For � 2 Distr 0(Act nf�g) and s 2 S,the normalizator of s and � is de�ned bynorm(s; �) = X�2Actnf�gP(s; �) � �(�) + P(s; �):

7.5. PROOFS 189[CSZ92, YCDS94] de�ne the probabilities N(s; �; �; C) that from state s the state t isreached via a �nite path labelled by � �� given that the environment is enabling actionsaccordance with �. Here, we use a slightly di�erent way to de�ne N(�) (which yields thesame values).Notation 7.5.23 [The values N(s; �; �; C)] LetN : S � (Act n f�g)� Distr0(Act n f�g)� 2S ! [0; 1]be de�ned as follows. The vector (N(s; �; �; C))s2S is the unique solution of the followinglinear equation system:1. If Prob(s; � ��;C) = 0 or norm(s; �) = 0 then N(s; �; �; C) = 0.2. If Prob(s; � ��;C) > 0 and norm(s; �) > 0 thenN(s; �; �; C) = �(�)norm(s; �) �P(s; �; C) + Xt2S P(s; �; t)norm(s; �) �N(t; �; �; C):Clearly, if �(�) = 0 for all � then N(s; �; �; C) = 0 for all states s and C � S.Notation 7.5.24 [The values M(s; �)] Let M : S � ProbTraces ! [0; 1] be given by:M(s; "PrTr) = 1 and M(s; h�; �i�) = Xt2SN(s; �; �; t) �M(t; �)De�nition 7.5.25 [The testing equivalence �0, cf. [CSZ92, YCDS94]]s �0 s0 i� M(s; �) =M(s0; �) for all � 2 ProbTraces.Lemma 7.5.26 If s � s0 then N(s; �; �; C) = N(s0; �; �; C) for all � 2 Act n f�g,� 2 Distr 0(Act n f�g and C 2 S= �.Proof: If �(�) = 0 for all � then N(s; �; �; C) = N(s0; �; �; C) = 0. Now we assumethat � 2 Distr(Act n f�g). For A 2 S= �, A 6= Div , we choose some s 2 A withP(s; �; A) < 1 and de�neP0(A; a; C) = P(s; �; C)1�P(s; �; A) for (a; C) 6= (�; A),P0(A; �) = XC2S=�C 6=A P0(A; �; C); P0(A; �) = XC2S=�P0(A; �; C):We de�ne P0(Div ; �) = 0 and P0(Div ; a; C) = 0 if (a; C) 6= (�;Div). For all A 2 S= � wede�ne: norm(A; �) = X�2Actnf�gP0(A; �) � �(�) + P0(A; �):First we show that(1) norm(A; �) = 0 implies Prob(s; � ��) = 0 for all s 2 A and � 2 Act n f�g with�(�) > 0.

190 CHAPTER 7. WEAK BISIMULATIONLet norm(A; �) = 0 and � 2 Act n f�g with �(�) > 0. Then:� P0(A; �; C) = 0 for all C 2 S= �,� P0(A; �; C) = 0 for all C 2 S= �, C 6= A.Hence, P(s; �) = 0 and P(s; �; SnA) = 0 for all s 2 A. In particular, Prob(s; � �; SnA) = 0for all s 2 A. This yields Prob(s; � ��) = 0.For A, C 2 S= �, � 2 Act n f�g and � 2 Distr 0(Act n f�g), we de�ne N(A; �; �; C)as follows. The vector (N(A; �; �; C))A2S=� is the unique solution of the linear equationsystem:1. If norm(A; �) = 0 then N(A; �; �; C) = 0.2. If norm(A; �) > 0 thenN(A; �; �; C) = �(�)norm(A; �) �P0(A; �; C) + XB2S=�B 6=A P0(A; �; t)norm(A; �) �N(B; �; �; C):In what follows, we suppose �, � and C to be �xed. It su�ces to show that(*) N(s; �; �; C) = N(A; �; �; C) for all s 2 A and A 2 S= �.For all s 2 S we de�ne xs = N([s]; �; �; C). (Recall that [s] denotes the weak bisimulationequivalence class of s.) Clearly, (*) holds if norm(A; �) = 0. Now we assume A 2 S= �and norm(A; �) > 0. (In particular, A 6= Div .) Then:(2) If s 2 A with P(s; �; A) < 1 thennorm(s; �)�P(s; �; A) = norm(A; �) � (1�P(s; �; A)) :(3) If s 2 A with P(s; �; A) < 1 then norm(s; �) = P(s; �; A) i� norm(A; �) = 0.First we assume that norm(A; �) = 0. By (1), Prob(s; � ��) = 0 for all s 2 A. Thus, bythe de�nition of N(�), N(s; �; �; C) = 0 = N(A; �; �; C) = xs.Next we assume that norm(A; �) > 0. It is easy to see that, if Prob(A; � ��;C) = 0 thenxs = 0 = N(A; �; �; C) for all s 2 A. In what follows, we suppose Prob(A; � ��;C) > 0.By (2) and (3),� norm(s; �) > 0 for all s 2 A,� norm(s; �) > P(s; �; A) for all s 2 A with P(s; �; A) < 1.Let s 2 A with P(s; �; A) < 1. Then:xs = N(A; �; �; C)= �(�)norm(A; �) �Xt2C P(s; �; t)1�P(s; �; A) + 1norm(A; �) � Xt2SnA P(s; �; t)1�P(s; �; A) � xt= �(�) � 1�P(s; �; A)norm(s; �)�P(s; �; A) �Xt2C P(s; �; C)1�P(s; �; A)

7.5. PROOFS 191+ 1�P(s; �; A)norm(s; �)�P(s; �; A) � Xt2SnA P(s; �; t)1�P(s; �; A) � xt= �(�)norm(s; �)�P(s; �; A) �P(s; �; C)+ 1norm(s; �)�P(s; �; A) �Xt2SP(s; �; t) � xt � P(s; �; A)norm(s; �)�P(s; �; A) � xsThus, xs � norm(s; �)norm(s; �)�P(s; �; A) = xs � 1 + P(s; �; A)norm(s; �)�P(s; �; A)!= 1norm(s; �)�P(s; �; A) � �(�) �P(s; �; C) + Xt2SP(s; �; t) � xt! :Hence, xs = �(�)norm(s; �) �P(s; �; C) + 1norm(s; �) �Xt2S P(s; �; t) � xt:This yields xs = N(s; �; �; C) for all s 2 A.Theorem 7.5.27 (cf. part (a) of Theorem 7.3.6, page 174) � is �ner than �0.Proof: follows by Lemma 7.5.26 (page 189) and induction on the length of theprobabilistic traces.

192 CHAPTER 7. WEAK BISIMULATION

Chapter 8Fairness of probabilistic choice
In Section 3.2.3 (page 45 �) we argued that, for concurrent probabilistic systems, certainliveness properties cannot be established unless fairness assumptions are made aboutthe way in which the non-deterministic choices are resolved. For probabilistic systems,one might also consider fairness with respect to the probabilistic choices. Clearly, theprobabilities for the transitions can be viewed as conditions on the frequencies with whicha certain transition is chosen. Thus, fairness assumptions about the probabilistic choicesseem to be super
uous as they are expressed implicitly by the transition probabilities.Nevertheless, the probabilistic choices might be resolved unfair, and hence { as in thenon-probabilistic (or concurrent probabilistic) case { it is possible that certain livenessprobabilities are violated in some executions while they hold in all executions that arefair with respect to the probabilistic choices. For instance, if we
ip a coin in�nitelyoften then the property that eventually the outcome is \head" does not hold for allexecutions as it is possible that we always obtain \tail". But the probability for such anunfair behaviour is zero; i.e. the event \eventually head" holds for almost all executions.Thus, from a purely descriptive point of view, fairness with respect to the probabilisticchoices is irrelevant because the probability measure of all executions that satisfy a certainlinear time property does not depend on whether or not we shrink the attention to thoseexecutions where the probabilistic choices are resolved in a fair manner. However, bythe results of Pnueli & Zuck [Pnue83, PnZu86a, PnZu93] fairness with respect to theprobabilistic choices might be helpful for verifying qualitative properties for probabilisticsystems. [Pnue83, PnZu86a, PnZu93] introduces two kinds of fairness with respect to theprobabilistic choices (called extremely fairness and �-fairness) for (a variant of) concurrentprobabilistic systems. Extreme and �-fairness are shown to be sound for the veri�cation ofqualitative linear time properties in the following sense: Whenever a linear time property' holds for all execution sequences that are extremely fair (or �-fair) then ' holds withprobability 1 (independent on the adversary).The main goal of that chapter (whose results are published in [BaKw98a], a joint workwith Marta Kwiatkowska) is to present a general notion of fairness with respect to theprobabilistic choices (shortly called p-fairness) that subsumes extremely and �-fairness �ala [Pnue83, PnZu86a, PnZu93] and the above mentioned soundness result. More precisely,we show that in order to demonstrate the validity of a qualitative linear time property 'for probabilistic processes it su�ces to show { for some instance of our general p-fairness193

194 CHAPTER 8. FAIRNESS OF PROBABILISTIC CHOICEnotion { that ' holds for all p-fair execution sequences. This allows one, given an instanceof our p-fairness notion, to reduce the veri�cation of qualitative linear time properties ofprobabilistic processes to the non-probabilistic case: rather than compute the exact prob-abilities of the set of paths ful�lling ', it is su�cient to establish that ' holds for all p-fairexecution sequences by means of well-known non-probabilistic methods (deductive meth-ods or model checking, see e.g. [LiPn85, MaPn92, CGH94, Lamp94, GPV+95, MaPn95]).P-fairness might also be useful for computing the probability measure of certain events.Given a set � of fulpaths for which we want to compute Prob(�(s)), one might de�nea \simpler" set � 0 of fulpaths and show that, for any p-fair fulpath �, � 2 � i� � 2 � 0(which yields Prob(�(s)) = Prob(� 0(s))). Thus, the more \complicate" set � might bereplaced by the \simpler" set � 0.1Organization of this chapter: The notion of p-fairness is introduced for both fullyprobabilistic and concurrent probabilistic systems. In Section 8.1, we introduce p-fairnessfor fully probabilistic systems and present our main result stating that, for every instanceof our general notion of p-fairness, the set of p-fair execution sequences in bounded systemshas probability 1 (Theorem 8.1.5, page 196). Section 8.2 deals with p-fairness concurrentprobabilistic systems and shows that extreme and �-fairness and the above mentionedsoundness result �a la Pnueli & Zuck can be obtained from our general p-fairness notion.8.1 P-fairness for fully probabilistic systemsWe introduce a general notion of (strong) fairness with respect to the probabilistic choicesin fully probabilitsic systems. For this, we suppose that the alternatives of the probabilisticchoices are associated with \labels", with each label denoting e.g. a process name or anaction. We say an execution sequence is p-fair if whenever a label is enabled in�nitelymany times then it is taken in�nitely many times.De�nition 8.1.1 [p-fairness for fully probabilistic systems] Let (S;P) be a fullyprobabilistic system. A p-fairness condition for (S;P) is a pair (L; l) where L is a non-empty countable set of labels and l : S � S ! 2L a function with l(s; t) = ; if P(s; t) = 0.Let ` 2 L. ` is called� enabled in a state s i� ` 2 l(s; t) for some t 2 S,� taken in the i-th step of a fulpath � i� ` 2 l(�(i); �(i+ 1)).A fulpath � is called p-fair with respect to (L; l; `) i� either ` is enabled only �nitely manytimes in � or ` is taken in�nitely often in �. � is called p-fair with respect to (L; l) (or(L; l)-fair) i�, for each label ` 2 L, � is p-fair with respect to (L; l; `).Note that all �nite fulpaths are (L; l)-fair since each label ` is enabled only �nitely manytimes. If (L; l) are understood from the context then we brie
y speak about p-fairness1For instance, in the correctness proofs of the model checking algorithms in Chapter 9 we make use ofthis technique and introduce state and total fairness as special instances of p-fairness (resp. a combinationof p-fairness and fairness of non-deterministic choice in the case of total fairness) that we use to give simplecharacterizations for the wanted probability measures.

8.1. P-FAIRNESS FOR FULLY PROBABILISTIC SYSTEMS 195with respect to a label ` 2 L (rather than p-fairness with respect to (L; l; `)) and p-fairness(rather than (L; l)-fairness).The set L of labels should be thought of as an abstraction which allows to express di�erentkinds of fairness. Clearly, whether or not a fair probabilistic transition system yields areasonable notion of fairness depends on the choice of L and `.Example 8.1.2 [Process fairness] To see why we need sets of labels we show how tode�ne process fairness. We consider a fully probabilistic system which is obtained froma probabilistic merge of sequential randomizes processes P1; : : : ;Pn. For this, we considerthe parallel (interleaved) execution of P1; : : : ;Pn on a single processor where we assume ascheduler that decides randomly which of the processes Pi performs the next step. Givena global state s of the composed system, the scheduler decides { according to a certaindistribution �s { which step has to be performed next. The transition probabilities of thecomposed system are given by these distributions �s in the sense that P(s; t) = �s(t).2To de�ne process fairness, let L to be the set of process names (i.e. L = fP1; : : : ;Png) andl(s; t) the set of processes that take part in the transition from the global state s to theglobal state t. Thus, l(s; t) might consist of a single process Pi (if the global transitions ! t arises from an autonomous move by Pi while the other processes are idle) or of aset consisting of two or more processes (if a communication occurs). Then, (L; l)-fairnessis process fairness in the following sense. For s to be a global state of the system, we saythat process Pi is enabled in s i� there is some global t with P(s; t) > 0 such that Pitakes part in the transition s! t. Let � = s0 ! s1 ! : : : be an in�nite fulpath. Then, �is (L; l)-fair i� whenever Pi is enabled in in�nitely many states si then there are in�nitelymany indices i where Pi is activated in the transition si ! si+1.Similarly, we can de�ne interaction fairness which ensures that whenever the synchroniza-tion of certain processes Pi1 ; : : : ;Pik is possible in in�nitely many global states then thereare in�nitely many steps where (exactly) the processes Pi1 ; : : : ;Pik perform a synchro-nized step. For this, we deal with L to be the powerset of fP1; : : : ;Png and the labellingfunction l that assigns to each transition s ! t the singleton set l(s; t) of all processesthat are activated in the step s! t. Then, (L; l)-fairness is interaction fairness.Remark 8.1.3 [Action fairness] To de�ne action (event) fairness in action-labelledprobabilistic systems we have to deal with a slight modi�cation of p-fairness. For anaction-labelled fully probabilistic systems (S;Act ;P) we use a labelling function l : S �Act � S ! 2L that assigns to each (action-labelled) step a set of labels. To de�ne actionfairness, we deal with L = Act and de�ne l(s; a; t) = fag. Then, (L; l)-fairness ensuresthat whenever an action a 2 Act is enabled in�nitely often then a is taken in�nitely often.More precisely, if � = s0 a1! s1 a2! : : : is an in�nite fulpath then � is (L; l)-fair i� wheneverP(si; a) > 0 for in�nitely many i then a = ai for in�nitely many i.2This can be viewed as a generalization of the probabilistic merge operator proposed by Baeten,Bergstra & Smolka [BBS92]. [BBS92] deal with a (binary) probabilistic merge operator P1kp;qP2parametrized by probabilities p, q 2 [0; 1] (with p + q � 1) which are interpreted as follows. A com-munication between P1 and P2 occurs with probability 1� q. p � q is the probability for P1 to make anautonomous move while P2 is idle; similarly, (1� p) � q is the probability for P2 to make an autonomousmove while P1 is idle.

196 CHAPTER 8. FAIRNESS OF PROBABILISTIC CHOICENotation 8.1.4 [The sets pFair ` and pFair (L;l)] Let (L; l) be a p-fairness condition fora fully probabilistic system (S;P). For ` 2 L, we de�ne pFair (L;l;`) to be the set of fulpathsthat are p-fair with respect to `.pFair (L;l) = \̀2L pFair (L;l;`)denotes the set of all fulpaths that are (L; l)-fair.If (L; l) are understood from the context then we brie
y write pFair rather than pFair (L;l)and pFair ` rather than pFair (L;l;`). To see that pFair(s) is measurable we �rst expressp-fairness as a linear time formula, and then use a well-known result [Vard85, PnZu93]stating that the set of paths ful�lling a given linear time formula is measurable. Theunderlying linear time logic is a slight modi�cation of LTL (see Section 9.1.3, page 212)which uses labelled next step operators X` rather than the usual (unlabelled) next stepoperator X. Formulas are built from: the truth values tt and � , the atomic propositionsenabled(`) for each label ` 2 L, the usual boolean connectives ^, _, :, !, and thetemporal operators 2 (\always"), 3 (\eventually") and a next-step operator X` for eachlabel ` 2 L. The formulas are interpreted over the fulpaths of fully probabilistic system(S;P) with a p-fairness condition (L; l). We de�ne the satisfaction relation j= as follows.Let � be a fulpath in (S;P). Then,(�; j) j= enabled(`) i� ` is enabled in �(j)(�; j) j= X` ' i� j�j � j + 1, ` 2 l(�(j); �(j + 1)) and (�; j + 1) j= '.The other operators are interpreted in the usual way (see e.g. [MaPn92]). We write � j= 'i� (�; 0) j= '. As shown e.g. in [Vard85, PnZu93], for a given formula ', the set of fulpaths� starting in a �xed state s 2 S such that � j= ' is measurable. We de�ne'` = 23enabled(`) ! 23taken(`) where taken(`) = X` tt :Clearly, � j= '` i� � is p-fair with respect to `. Thus,pFair `(s) = f� 2 Path ful(s) : � j= '` gand pFair (L;l)(s) = T`2L pFair `(s) are measurable.Our results rely on the boundedness of (possibly in�nite-state) fully probabilistic systems(see De�nition 3.1.12, page 38). We now state our main result which shows that for eachinstance of p-fairness in a bounded system, the measure for the p-fair fulpaths is 1.Theorem 8.1.5 Let (L; l) be a p-fairness condition for a bounded fully probabilistic system(S;P) and s 2 S. Then, Prob(pFair (L;l)(s)) = 1:Proof: Let c > 0 be a real number such that P(s; t) > 0 implies P(s; t) � c. It su�cesto show that pFair `(s) = 1 for all ` 2 L.3 Let ` be a �xed label and � be the set of allfulpaths where ` is enabled in�nitely often and which totally ignore `-steps, i.e.� = f� 2 Path ful : � j= 23enabled(`) ^ 2:taken(`)g3Note that Prob(�i) = 1 implies Prob(Ti�i) = 1 which holds in each probabilistic space.

8.1. P-FAIRNESS FOR FULLY PROBABILISTIC SYSTEMS 197If � is a �nite path with last(�) = s then we brie
y write � � �(s) to denote the setf� � � : � 2 �(s)g. Let Path t�n be the set of all �nite paths ending in t andT = ft 2 S : t j= enabled(`)g:We show that, for all s 2 S, Prob(�(s)) = 0 and that Path ful(s)npFair `(s) can be writtenas a countable union of sets of the form � ��(t) where � 2 Patht�n and t 2 T .Claim 1: Prob(�(s)) = 0 for all s 2 S.Proof: We de�ne � to be the set of �nite paths � 2 Path�n such that j�j � 1, ` =2 l(s; �(1)),�(i) 62 T , i = 1; : : : ; j�j � 1, and last(�) 2 T . For t 2 T , let �t = � \ Patht�n . Then, fort 2 T and s 2 S, �t(s) = f� 2 � : �rst(�) = s; last(�) = tg:�(s) is countable and �(s) = St2T �t(s) where �t(s) \ �t0(s) = ; if t 6= t0. Thus,(1) X�2�(s)P(�) = Xt2T X�2�t(s)P(�):We have �(s) = [t2T [�2�t(s) � ��(t) for all s 2 S.As � ��(t) \ �0 ��(t0) = ; if (�; t) 6= (�0; t0), and as � ��(t) is a measurable set withProb(� ��(t)) = P(�) � Prob(�(t)) we obtain:(2) Prob(�(s)) = Xt2T X�2�t(s) P(�) � Prob(�(t)) for all s 2 S.Let t 2 T . As t j= enabled(`) there is some st 2 S with ` 2 l(t; st). Since P(t; st) � c weobtain:(3) X�2�(t) P(�) � Xs6=st P(t; s) � 1 � P(t; st) � 1� c for all t 2 T .We show by induction on k that Prob(�(t)) � (1 � c)k for all t 2 T . In the basis ofinduction (k = 0) there is nothing to show. In the induction step (k =) k + 1) wesuppose that Prob(�(t)) � (1 � c)k for all t 2 T . By (1), (2), (3) and the inductionhypothesis we get for all t 2 T :Prob(�(t)) = Xu2T X�2�u(t)P(�) � Prob(�(u)) � (1� c)k Xu2T X�2�u(t)P(�)= (1� c)k X�2�(t)P(�) � (1� c)k+1:We conclude Prob(�(t)) = 0 for all t 2 T . Thus, Prob(�(s)) = 0 for all s 2 S (by (2)). cClaim 2: Prob(pFair `(s)) = 1 for all s 2 S.Proof: It is clear thatPath ful(s) n pFair `(s) = [t2T [�2Patht�n(s) � ��(t):

198 CHAPTER 8. FAIRNESS OF PROBABILISTIC CHOICENote that Path t�n is countable. Claim 1 yieldsProb(� ��(t)) = P(�) � Prob(�(t)) = 0for all t 2 T . Hence,Prob(Path ful(s) n pFair `(s)) � Xt2T X�2Path t�n(s) Prob(� ��(t)) = 0and Prob(pFair `(s)) = 1. cRemark 8.1.6 If we drop the assumption that (S;P) is bounded then the probability ofthe fair paths might be less than 1. As a counter-example consider the system of Figure8.1, i.e. the system (S;P; L; l) where S = ftg [fs0; s1; : : :g, L = f`g andP(si; v) = 8><>: 2�ri : if v = si+11� 2�ri : if v = t0 : otherwise l(si; v) = (; : if v = si+1f`g : if v = tand P(t; si) = 0, P(t; t) = 1, l(t; t) = ;. Here, (ri)i�0 is a sequence of positive reals wherePi�0 ri is convergent. � = s0 ! s1 ! s2 ! : : : is not p-fair as ` is continuously enabled
t
s0 s1 s2 s3 : : :2�r0 2�r1 2�r2
l
l l l l` ` ` `- - - -? ������	 ������������ �����������������) Figure 8.1:but never taken in �. Any other fulpath is �nite and hence p-fair. Hence,Prob(pFair(s0)) = 1 � limk!1 P(s0 ! s1 ! : : :! sk)= 1 � limk!1 2�(r0+r1+:::+rk�1) = 1� 2�r < 1where r = Pi�0 ri.Soundness of p-fairness: Theorem 8.1.5 (page 196) yields the soundness of proving thevalidity of qualitative linear time properties under p-fairness constraints in the followingsense. We suppose a (linear time) logic L and, for a �xed bounded probabilistic system(S;P), a satisfaction relation j= � Path ful � L such that, for each s 2 S and eachformula ' of L, the set f� 2 Path(s) : � j= 'g is measurable.4 s is called '-valid i�Probf� 2 Path(s) : � j= 'g = 1: By Theorem 8.1.5 (page 196) we obtain the following.Corollary 8.1.7 Let (S;P) be a bounded fully probabilistic system and (L; l) a p-fairnesscondition on (S;P) Then, for all s 2 S:4For example, L might be the standard propositional linear time logic LTL (see Section 9.1.3, page212 �).

8.2. P-FAIRNESS FOR CONCURRENT PROBABILISTIC SYSTEMS 199If � j= ' for all � 2 pFair (L;l)(s) then s is '-valid.Proof: follows immediately from Theorem 8.1.5 (page 196).Hence, in order to establish a (qualitative) linear time property ' for a probabilisticprocess, it su�ces to show that all p-fair fulpaths satisfy ' for some instance of our generalp-fairness notion (which can be achieved with well-known non-probabilistic methods).Corollary 8.1.8 Let (S;P) be a bounded fully probabilistic system, (L; l) a p-fairnesscondition on (S;P), s 2 S and � a subset of Path ful such that �(s) is measurable. Then:Prob ��(s) \ pFair (L;l)� = Prob(�(s)):Proof: follows immediately from Theorem 8.1.5 (page 196).In particular, whenever ' is a linear time formula then the probability of the set offulpaths ful�lling ' equals the probability of the set of p-fair fulpaths ful�lling '. Inother words, whether or not a (qualitative or quantitative) linear time property holds fora probabilistic process does not depend on whether fairness with respect to probabilisticchoice is required. Hence, from a purely descriptive point of view, fairness with respectto probabilistic choice is irrelevant.58.2 P-fairness for concurrent probabilistic systemsIn this section, we de�ne p-fairness for concurrent probabilistic systems and show thatthe soundness result of the p-fairness approach for establishing qualitative linear timeproperties carries over to the concurrent case. Moreover, we show that the extreme and �-fairness of Pnueli & Zuck [Pnue83, PnZu86a, PnZu93] are special instances of our generalp-fairnes notion. Hence, the soundness results established in [Pnue83, PnZu93] are specialcases of the results presented here. We cannot expect a general completeness result (inthe sense that, if a linear time property ' holds with probability 1 in all adversaries then' holds on all p-fair execution sequences) as in [Pnue83] extreme fairness is shown to beincomplete. However, we are able to show that { in some sense { �-fairness (shown to becomplete in [PnZu93]) is the only p-fairness notion that is complete for proving validityof qualitative linear time properties (Lemma 8.2.11, page 203).As in fully probabilistic case, we assume that the probabilistic alternatives are associatedwith certain labels. P-fairness in concurrent systems ensures that whenever a label ` isenabled in�nitely often then ` is taken in�nitely often where the underlying de�nition of\enabled" in a state s only depends on the chosen non-deterministic alternatives and theassociated distribution � 2 Steps(s) (but not on the other non-deterministic alternatives� 2 Steps(s) n f�g).5One might wonder why such a result is possible, since in the non-probabilistic case it is folkloreknowledge that certain liveness properties cannot be established without suitable fairness assumptions.It is worth noting that '-validity of a state s in a probabilistic transition system is weaker than '-validityin the corresponding non-probabilistic transition system. Recall that, in the non-probabilistic case, astate s of a transition system is said to be '-valid i� all fulpaths starting in s satisfy ', whereas in theprobabilistic case, '-validity requires that ' holds for almost all fulpaths starting in s.

200 CHAPTER 8. FAIRNESS OF PROBABILISTIC CHOICEDe�nition 8.2.1 [p-fairness for concurrent systems] Let S = (S; Steps) be a con-current probabilistic system. A p-fairness condition on S is a pair (L; l) consisting of anonempty countable set L of labels and a functionl : f(�; �; t) : � 2 Path�n ; � 2 Steps(last(�)); t 2 Supp(�)g �! 2L:If � is a fulpath in S and ` 2 L then we say� ` is enabled in the i-th step of � i�` 2 l(�(i); step(�; i); s)for some s 2 Supp(step(�; i)),� ` is taken in the i-th step of � i� ` 2 l(�(i); step(�; i); �(i+ 1)).If ` 2 L then � is called p-fair with respect to (L; l; `) i� either ` is enabled only �nitelymany times in � or ` is taken in�nitely many times in �. � is called p-fair with respectto (L; l) (or (L; l)-fair) i�, for each label ` 2 L, � is p-fair with respect to (L; l; `).If (L; l) are understood from the context then we brie
y speak about p-fairness withrespect to a label ` 2 L (rather than p-fairness with respect to (L; l; `)) and p-fairness(rather than (L; l)-fairness).Notation 8.2.2 [The sets pFair ` and pFair (L;l)] Let (L; l; `) be a p-fairness conditionfor a concurrent probabilistic system (S; Steps). pFair (L;l;`) (or brie
y pFair `) denotes theset of fulpaths � which are (L; l)-fair with respect to `, and pFair (L;l) the set of fulpaths �which are (L; l)-fair.Theorem 8.2.3 Let (S; Steps) be a �nite concurrent probabilistic system, (L; l) a p-fairness condition on (S; Steps) and A an adversary of (S; Steps). Then,Prob(pFairA(L;l)(s)) = 1for all s 2 S. Moreover, if � is a subset of PathAful where �(s) is measurable thenProb(�(s) \ pFair (L;l)) = Prob(�(s)):Proof: It is easy to see that, for A to be an adversary of (S; Steps), a fulpath� 2 PathA is (L; l)-fair if and only if � is (L; l)-fair as a path in the fully probabilisticsystem SA.6 As (S; Steps) is �nite, for each adversary A, the associated fully probabilisticsystem SA is bounded. Thus, the claim follows by Theorem 8.1.5 (page 196) and Corollary8.1.8 (page 199).As before, we suppose a (linear time) logic L and a satisfaction relation j= � Path ful �Lsuch that, for each s 2 S, each adversary A and each formula ' of L, the set f� 2PathAful(s) : � j= 'g is measurable. We then obtain:6Recall that we identify each path
 in (S;Steps) with the path
 =
(0) !
(1) !
(2) ! : : : in SA.See Chapter 3, page 42.

8.2. P-FAIRNESS FOR CONCURRENT PROBABILISTIC SYSTEMS 201Corollary 8.2.4 If (L; l) is a p-fairness condition for a �nite concurrent probabilisticsystem (S; Steps) and ' a formula of L thenProbf� 2 pFairA(L;l)(s) : � j= 'g = Probf� 2 PathAful(s) : � j= 'gfor all adversaries A.Proof: follows immediately from Theorem 8.2.3 (page 200).We call a state s '-valid i� Probf� 2 PathAful(s) : � j= 'g = 1 for all adversaries A.Furthermore, the soundness of proving the validity of linear time formulas under (L; l)-fairness follows.Corollary 8.2.5 Whenever (L; l) is a p-fairness condition for a �nite concurrent proba-bilistic system (S; Steps), ' is a formula of L and s 2 S. Then:If � j= ' for all fulpaths � 2 pFair (L;l)(s) then s is '-valid.Proof: follows immediately from Corollary 8.2.4 (page 201).Extreme and �-fairness �a la Pnueli & Zuck: In [Pnue83] and [PnZu93] notions ofextreme fairness and �-fairness are introduced for (a variant of) concurrent probabilisticsystems. The de�nition of extreme fairness [Pnue83] employs a collection state predicates(described by �rst order formulas), whereas �-fairness [PnZu93] uses some kind of lineartime logic with past operators. We now adapt the notions extreme and �-fairness for ourmodel of concurrent probabilistic systems and show that extreme and �-fairness (adaptedfor our less general model of concurrent probabilistic systems) are instances of p-fairnessconditions as de�ned above.7For the de�nition of extreme fairness we suppose a set StatePred � 2S (where each element� 2 StatePred represents a state predicate).De�nition 8.2.6 [Extreme fairness, cf. [Pnue83, PnZu86a]] Let � be a fulpath inS. � is called extremely fair i�, for each � 2 StatePred, each s 2 S and � 2 Steps(s),whenever step(�; i) = � for in�nitely many i � 0 with �(i) 2 � then there are in�nitelymany indices i � 0 with �(i) 2 �, step(�; i) = � and �(i + 1) = s.To de�ne �-fairness we suppose PastForm to be a set consisting of subsets of Path�nwhere we assume that each element � of PastForm represents a past formulas of somelinear time logic [LPZ85]. Note that, for � to be a past formula, � can be identi�ed withthe set of all �nite paths � such that each fulpath � 2 � " ful�lls �.De�nition 8.2.7 [�-fairness, cf. [PnZu93]] A fulpath � is called �-fair i�, for each� 2 PastForm, s 2 S and � 2 Steps(s), whenever there are in�nitely many indices iwith �(i) 2 � and step(�; i) = � then there are in�nitely many indices j with �(j) 2 �,step(�; j) = � and �(j + 1) = s.The next lemma shows that extreme and �-fairness are instances of p-fairness conditionsin our sense:7See Section 3.6, page 63 for the precise connection between the model �a la Pnueli & Zuck and ours.

202 CHAPTER 8. FAIRNESS OF PROBABILISTIC CHOICELemma 8.2.8 Let (L; l) be a p-fairness condition for a concurrent probabilistic system(S; Steps) and � be a fulpath in (S; Steps). Then:(a) � is extremely fair if and only if � is (Lefair ; lefair)-fair whereLefair = f(�; �; s) : � 2 StatePred ; s 2 S; � 2 Steps(s)g,lefair (�; �; s) = f(�; �; s) 2 Lefair : last(�) 2 � g.(b) � is �-fair if and only if � is (L�fair ; l�fair)-fair whereL�fair = f(�; �; s) : � 2 PastForm; s 2 S; � 2 Steps(s)g,l�fair(�; �; s) = f(�; �; s) 2 L�fair : � 2 �g.Proof: We only show (a) as (b) can be shown similarly. For simplicity, we write Land l instead of Lefair and lefair respectively. Let � be a fulpath in (S; Steps).\only if": Let � be extremely fair and let ` = (�; �; s) 2 L such that ` is in�nitely oftenenabled in �. Let I be the set of indices i � 0 such that ` is enabled in the i-th state of�. Then, �(i) 2 � and step(�; i) = � for all i 2 I. As � is extremely fair there exists anin�nite subset J of I such that �(j + 1) = s for all j 2 J . Hence, ` 2 l(�(j); �; s) for allj 2 J , i.e. ` is taken in�nitely often in �.\if": We suppose � to be (L; l)-fair and step(�; i) = � for in�nitely many indices i with�(i) 2 �. Let s be a mode of � and let ` = (�; �; s). Then, ` is enabled in�nitely oftenin �. Hence, ` is taken in�nitely often in �, i.e. there are in�nitely many indices j with` 2 l(�(j); �(j+1)). For each such index j, �(j) 2 �, � = step(�; j) and �(j+1) = s. Thus,� is extremely fair.From part (a) of Lemma 8.2.8 we can deduce that our soundness result (Corollary 8.2.5,page 201) is a generalization of the result of [Pnue83] which states the soundness of provingqualitative properties under extreme fairness. In [PnZu93] it is shown that, for each states and each linear time formula ',s is '-valid i� � j= ' holds for all �-fair fulpaths � 2 Path ful(s).The \if"-part is an instance of Corollary 8.2.5 (page 201), whereas the \only-if"-part(the completeness of the �-fairness approach) is not. The reason for this is that a generalcompleteness result cannot be established, as it is shown in [Pnue83] that extreme fairnessis not a necessary condition for the validity of linear time formulas.In the remainder of this section, we show that �-fairness is the only p-fairness notionwhich is complete for verifying qualitative properties expressed by linear time formulaswith past operators. We suppose that formulas of the linear time logic L are built fromthe truth values tt and � , atomic propositions, the usual boolean connectives, and thetemporal operators U (\until"), U�1 (\since"), X�1 (\previous step") and labelled next-step operators X�, � 2 Ss Steps(s). The usual next-step operator X can be derivedfrom the labelled next-step operators by putting X' = W�X�'. Lpast denotes the setof past formulas of L, i.e. formulas which are built from atomic propositions, the booleanconnectives and the operators U�1 and X�1.We �x a concurrent probabilistic system (S; Steps) together with a satisfaction relationj= � Path ful � IN �L (where IN is the set of non-negative integers) with (�; j) j= X�'i� step(�; j) = � and (�; j+1) j= '. The remaining operators are interpreted in the usualway (see e.g. [MaPn92]). The satisfaction relation j= � Path ful � L, as used earlier, is

8.2. P-FAIRNESS FOR CONCURRENT PROBABILISTIC SYSTEMS 203given by � j= ' i� (�; 0) j= '. Let�' = f� 2 Path ful : � j= 'g:Then, s is called '-valid i� Prob(�A' (s)) = 1 for all adversaries A. For a past formula and a �nite path � with j�j = j, we de�ne� j= i� (�; j) j= for all fulpaths � with �(j) = �(or equivalently, i� (�; j) j= for some fulpath � with �(j) = �). Let � be the set of�nite paths � with � j= and PastForm = f� : 2 Lpastg. Let (L�fair ; l�fair) be as inpart (b) of Lemma 8.2.8 (page 202). We write �Fair instead of pFair (L�fair ;l�fair).De�nition 8.2.9 [Completeness of p-fairness conditions] Let (L; l) be a p-fairnesscondition for a concurrent probabilistic system (S; Steps) and L a linear time logic asbefore. (L; l) is called complete (for verifying qualitative properties expressed as formulasof L) i� the following holds:if s is '-valid then � j= ' for all ' 2 pFair (L;l)for all formulas ' of L and all states s 2 S.It is easy to see that the completeness result of [PnZu93] (where labelled next-step op-erators are not used) carries over to L, i.e. if s is '-valid then �Fair(s) � �'(s). Thus,(L�fair ; l�fair) is complete.De�nition 8.2.10 [Expressiveness of L for a p-fairness condition] Let (L; l) be ap-fairness condition for a concurrent probabilistic system (S; Steps) and L a linear timelogic as before. L is called expressive for (L; l) i� for each ` 2 L there exists a formula 'of L with �' = pFair (L;l;`).We may assume that for each state s 2 S there is an atomic proposition as with (�; j) j= asi� �(j) = s. Then, L is expressive for (L�fair ; l�fair) as, for ` = (� ; �; s) and'` = 23enabled(`) ! 23(^X�as)where enabled(`) = ^X�tt , we have that� j= '` i� � is (L�fair ; l�fair)-fair with respect to `.The next lemma shows that { in some sense { �-fairness is the only p-fairness notionwhich is complete for verifying qualitative linear time properties.Lemma 8.2.11 Let (S; Steps), L and (L; l) be as before. If L is expressive for (L; l) then(L; l) is complete i� pFair (L;l) = �Fair.Proof: It su�ces to show that if (L; l), (L0; l0) are p-fairness conditions such that� L is expressive for (L; l),� (L0; l0) is completethen pFair (L0;l0)(s) � pFair (L;l;`)(s) for all s 2 S and ` 2 L. Since L is expressive for (L; l)there is a formula ' with �' = pFair (L;l;`) where �' = f� 2 Path ful : � j= 'g. SinceProb(�A' (s)) = Prob(pFairA(L;l;`)(s)) = 1for all adversaries A we obtain '-validity of s. Hence, pFair (L0;l0)(s) � pFair (L;l;`)(s) bythe completeness of (L0; l0). Thus, pFair (L0;l0)(s) � pFair (L;l)(s).

204 CHAPTER 8. FAIRNESS OF PROBABILISTIC CHOICE

Chapter 9Verifying quantitative temporalproperties
The main goal of this chapter is to present the basic concepts of the algorithmic methodsfor verifying quantitative properties speci�ed in the temporal logical framework.1 Weconsider both fully probabilistic and concurrent probabilistic systems. For the handlingof fully probabilistic systems, we recall techniques proposed in the literature (mainly themethods of Hansson & Jonsson [HaJo94]).2 For the latter (concurrent) case, we mainlyconcentrate on methods that involve fairness. The underlying fairness notions are thoseof [HSP83, Vard85] (see Section 3.2.3, page 45).3 For this, we �rst recall the approach ofBianco & deAlfaro [BidAl95, dAlf97a, dAlf97b] and then show how to handle concurrentprobabilistic systems when fairness assumptions about the environment are made.Probabilistic computation tree logic: Combining several aspects of the logics con-sidered in [HaJo89, Hans91, HaJo94, SeLy94, BidAl95, IyNa96, dAlf97a, dAlf97b] weintroduce a logic, called PCTL�, for specifying quantitative properties for probabilisticsystems such as \the system terminates with probability at least 0:75" or \the messagewill be delivered within in next three steps with probability at least 23". PCTL� can beviewed as the probabilistic counterpart to the logic CTL� [EmHa86] that combines com-putation tree logic CTL [ClEm81] and (propositional) linear time logic LTL. As in CTL�,PCTL� distinguishes between state and path formulas where the path formulas stand forlinear time properties that make statements about the executions (fulpaths) whereas thestate formulas express branching time properties that assert something about the possiblebehaviours in the states. To reason about the possible behaviours in the states, CTL� usesthe quanti�ers 8 (\for all executions", also often denoted by the letter A) and 9 (\thereexists an execution", also often denoted by the letter E) combined with a path formula '.4In a probabilistic scenario, we also want to reason about the \quantity" of the executions1The basic ideas behind the use of temporal logic as speci�cation formalism for probabilistic systemsare sketched in the introduction. See Section 1.1.3 (page 16) and Section 1.2.3, (page 24).2The reason why we recall the results here are twofolds. First, the underlying basic ideas are also usedin our algorithm. Second, our symbolic model checker of Chapter 10 make use of them.3In his thesis, Luca deAlfaro [dAlf97a] proposes a di�erent notion of fairness and presents correspond-ing veri�cation methods. The relation to our approach is also discussed in [dAlf97a].4The CTL� formula 8' asserts that the linear time property ' holds for all executions while 9' statesthe existence of a computation that ful�lls '. 205

206 CHAPTER 9. VERIFYING TEMPORAL PROPERTIESthat satisfy a certain linear time formula '. For this, PCTL� replaces the quanti�ers 8and 9 by a probabilistic operator and uses state formulas of the form Prob./p(') ratherthan 8' or 9'. Here, the subscript ./ p (where ./ is a comparison operator, e.g. � or <)speci�es an interval of \acceptable" probabilities. For example, Prob�p(') asserts thatthe probability that ' holds is at least p.PCTL� formulas can be interpreted over the states of a fully probabilistic or concurrentprobabilistic system. In the former (fully probabilistic) case, in the PCTL� state formulaProb./p('), the probabilistic operator refers to the probability measure of the fulpathswhere ' holds. In the latter (concurrent) case { where it makes no sense to speak aboutprobabilities of certain events unless the non-determinism is resolved { Prob./p(') is viewedto be correct for a state s if the probability for the fulpaths satisfying ' and starting in slies in the interval fq 2 [0; 1] : q ./ pg under all possible environments (adversaries). Theassumptions (e.g. some kind of fairness assumptions) that we make about the environmentare formalized by an appropriate type A of adversaries.5 For the truth value of theformulas involving the probabilistic operator, we range over all adversaries A 2 A; thatis, Prob./p(') holds in a state s if, under all adversaries A 2 A, the probability measureof the fulpaths starting in s and satisfying ' is ./ p.Model checking: The basic idea behind PCTL� model checking (i.e. computing theset of states where a given state formula holds) is the reduction to the veri�cationof quantitative LTL speci�cations [BidAl95, ASB+95, IyNa96] while the latter can bereduced (via several tricky intermediate steps) to a probabilistic reachability analysiswhich can be done by solving linear equation systems or linear optimization problems[CoYa88, CoYa90, HaJo94, BidAl95]. For the reduction of calculating the probabilitiesfor LTL formulas to a probabilistic reachability analysis (by which we mean the computa-tion of the probabilities to reach a certain set of states), one can use of the !-automatonapproach �a la Sistla, Vardi & Wolper [WVS83, Vard85, VaWo86] for both fully proba-bilistic [CoYa95, IyNa96] or concurrent probabilistic [dAlf97a, dAlf97b] systems. Usingsuitable adaptions of the methods presented in [BidAl95, dAlf97a, dAlf97b], we presenta model checking algorithm for PCTL� with respect to the interpretation over concur-rent probabilistic systems where fairness assumptions are made (i.e. where the chosentype A consists of some kind of fair adversaries). The time complexity of our method isdouble exponential in the size of the system and linear in the formula. By the results of[CoYa95], this is optimal as it meets the lower bound for verifying concurrent probabilisticsystems against (qualitative) linear time properties. The underlying PCTL model checkeruses similar techniques as the one proposed by [BidAl95] for concurrent probabilistic sys-tems with respect to the standard interpretation that does not involves fairness (anddeals with the whole class of adversaries). For the handling of the probabilistic operator(i.e. formulas of the form Prob./p(')), techniques are needed to calculate the minimal ormaximal probabilities for ' under all adversaries of the chosen type. As in the approachof [BidAl95], the minimal and maximal probabilities for the until operator (i.e. path for-mulas of the form ' = �1U�2) can be computed by solving linear optimization problems.Our PCTL model checker for the interpretations with fairness and the one of [BidAl95]for the standard interpretation run in polynomial time.5The standard interpretation where fairness in not taken into account is obtained by A = Adv whilethe use of e.g. A = Adv fair leads to an interpretation where fairness is integrated.

9.1. THE LOGIC PCTL� 207
� ::= tt ��� a ��� �1 ^ �2 ��� :� ��� Prob./p(')' ::= � ��� X' ��� '1U'2 ��� '1U�k'2 ��� '1 ^ '2 ��� :'Figure 9.1: Syntax of PCTL�Organization of that chapter: Section 9.1 explains the syntax of PCTL� (and thesublogics PCTL and LTL) and the interpretations over fully probabilistic and concurrentprobabilistic systems. Model checking algorithms for PCTL�, PCTL and LTL are pre-sented Sections 9.2, 9.3 and 9.4 where we brie
y sketch how the methods of the literaturework and show how to deal with satisfaction relations where fairness is involved. The the-oretical foundations of the model checking algorithms for PCTL and LTL are formulatedin theorems whose proofs are given in Section 9.5.The results of this chapter are mainly based on the joint work with Marta Kwiatkowska[BaKw98].6 In this chapter, we assume some familiarity with temporal logics and !-automaton and the connection between them. See e.g. the survey papers [Thom90,Thom96, Vard96] for the !-automaton approach and [Emer90, MaPn92, MaPn95] fortemporal logics.9.1 The logic PCTL�In this section, we explain the syntax of PCTL� (and the sublogics PCTL and LTL) andpresent several semantics for PCTL�. The interpretation over fully probabilistic systemsis in the style of [HaJo94, ASB+95, IyNa96]. For the interpretation over concurrentprobabilistic systems, we introduce satisfaction relations j=A that are parametrized bya class A of adversaries. Intuitively, the chosen type A of adversaries formalizes theassumptions that are made about the \environment" (the instance that resolves the non-deterministic choices). In the case where A = Adv (the collection of all adversaries) weobtain the standard interpretation of [BidAl95].Syntax of PCTL�: We �x a �nite set AP of atomic propositions. PCTL� state formulas(denoted by capital greek letters �;	; : : :) and PCTL� path formulas (denoted by greekletters '; ; : : :) over AP are given by the grammar shown in Figure 9.1 (page 207).Here, a 2 AP , p 2 [0; 1], ./ 2 f�; <;�; >g and k is a natural number. The usualderived constants and boolean operators (for both state and path formulas) are � = :tt ,�1 _ �2 = :(:�1 ^ :�2), �1 ! '2 = :�1 _ �2. The path formulas are built from theboolean connectives and the standard temporal operators X, U and U�k. The meaningsof the temporal operators X (\next step"), U (\until") and U�k (\bounded until" or\within the next k steps") are as in the non-probabilistic case. As usual, operators for6When writing down this thesis the author detected that the PCTL model checker of [BaKw98] canbe reformulated resulting in a simpler algorithm. This simpli�cation is presented in Section 9.3.

208 CHAPTER 9. VERIFYING TEMPORAL PROPERTIESmodelling \eventually" 3, \sometimes within the next k steps" 3�k, \always" 2 and\always within the next k steps" 2�k can be derived.3' = tt U ', 3�k' = tt U�k ', 2' = :3:', 2�k' = :3�k:'.For instance, if error is an atomic proposition that characterizes all states where a sys-tem error has happened then Prob<0:001(3�4error) asserts that the probability for a sys-tem error within the next four steps is less than 0:001. If crit1 and crit2 are atomicpropositions stating that certain processes P1 or P2 are in their critical sections thenProb�1 (2(:crit1 _ :crit 2)) stands for the qualitative safety property stating mutual ex-clusion. The formula Prob�0:99 � 2 �request ! 3�5response� � stands for the quantitativeprogress property stating that there is a 99% chance that every request will be answeredwithin the next 5 steps.Remark 9.1.1 [Quanti�cation over the fulpaths] Formulas of the form 8' and 9'(where ' is a path formula and where 8 and 9 are the usual CTL� path quanti�ers thatrange over all fulpaths) could be added to our logic PCTL�, but we omit them for thesake of simplicity.7Semantics of PCTL�: The state formulas are interpreted over the states of a probabilisticsystem, the paths formulas over the fulpaths. We �x a probabilistic (fully probabilisticor concurrent probabilistic) system S with state space S and proposition labels in AP .L denotes the labelling function S ! 2AP . Dealing with a fully probabilistic system, thesatisfaction relation for the state and path formulas is denoted by j=. In the concurrentcase, we �x a certain class A of adversaries and use the symbol j=A for the inducedsatisfaction relation. In what follows, we write j=� to denote the satisfaction relation j=in the fully probabilistic case; in the concurrent case, j=� denotes j=A for some adversarytype A � Adv . The satisfaction relationsj=� � Path ful � IN � PathFormulas; j=� � S � StateFormulasare de�ned as follows. As usual, we write (�; j) j=� ' rather than (�; j; ') 2 j=� ands j=� � rather than (s;�) 2 j=�. The de�nition of j=� for the path formulas is as in thenon-probabilistic case; see Figure 9.2 (page 209). From this, we obtain(�; j) j=� 3' i� there exists an integer l with j � l � j�j and (�; l) j=� '(�; j) j=� 3�k' i� there exists an integer l with j � l � minfj�j; j+kg and (�; l) j=� '(�; j) j=� 2' i� (�; l) j=� ' for all integers l with j � l � j�j(�; j) j=� 2�k' i� (�; l) j=� ' for all integers l with j � l � minfj�j; kg.For the state formulas, j=� is de�ned as follows.s j=� tt for all s 2 Ss j=� a i� a 2 L(s) s j=� �1 ^ �2 i� s j=� �i, i = 1; 2s j=� :� i� s 6j= �7When adding state formulas 8' and 9' to our syntax, for the semantics of 8' and 9' we can eitheruse the standard interpretation (where 8' asserts that ' holds for all fulpaths) or an interpretation thatrequires \path fairness". In this case, our model checker of Section 9.3 would have to be extended, e.g. bythe method proposed in [CES83] for the standard interpretation or the method of [EmLei85] for checkingwhether a path formula holds for all (some) fair paths.

9.1. THE LOGIC PCTL� 209(�; j) j=� � i� j � j�j and � j= �(�; j) j=� '1 ^ '2 i� (�; j) j=� 'i, i = 1; 2(�; j) j=� :' i� (�; j) 6j=� '(�; j) j=� X' i� j < j�j and (�; j + 1) j=� '(�; j) j=� '1U'2 i� there exists an integer l with j � l � j�j and(�; i) j=� '1, i = j; j + 1; : : : ; l � 1 and (�; l) j=� '2(�; j) j=� '1U�k'2 i� there exists an integer l with j � l � minfj�j; j + kg and(�; i) j=� '1, i = j; j + 1; : : : ; l � 1 and (�; l) j=� '2Figure 9.2: The satisfaction relation j=� for PCTL� path formulasThe state formula � = Prob./p(') ensures that the probability measure for the fulpathssatisfying ' lies in the interval I./p = fq 2 [0; 1] : q ./ pg. Here, the truth value of a pathformula interpreted over a fulpath (rather than a pair (�; j)) is given by:� j=� ' i� (�; 0) j=� ':In the fully probabilistic case, satisfaction of Prob./p(') in a state s is derived from theprobability measure of f� 2 Path ful(s) : � j= 'g (see Section 9.1.1). In the concurrentcase, satisfaction of Prob./p(') depends on the chosen type A of adversaries and is de�nedin terms of the probabilty measures of f� 2 PathAful(s) : � j=A 'g where A ranges over alladversaries in A (see Section 9.1.2).89.1.1 Interpretation over fully probabilistic systemsLet S = (S;P;AP ;L) be a fully probabilistic system. We de�nes j= Prob./p(') i� Prob f� 2 Path ful(s) : � j= 'g ./ p.Notation 9.1.2 [The set Sat(�)] Let Sat(�) = fs 2 S : s j= �g:For a fully probabilistic process P, we write P j= � i� the initial state of P lies in Sat(�).Example 9.1.3 [Sock selection problem] We consider the sock selection problem of[GSB94] and the associated fully probabilistic system (see Example 3.3.14 on page 52).The PCTL� formula � = Prob�1�1=22n�2(3success) states that the probability for thealgorithm to terminate in a successful state (i.e. a state where we got a matching pair ofsocks) is at least 1� 1=22n�2. Then, for the initial statesinit = hcolor(sock1); color(sock2); 2n� 2i;we have Prob f� 2 Path ful(sinit) : � j= 3successg = 1� 1=22n�2. Thus, sinit j= �.8It is easy to see that, for each state s and path formula ', the set f� 2 Path ful (s) : � j= 'g (orf� 2 PathAful (s) : � j=A 'g for A 2 Adv in the concurrent case) is measurable.

210 CHAPTER 9. VERIFYING TEMPORAL PROPERTIESExample 9.1.4 [Simple communication protocol] For the simple commmunicationprotocol of Example 1.2.1 (page 19) equipped with the atomic propositions init and waitand the labelling function L with a 2 L(s�) i� a = � we havesinit j= Prob�0:9999(3�4wait)which asserts that, with probability at least 0:9999, if the sender is in its initial state(where it produces a message), then the message will be eventually delivered within thenext four steps. This can be seen as follows. Let ps(') denote the probability measure ofall fulpaths � 2 Path ful(s) where ' holds. Then, we havepsinit (3�4wait) = psdel (3�3wait)= 99100 + 1100 � pslost (3�2wait)= 99100 + 1100 � psdel (3�1wait)= 99100 + 1100 � 99100 = 999910000 .Here, we use the fact that ps(3�ka) = 1 if a 2 L(s) and, for a =2 L(s),ps(3�k+1a) = Xt2S P(s; t) � pt(3�ka)and ps(3�0a) = 0. (See Section 9.3, page 217).9.1.2 Interpretation over concurrent probabilistic systemsIf S = (S; Steps;AP ;L) os a concurrent probabilistic system and A � Adv then we de�nes j=A Prob./p(') i� Prob n� 2 PathAful(s) : � j=A 'o ./ p for all A 2 A.Notation 9.1.5 [The set SatA(�)] Let SatA(�) = fs 2 S : s j=A �g :For a concurrent probabilistic process P, we write P j=A � i� the initial state of P belongsto SatA(�). In the remainder of that thesis, we shrink our attention to the following fourclasses of adversaries:� Adv (the set of all adversaries)� Adv fair (the set of fair adversaries in the sense of De�nition 3.2.17, page 46),� Adv sfair (the set of strictly fair adversaries in the sense of De�nition 3.2.17, page 46),� AdvW fair (the set of W -fair adversaries in the sense of De�nition 3.2.20, page 47).The satisfaction relation j=Adv yields the standard interpretation �a la [BidAl95]. We brie
ywrite j= instead of j=Adv . For the satisfaction relations j=Adv fair , j=Adv sfair and j=AdvW fair , wealso write j=fair , j=sfair and j=Wfair . Similarly, we often write Sat(�), Sat fair (�), Sat sfair(�)and SatWfair(�) rather than SatAdv(�), SatAdv fair (�), SatAdv sfair (�) and SatAdvW fair (�)respectively.The following example demonstrates that the satisfaction relation in the concurrent casedepends on the chosen A. In particular, the below example shows that { as in the non-probabilistic case { fairness assumptions (with respect to the non-deterministic choices)might be essential for establishing certain (quantitative or qualitative) properties.

9.1. THE LOGIC PCTL� 211Example 9.1.6 [Roulette player] We consider the roulette player of Example 1.2.3 onpage 22 (see Figure 1.3 on page 22). We use the atomic propositions play , happy and wonand the labelling function L where a 2 L(s�) i� a = �. First, we regard the formula' = 2 (play ! 3won) :with respect to the standard satisfaction relation j= where we range over all adversaries.For each adversary A, Prob n� 2 PathAful(sinit) : � j= 'o = 1: Thus, sinit j= Prob�1(')which ensures that { independent on the environment (adversary) { whenever the rouletteplayer starts playing then he will eventually win a game with probability 1. Next we regardthe PCTL� state formula	 = Prob�0:5() where = 3happy.Intuitively, 	 states that, there is at least a 50% chance for the roulette player to leavethe casino while winning the last game. The truth value of the formula 	 depends onthe environment (the chosen adversary type A). Let pAs () be the probability measureof n� 2 PathAful(s) : � j= o. For the simple adversary A with A(swon) = �1splay we havepAsinit () = 0 because A forces the roulette player to stay forever in the casino. Thus,sinit 6j= 	when we deal with the standard satisfaction relation j= that does not involve fairness.Dealing with a satisfaction relation where fairness in the state swon is assumed, the formula	 holds in the initial state. This is because A behave unfair in the state swon and, foreach other adversary B, we have pBsinit () = 1=2 (cf. Example 3.2.13 on page 44). Hence,sinit j=fair 	; sinit j=sfair 	; sinit j=Wfair 	provided that W contains swon . When we use a set W that does not contain swon , thenthe above adversary A is W -fair which yields sinit 6j=Wfair 	. Thus, the quantitativeproperty 	 cannot be established unless appropriate fairness assumptions are made.Remark 9.1.7 [The CTL� quanti�ers 8 and 9] As in [Hans91, SeLy94, BaKw98],for the use of PCTL� as speci�cation language for concurrent systems, instead of theprobabilistic operator Prob./p(') we might use state formulas of the form [8']wp and[9']wp.9 Then, [8']wp states that under all adversaries (of the chosen type) the probabilityfor ' is w p which corresponds to the meaning of Probwp('). PCTL� state formulas withan upper bound for the probabilities (i.e. formulas of the form Probvp(')) can be expressedeither by [8:']w1�p (which is equivalent to Probw1�p(:')) or with the help of existentialquanti�cation. For instance, Prob�p(') corresponds to :[9']>p.9.1.3 The sublogics PCTL and LTLPCTL� is a combination of PCTL (probabilistic computation tree logic) and LTL (propo-sitional linear time logic). In PCTL, arbitrary combinations of state formulas are possible9Here, we use w to denote one of the comparison operators � or >. As in CTL�, the quanti�ers8 and 9 range over all possible resolutions of the non-deterministic choices yielding executions in thenon-probabilistic case and execution trees in the probabilistic case.

212 CHAPTER 9. VERIFYING TEMPORAL PROPERTIESbut only path formulas of the form X�, �1U�2 and �1U�k�2 (where �, �1 and �2are state formulas) are allowed. Linear time logic LTL is the other \extreme" fragmentof PCTL� where arbitrary combinations of path formulas but only propositional stateformulas are allowed.Probabilistic computation tree logic PCTL: In PCTL, only \simple" path formulasbuilt from the temporal operators X, U�k or U and state formulas are allowed. Formally,PCTL is those sublogic of PCTL� whose state and path formulas are built from theproduction system shown in Figure 9.3 (page 212). In what follows, we brie
y speak� ::= tt ��� a ��� �1 ^ �2 ��� :� ��� Prob./p(')' ::= X� ��� �1U�2 ��� �1U�k�2Figure 9.3: Syntax of PCTLabout PCTL formulas rather than PCTL state formulas. In PCTL, the temporal operators\eventually" or \sometimes within the next k steps" are obtained as in the case of PCTL�:Prob./p(3�) = Prob./p(tt U �), Prob./p(3�k�) = Prob./p(tt U�k �).For modelling the temporal operators \always" and \always within the next k steps" inPCTL, we use the fact that, for any PCTL� path formula ', the formulas Prob./p(') andProb./1�p(:') are equivalent where � =�, < =>, � =� and > =<.10 Thus, \always"and \always within the next k steps" can be obtained in PCTL by:Prob./p(2�) = Prob./1�p(3:�), Prob./p(2�k�) = Prob./1�p(3�k:�)Note that { because of the simplicity of the PCTL path formulas { the satisfaction relationj=� (where j=� stands for j= in the fully probabilistic case and for j=A in the concurrentcase) for PCTL path formulas is given by:� j=� X� i� j�j � 1 and �(1) j=� �� j=� �1U�2 i� there exists an integer l with 0 � l � j�j and�(i) j=� �1, i = 0; 1; : : : ; l � 1 and �(l) j=� �2� j=� �1U�k�2 i� there exists an integer l with 0 � l � minfj�j; kg and�(i) j=� �1, i = 0; 1; : : : ; l � 1 and �(l) j=� �2.Linear time logic LTL: In LTL, the probabilistic operator Prob./p is removed. Thus,LTL formulas are path formulas built from atomic propositions, the boolean connectivesand the temporal operators. Formally, LTL formulas are those PCTL� path formulas thatare built from the grammar shown in Figure 9.4 (page 213).LTL itself can serve as speci�cation formalism for probabilistic systems. In that case, aspeci�cation consists of a LTL formula and a lower or upper bound for the \acceptable"probabilities.10Equivalence means semantic equality; that is, for any probabilistic system S and any state s of S,the �rst formula holds in s if and only if the second formula holds in s.

9.1. THE LOGIC PCTL� 213
' ::= tt ��� a ��� :' ��� '1 ^ '2 ��� X' ��� '1U'2 ��� '1U�k'2Figure 9.4: Syntax of LTLNotation 9.1.8 [Quantitative LTL speci�cations] A quantitative LTL speci�cationis a pair h'; Ii consisting of a LTL formula ' and an interval I of the form [0; p], [0; p[,[p; 1] or]p; 1] for some p 2 [0; 1].A state s of a fully probabilistic probabilistic system is viewed to be correct with respectto a LTL speci�cation h'; Ii if the \truth value" of that formula ' lies in the interval Iof \acceptable" probabilities. Here, the \truth value" is given by the probability measureof all fulpaths starting in s and satisfying '.Notation 9.1.9 [The set Sat(h'; Ii) (fully probabilistic case)] Let Sat(h'; Ii) be theset of states s 2 S where Prob f� 2 Path ful(s) : � j= 'g 2 I:In the concurrent case, a LTL speci�cation h'; Ii asserts that, for any possible environ-ment, the probability for ' lies in the interval I. As before, the possible environments areformalized by an adversary type A � Adv .Notation 9.1.10 [The sets SatA(h'; Ii) (concurrent case)] Let SatA(h'; Ii) be theset of states s 2 S such that, for all A 2 A,Prob n� 2 PathAful(s) : � j=A 'o 2 I:For A 2 fAdv ;Adv fair ;Adv sfair ;AdvW fairg, we often write Sat(h'; Ii), Sat fair (h'; Ii),Sat sfair (h'; Ii) or SatWfair (h'; Ii) rather than SatA(h'; Ii).Remark 9.1.11 [Qualitative LTL speci�cations] Various authors, for example [Vard85,VaWo86, CoYa95, PnZu93], deal with LTL (or similar logics) as a formalism for speci-fying qualitative (linear time) properties that assert that a certain LTL formula ' holdsfor almost all fulpaths (resp. almost all fulpaths of an adversary of the chosen type A).Such qualitative properties can be formalized by quantitive LTL speci�cations of the formh'; [1; 1]i.Clearly, in the fully probabilistic and concurrent cases, we have the equivalence of thequantitative LTL speci�cation h'; I./pi and the PCTL� state formula Prob./p(') in thesense that Sat�(Prob./p(')) = Sat�(h'; Ii) where I./p = fq 2 [0; 1] : q ./ pg.9.1.4 Related logicsWe mentioned before that our logic PCTL� is based on existing logics proposed in theliterature. We brie
y sketch the connections and di�erences.

214 CHAPTER 9. VERIFYING TEMPORAL PROPERTIESFully probabilistic case: Our logic PCTL agrees with the logic (also called PCTL)introduced by Hansson & Jonsson [HaJo94]; the full logic PCTL� with the logic consideredby Aziz et al [ASB+95] (and later considered e.g. by Iyer & Narasimha [IyNa96]).11Concurrent case: Dealing with the standard interpretation j= our logic PCTL� (resp. thesublogic PCTL) essentially agrees with the logics considered in [HaJo89, Hans91, SeLy94,BidAl95, dAlf97a, dAlf97b]. The main di�erence between our logic PCTL and thelogic (also called PCTL) of Hansson [Hans91] (and later considered by Segala & Lynch[SeLy94]) is that the latter deals with action labels while we label the states with atomicpropositions.12 The logic pCTL� of Bianco & deAlfaro [BidAl95] agrees with our logicPCTL�. Luca de Alfaro [dAlf97a, dAlf97b] uses an extension of pCTL� that contains anoperator to express bounds on the average time between events which does not have acounterpart in PCTL�.139.1.5 PCTL� equivalence and bisimulation equivalenceAs shown in [ASB+95], for fully probabilistic systems, PCTL� equivalence (and also PCTLequivalence) is the same as bisimulation equivalence. The connection between PCTLequivalence and bisimulation equivalence for action-labelled concurrent systems is dis-cussed in [SeLy94]. We conjecture that these results carry over to the proposition-labelledcase and claim that, for concurrent probabilistic systems, bisimulation equivalence impliesPCTL equivalence (with respect to the standard interpretation j=) while the converse doesnot hold.14 To see why (in the concurrent case) PCTL equivalence (or even PCTL� equiv-alence) does not imply bisimulation equivalence consider the system shown in Figure 9.5(page 215). The states s and s0 are PCTL� equivalent but not bisimulation equivalent.15Note that this stands in contrast to the non-probabilistic case where CTL� equivalenceand bisimulation equivalence coincide [BCG88].9.2 Model checking algorithms for PCTL�In this section, we consider model checking algorithms for PCTL� and the sublogicsPCTL and LTL. A model checking algorithm for PCTL� means a method that takesas its input a PCTL� state formula 	 over a certain set AP of atomic propositions11The only di�erence is that [ASB+95, IyNa96] do not use the bounded until operator U�k. Moreover,[ASB+95] extends the interpretation to the states of a generalized Markov chain (which can be viewedas a fully probabilistic system with intervals of transition probabilities).12Moreover, there are some minor di�erences. [Hans91, SeLy94] avoid the (explicit) use of the prob-abilistic operator Prob./ and deal with state formulas of the form [8']wp and [9']wp as explained inRemark 9.1.7 (page 211). [Hans91] mainly concentrates on the speci�cation of soft deadlines. For these,the unbounded until operator U is not needed. However, unbounded until U could be added as well.13More minor di�erences between pCTL� and PCTL� are that PCTL� contains the next step operatorX and the bounded until operator U�k, whereas pCTL� does not (but these operators could easily beadded). Vice versa, pCTL� contains the usual CTL� quanti�ers 8 and 9 (denoted A and E in the approachby Bianco & de Alfaro) that range over all paths: 8 meaning \for all fulpaths" and 9 \there is a fulpath".14For this, we assume a suitable adaption of the de�nition of bisimulation equivalence for theproposition-labelled concurrent case (in the style of [JoLa91, ASB+95]).15Here, we assume a labelling function L with L(s) = L(s0).

9.2. MODEL CHECKING ALGORITHMS FOR PCTL� 215
u1 v1 u2 v2 u3 v3

su u u�
 �	 �
 �	 �
 �	 �
 �	 �
 �	 �
 �	
�
 �	

fag ; fag ; fag ;
?�������� HHHHHHHj����� AAAAU ����� AAAAU ����� AAAAU12 12 2313 14 34 u01 v01 u03 v03

s0u u�
 �	 �
 �	 �
 �	 �
 �	
�
 �	

fag ; fag ;
����	 @@@@R����� AAAAU ����� AAAAU12 12 14 34Figure 9.5: s and s0 are PCTL� equivalent but s 6� s0and a �nite (fully or concurrent) probabilistic system S with proposition labels in APand computes the set Sat�() of states s in S where 	 holds.16 Similarly, PCTL (orLTL) model checking means a procedure to compute Sat�() (or Sat�(h'; Ii)) for a given�nite probabilistic system and PCTL formula 	 (or quantitative LTL speci�cation h'; Ii).Clearly, any PCTL� model checking algorithm subsumes PCTL and LTL model checkingalgorithms and yields an automatic procedure to verify probabilistic processes againstquantitative temporal logical speci�cations, provided that the process can be describedby a �nite system S with initial state sinit and that the speci�cation can be expressed bya PCTL� state formula 	. Model checking algorithms for PCTL, LTL and PCTL� arepresented for fully probabilistic systems in [CoYa88, HaJo94, ASB+95, CoYa95, IyNa96]and concurrent probabilistic systems with respect to the standard satisfaction relation j=in [BidAl95, dAlf97a, dAlf97b]. These methods are based on the following common ideas.(1) The PCTL� model checking algorithm is based on a recursive procedure that suc-cessively computes the sets Sat�(�) for all state subformulas � of the given PCTL�formula 	. For the handling of subformulas of the form � = Prob./p('), the PCTL�path formula ' is translated into a LTL formula '0 such that Sat�(�) can be derivedfrom Sat�(h'0; I./pi) where the latter is computed with a model checking algorithmfor LTL.(2) The method for LTL uses the PCTL model checker for the handling of the untiloperator. For this, the underlying LTL formula '1U'2 is replaced by a PCTL pathformula of the form aUb for atomic propositions a and b, the system S by a morecomplex system S 0.Thus, PCTL� model checking can be reduced to LTLmodel checking; LTLmodel checkingto PCTL model checking. It is worth noting that these reductions can be seen as theprobabilistic counterparts to the results (for non-probabilistic systems) by Emerson & Lei[EmLei85] (where it is shown that any model checking algorithm for LTL can be modi�edfor a CTL� model checking algorithm with the same complexity) and Clarke, Grumberg& Hamaguchi [CGH94] (where it is shown that LTL model checking can be reduced toCTL model checking with fairness assumptions).We now explain how a given model checking algorithm for LTL can be applied to obtaina PCTL� model checking algorithm. This method goes back to Bianco & de Alfaro[BidAl95] where concurrent systems and the satisfaction relation j= are considered. It is16As before, Sat�() denotes Sat() for fully probabilistic systems. In the concurrent case, we assumea �xed class A of adversaries and deal with Sat�() = SatA().

216 CHAPTER 9. VERIFYING TEMPORAL PROPERTIESalso applicable for fully probabilistic systems or concurrent systems with other satisfactionrelations, e.g. j=fair , j=sfair or j=Wfair . Similar ideas are used in [ASB+95, IyNa96] thatconsider PCTL� with the interpretation over fully probabilistic systems.Model checking for PCTL�: The input is a PCTL� state formula 	 over AP and a�nite probabilistic system with state space S and labelling function L : S ! 2AP . Thealgorithm is based on a recursive procedure that successively computes the sets Sat�(�)for all state subformulas � of 	. The cases where � is tt , an atomic proposition or of theform :�0 or �1 ^ �2 are clear since we haveSat�(tt) = S,Sat�(a) = fs 2 S : a 2 L(s)g, Sat�(:�0) = S n Sat�(�0),Sat�(�1 ^ �2) = Sat�(�1) \ Sat�(�2).The interesting case is where the outermost operator of � is the probabilistic operatorProb./p. For this, we apply a model checking algorithm for LTL. Let � = Prob./p(') andlet �1; : : : ;�k be the maximal state subformulas of '. We apply the described methodrecursively to �1; : : : ;�k and obtain the sets Sat�(�i), i = : : : ; k. Then, we replace thesubformulas �1; : : : ;�k by \fresh" atomic propositions a1; : : : ; ak and extend the labellingfunction L by inserting ai into L(s) i� s 2 Sat�(�i). The so obtained path formula '0 is aLTL formula over AP [fa1; : : : ; akg. Thus, we may apply the given LTL model checkingalgorithm to the LTL speci�cation h'0; I./pi and obtain Sat�(�) = Sat�(h'; I./pi) whereI./p = fq 2 [0; 1] : q ./ pg.In the next two section, we consider model checking algorithms for PCTL (Section 9.3) andLTL (Section 9.4). As described above, the method for LTL can be modi�ed for a PCTL�model checker. We brie
y recall the results of the literature (where the fully probabilisticcase and the concurrent case with the standard interpretation j= are considered) andpresent methods to deal with an interpretation that assumes fairness with respect to thenon-deterministic choices. More precisely, we deal with the satisfaction relations j=fair ,j=sfair and j=Wfair that range over all fair, strictly fair and W -fair adversaries respectively.We will see that the result of [dAlf97b] stating that PCTL� model checking with respectto j= can be done in time polynomial in the size of the system and double exponentialin the size of the formula carries over to the above satisfaction relations where fairness isinvolved. Thus (by the results of the following two sections):Theorem 9.2.1 Let 	 a PCTL� formula, S a �nite concurrent probabilistic system andW a subset of the state space of S. Then, Sat fair(), Sat sfair () and SatWfair() can becomputed in time polynomial in the size of S and double exponential in the size of 	.By the results of [CoYa95], this time complexity is optimal. In the fully probabilistic case,the LTL model checking algorithm of [CoYa88, CoYa95] yields a PCTL� model checkingthat runs in time polynomial in the size of the system and single exponential in the sizeof the formula. An alternative algorithm with the same time complexity (based on the!-automaton approach) is presented in [IyNa96].9.3 Model checking for PCTLModel checking algorithms for PCTL are presented by [HaJo94] for fully probabilisticsystems and by [BidAl95] for concurrent probabilistic systems with respect to the stan-

9.3. MODEL CHECKING FOR PCTL 217dard satisfaction relation j=. Both algorithms are based on a recursive procedure thatsuccessively computes the sets Sat(�) for all subformulas � of the given formula 	. Forthe handling of the until operator, [HaJo94] uses linear equation systems, [BidAl95] linearoptimization problems (cf. Remark 3.1.8, page 36, and Remark 3.2.12, page 43). In bothcases, the time complexity is polynomial in the size of the system and linear in the sizeof the formula.In this section, we brie
y sketch the methods of [HaJo94, BidAl95] and present modelchecking algorithms for PCTL with respect to the satisfaction relations j=fair , j=sfair andj=Wfair . As before, we write Sat�(�) to denote the set Sat(�) in the fully probabilisticcase and SatA(�) in the concurrent case (where A is the chosen type of adversaries).The main procedure is the same for fully probabilistic and concurrent probabilistic systemsand uses the ideas of the model checking algorithm for CTL �a la Clarke, Emerson & Sistla[CES83]. The starting point is a PCTL formula 	 over AP and a �nite probabilisticsystem S with state space S and a labelling function L : S ! 2AP . First, it builds theparse tree of 	 whose nodes stand for subformulas of 	. The root represents the formula 	.The leaves are labelled by the boolean constant tt or an atomic proposition. The internalnodes are labelled by one of the operators ^, :, Prob./p(X) Prob./p(U) or Prob./p(U�k).Nodes labelled by : or a next-step operator Prob./p(X) have exactly one son, representingthe argument of the negation, resp. next step operator, in the corresponding subformula.Nodes labelled by ^ or an until operator Prob./p(U) or Prob./p(U�k) have exactly twosons (their arguments). If v is a node then let �v denote the formula represented by v.In a bottom-up manner, we calculate the sets Sat�(�v) of states where the correspondingsubformula �v holds. For the handling of the leaves (nodes where the correspondingformula is tt or an atomic proposition) we use the fact that Sat�(tt) = S and Sat�(a) =fs 2 S : a 2 L(s)g. For the computation of �v for an internal node v, we mightassume that the sets Sat�(�w) for the sons w of v are already computed. Thus, we cantreat the proper state subformulas of �v as atomic propositions. The cases where theoutermost operator of �v is one of the boolean connectives : or ^ is clear as we have:Sat�(:�) = S nSat�(�) and Sat�(�1 ^�2) = Sat�(�1)\Sat�(�2). Now we consider thecase where �v is of the form Prob./p(').Fully probabilistic case: We brie
y recall the results of Hansson & Jonsson [HaJo94]for the fully probabilistic case. As before, let P : S � S ! [0; 1] denote the transitionprobability matrix in S (i.e. S = (S;P;AP ;L)). We computeps(') = Probf� 2 Path ful(s) : � j= 'gfor all state s 2 S and then put Sat(�v) = fs 2 S : ps(') ./ pg. The probabilities ps(')can be computed as follows. The handling with the next step operator is based on theobservation that ps(X�) = P(s; Sat(�)) = Xt2Sat(�) P(s; t):For the computation of ps(�1U�k�2), [HaJo94] proposes two methods. One uses iterativematrix multiplication; the other is based on the fact thatps(�1U�k�2) = 1 if s 2 Sat(�2),ps(�1U�k�2) = 0 if s 2 S n (Sat(�1) [Sat(�2)),

218 CHAPTER 9. VERIFYING TEMPORAL PROPERTIESps(�1U�0�2) = 0 if s 2 Sat(�1) n Sat(�2)and, for s 2 Sat(�1) n Sat(�2) and k � 1,ps(�1U�k�2) = Xt2S P(s; t) � pt(�1U�k�1�2):For the until operator, the probabilities ps(�1U�2) can be obtained by solving a regularlinear equation system (preceeded by a graph analysis which yields the set fs 2 S :ps(�1U�2) = 0g). Alternatively, one can use an iterative method that computes anapproximation of the function s 7! ps(�1U�2) (viewed as the least �xed point of anoperator on the function space S ! [0; 1]).17 See Remark 3.1.8 (page 36).Concurrent case: In the remainder of that section, we deal with the concurrent caseand show how to compute the set SatA (Prob./p(')) where A is one of the adversary typesAdv , Adv fair , Adv sfair or AdvW fair . The method for A = Adv is those of [BidAl95].As before, let S = (S; Steps;AP ;L) be the underlying system. Recall that we assume Sto be �nite, i.e. the state space S is �nite and, for any state s, the set Steps(s) is �nite.For the satisfaction relation j=Wfair , we deal with a �xed subset W of S. We consider thecases ' = X�, ' = �1U�2 and ' = �1U�k�2 and present criterias for s j=A Prob./p(') bymeans of the sets SatA(�) or SatA(�i), i = 1; 2. Since we assume that the sets SatA(�),SatA(�i), i = 1; 2, are already computed these criterias yield a method for computingSatA (Prob./p(')).Notation 9.3.1 [The comparison operators w and v] We write w to denote one ofthe comparison operators � or >. Similarly, v stands for � or <.Clearly, for formulas of the form Probwp(') we need the \minimal" probabilities for 'under all adversaries A 2 A, while the constraint v p requires to look for the \maximal"probabilities under all A 2 A.The next-step and the bounded-until operator are dealt with in the same way for all fourinterpretations whereas the unbounded until operator requires special methods for thesatisfaction relations with fairness.189.3.1 Next stepThe following lemma shows that the set of states where Prob./p(X�) holds is obtained bycomputing the values � [SatA(�)] = Pt2SatA(�) �(t) for all distributions � 2 Ss Steps(s).Lemma 9.3.2 For all s 2 S:s j=A Prob./p(X�) i� Xt2SatA(�)�(t) ./ p for all � 2 Steps(s)17Our MTBDD-based symbolic model checker of Chapter 10 applies this iterative method.18This observation is no surprise as fairness is a property that only concerns the in�nite behavioursand the probabilities for the fulpaths satisfying PCTL path formulas built from next step X or boundeduntil U�k only depend on the �nite paths up to length k (where k = 1 in the case of the next stepoperator). On the other hand, unbounded until U asserts something about the in�nite behaviour and,in general, an investigation of the �nite paths up to a �xed length is not su�cient to reason about thefulpaths satisfying �1U�2.

9.3. MODEL CHECKING FOR PCTL 219Proof: easy veri�cation.E.g. SatA(Probwp(X�)) is the set of states s 2 S where min�2Steps(s) � [SatA(�)] ./ p.9.3.2 Bounded untilThe below characterization induces the computation of e.g. SatA(Probwp(�1U�k�2)) byrecursively calculating the probabilitiesminA2Adv pAs (�1U�l�2); l = 0; : : : ; k;where pAs (�1U�l�2) is the probability measure of all fulpaths � 2 PathAful(s) with � j=A�1U�l�2. This method is just an adaption of the method proposed by [HaJo94] sketchedon page 217.Lemma 9.3.3 For all s 2 S:s j=A Probwp(�1U�k�2) i� qmins;k w p;s j=A Probvp(�1U�k�2) i� qmaxs;k v p:Here, the values qmaxs;l and qmins;l , s 2 S, l = 0; 1; : : : ; k, are de�ned as follows.� If s j=A :�1 ^ :�2 then qmaxs;l = qmins;l = 0 for all l � 0.� If s j=A �2 then qmaxs;l = qmins;l = 1 for all l � 0.� If s j=A �1 then qmaxs;0 = qmins;0 = 0 andqmaxs;l+1 = max�2Steps(s) Xt2S �(t) � qmaxt;l ; qmins;l+1 = min�2Steps(s) Xt2S �(t) � qmint;l :Proof: For A 2 A, let qAs;l = Prob n� 2 PathAful(s) : � j=A �1U�l�2o. By induction onl, we get qmaxs;l = maxA2A qAs;l and qmins;l = minA2A qAs;l which yields the claim.Example 9.3.4 We consider the system of Figure 9.6 (page 219) and the PCTL formulaProb� 13 (aU�3b): Using the notations of Lemma 9.3.3 (page 219), we have qmaxv;3 = qmaxz;3 = 1,
t u

vwsz fag ;
fag ;fbgfbg m m
mm

mmt t t12 121212 1434�������� @@@@R����	
'&�

--
@@@@I

@@@@R-
Figure 9.6: t 6j=A Prob� 13 (aU�3b) and s j=A Prob� 13 (aU�3b)qmaxw;3 = qmaxu;3 = 0 and the recursive formulas

220 CHAPTER 9. VERIFYING TEMPORAL PROPERTIESqmaxs;i+1 = max n 12 � qmaxt;i ; 14 o, qmaxt;i+1 = 12 + 12 � qmaxs;iwhere qmaxs;0 = qmaxt;0 = 0. We obtain qmaxs;1 = 1=4, qmaxt;1 = 1=2, qmaxs;2 = 1=4, qmaxt;2 = 5=8,qmaxs;3 = 516 and qmaxt;3 = 2132 .Hence, t 6j=A Prob� 13 (aU�3b) and s j=A Prob� 13 (aU�3b).9.3.3 Unbounded untilThis section is concerned with the unbounded until operator, i.e. formulas of the formProb./p(�1U�2) and the satisfaction relations j=, j=fair , j=sfair and j=Wfair .Simpli�ed notations: For the rest of this section, we �x two PCTL formulas �1, �2 overAP . We suppose that the sets of states s 2 S with s j=A �i are already computed. Wemay suppose that �1, �2 are atomic propositions with �i 2 L(si) if and only if s j=A �i,i = 1; 2. This simplifying assumption allows us to use the same notation for all fourinterpretations (since s j=A a i� s j= a for all atomic propositions a), and is made for thisreason alone. We simply write Sat(�i) rather than SatA(�i), i = 1; 2.Notation 9.3.5 [The probabilities p�s(�1U�2)] For A 2 Adv and s 2 S, letpAs (�1U�2) = Prob n� 2 PathAful(s) : � j= �1U�2o,pmaxs (�1U�2) = sup n pAs (�1U�2) : A 2 Adv o,pmins (�1U�2) = inf n pAs (�1U�2) : A 2 Adv o.By the results of [CoYa90, BidAl95] (more precisely, by Corollary 20 (part 1) of [BidAl95],which uses the results of [CoYa90]):pmaxs (�1U�2) = max n pAs (�1U�2) : A 2 Adv simple o,pmins (�1U�2) = min n pAs (�1U�2) : A 2 Adv simple o.Observe that Adv simple is �nite (thus, minA2Adv simple and maxA2Adv simple exist). In partic-ular, this yields that pmaxs (�1U�2) = maxnpAs (�1U�2) : A 2 Advo and pmins (�1U�2) =minnpAs (�1U�2) : A 2 Advo; thus, also maxA2Adv and minA2Adv exist. Immediately bythe de�nition of pmins (�) and pmaxs (�) we get:(i) s j= Probvp(�1U�2) i� pmaxs (�1U�2) v p.(ii) s j= Probwp(�1U�2) i� pmins (�1U�2) w p.This fact is used in the PCTL model checker of [BidAl95]. Having obtained the setsSatAdv (�i), i = 1; 2, one computes the values pmaxs (�1U�2) and pmins (�1U�2) which yieldSatAdv (Probvp(�1U�2)) = fs 2 S : pmaxs (�1U�2) v pg ;SatAdv (Probwp(�1U�2)) = ns 2 S : pmins (�1U�2) w po :[BidAl95] propose to compute the values pmaxs (�1U�2) and pmins (�1U�2) by solving cer-tain linear optimization problems. Alternatively, one can use the characterization of the

9.3. MODEL CHECKING FOR PCTL 221functions s 7! pmaxs (�1U�2) and s 7! pmins (�1U�2) as least �xed points of certain opera-tors on function space S ! [0; 1] and compute (approximations for) them with iterativemethods.19 See Remark 3.2.12 (page 43).We now turn to the question how to deal with the satisfaction relation that involve fairness(namely, the satisfaction relations j=fair , j=sfair and j=Wfair). For this, we present a seriesof technical results that characterizes the states where Prob./p(�1U�2) holds with respectto one of the above satisfaction relations. For readers' convenience we state the maintheorems in this section without proof (those are included in Section 9.5, page 241 �).Instead, we include justi�cation for the technical results in the form of examples andinformal explanations.First, we observe that the results by Emerson & Lei [EmLei85] stating that CTL modelchecking under fairness assumptions can be reduced to CTL� model checking cannotbe adapted for the probabilistic case (for the logics PCTL and PCTL�). In the non-probabilistic case (i.e. when using CTL), fairness of fulpaths can be expressed by pathformulas of CTL�. Typically, this is achieved by means of formulas of the form'fair = _i ĵ (32'i;j _ 23 i;j)where a fulpath � is said to be fair if � j= 'fair . The model checking for CTL underfairness assumptions (i.e. with respect to the satisfaction relation j=fair where the CTLpath quanti�ers 8 and 9 range over all fair fulpaths) can be reduced to the model checkingproblem for CTL� with respect to the standard satisfaction relation j= since one has anequivalence of the form s j=fair 8' i� s j= 8('fair ! ').Unfortunately, this equivalence does not hold in the probabilistic case. The problem is thatformulas of the form Prob./p ('fair ! ') interpreted over j= state that, in all adversaries(whether fair or unfair), the measure of all fair fulpaths that satisfy ' is ./ p, i.e.Prob n� 2 PathAful(s) : � is fair and � j= 'o ./ p for all A 2 Advwhereas the interpretation with respect to j=fair quanti�es over the fair adversaries; thus,Prob./p(') interpreted over j=fair asserts thatProb n� 2 PathFful(s) : � j= 'o ./ p for all F 2 Adv fair :Hence, the model checking algorithms for PCTL� cannot be used to handle fairness (atleast not in a straightforward manner).Recall the above mentioned result of [CoYa90, BidAl95] ((i) and (ii) on page 220) whichasserts that satisfaction with respect to j= (that ranges over all adversaries) only dependson the probabilities under the simple adversaries. Now we will see that item (i) carries overto the satisfaction relations j=fair and j=Wfair (Theorem 9.3.6, page 222, and Theorem 9.3.7,page 222), while (ii) does not (cf. Example 9.3.20, page 226). In particular, the maximal19In Chapter 10 where we describe a MTBDD-based PCTL model checking algorithm for strati�edsystems we make use of the iterative method.

222 CHAPTER 9. VERIFYING TEMPORAL PROPERTIESprobabilities under all fair adversaries are given by the maximal probabilities under allsimple adversaries. Even though (ii) does not hold for j=fair or j=Wfair we will see that alsothe minimal probabilities under all fair adversaries can be derived by an investigation ofthe simple adversaries. More precisely, the minimal probability for a PCTL path formula�1U�2 under all fair adversaries can be described in terms of the maximal probability foranother PCTL path formula a1Ua2 under all simple adversaries. Thus, both the minimaland maximal probabilities under all fair adversaries can be expressed by means of thesimple adversaries. In our opinion, this is a surprising result since the simple adversariesare \extremely unfair".Formulas of the form Probvp(�1U�2)We consider formulas of the form Probvp(�1U�2) for which we need the \maximal" prob-abilities under all fair (strictly fair or W -fair) adversaries. First, we deal with the sat-isfaction relation j=fair . Clearly, pmaxs (�1U�2) � pFs (�1U�2) for all fair adversaries F .Vice versa, for each simple adversary A, there is a fair adversary FA where PathFA�n con-tains all �nite paths � 2 PathA�n such that �(i) j= �1 ^ :�2, i = 0; 1; : : : ; j�j � 1, andlast(�) j= �2 (cf. Lemma 9.5.15, page 243). Thus, if we take A to be a simple adversarywhere pAs (�1U�2) = pmaxs (�1U�2) (which exists by the results of [CoYa90, BidAl95]) thenwe get pFAs (�1U�2) � pAs (�1U�2) = pmaxs (�1U�2). This yields(*) pmaxs (�1U�2) = max npFs (�1U�2) : F 2 Adv fairoand we obtain the following theorem.Theorem 9.3.6 For all s 2 S:s j=fair Probvp(�1U�2) i� pmaxs (�1U�2) v p.Proof: see Section 9.5.2, Theorem 9.5.19 (page 245).As each fair adversary A is W -fair, (*) yieldspmaxs (�1U�2) = max npFs (�1U�2) : F 2 AdvWfairo :Thus, Theorem 9.3.6 carries over to the satisfaction relation j=Wfair :Theorem 9.3.7 For all s 2 S:s j=Wfair Probvp(�1U�2) i� pmaxs (�1U�2) v p.Proof: see Section 9.5.2, Theorem 9.5.19 (page 245).It turns out that the satisfaction relation j=sfair di�ers from j=fair and j= in that only astronger statement for formulas of the form Prob�p(�1U�2) can be shown.Theorem 9.3.8 For all s 2 S:s j=sfair Prob�p(�1U�2) i� pmaxs (�1U�2) � p.Proof: see Section 9.5.2, Theorem 9.5.21 (page 245).The following example shows that the inequality \� p" in Theorem 9.3.8 cannot bereplaced by \< p" as pFs (�1U�2) < pmaxs (�1U�2) for all F 2 Adv sfair is possible.

9.3. MODEL CHECKING FOR PCTL 223

t u
vs

m m
mmtfagfag fbg
;�12 12@@@@R����	 ?- -'

Figure 9.7: s j=sfair Prob<1(aUb) while pmaxs (aUb) = 1Example 9.3.9 Consider the system shown in Figure 9.7 (page 223) and the path formulaaUb. Then, pFs (aUb) < 1 for each strictly fair adversary F . Hence, s j=sfair Prob<1(aUb):On the other hand, pAs (aUb) = 1 for the simple adversary A with A(s) = �. Hence,pmaxs (aUb) = 1.20In order to describe how the set Sat sfair (Prob<p(�1U�2)) can be computed we �rst intro-duce some notations. We de�ne Reach�1^:�2(s) to be the set of states which are reachablein S from s via a path where all states { possibly except the last one { ful�ll the formula�1 ^ :�2.Notation 9.3.10 [The set Reach�1^:�2(s)] For s 2 S, we de�nePath�n(s;�1 ^ :�2) = f� 2 Path�n(s) : �(i) j= �1 ^ :�2; i = 0; 1; : : : ; j�j � 1g,Reach�1^:�2(s) = flast(�) : � 2 Path�n(s;�1 ^ :�2)g:S+(�1;�2) is the set of all states from which one can reach a �2-state via a path through�1-states. Formally:Notation 9.3.11 [The set S+(�1;�2)] We de�neS+(�1;�2) = fs 2 S : Reach�1^:�2(s) \ Sat(�2) 6= ;g:Clearly, s 2 S+(�1;�2) i� pAs (�1U�2) > 0 for some A 2 Adv i� pmaxs (�1U�2) > 0.Example 9.3.12 For the system of Figure 9.7 (page 223) we haveReacha^:b(s) = Reacha^:b(t) = fs; t; u; vg,Reacha^:b(x) = fxg for x 2 fu; vg.Moreover, Sat(b) = fug, Sat(a) = fs; tg. Thus, S+(a; b) = fs; t; ug.We introduce MaxSteps(s;�1;�2) as the set of steps � 2 Steps(s) that might be chosenin state s by an adversary A that yields the maximal probabilities for �1U�2.Notation 9.3.13 [The sets MaxSteps(s;�1;�2)] If s 2 S n Sat(�1) then we de�neMaxSteps(s;�1;�2) = Steps(s). For s 2 Sat(�1), let MaxSteps(s;�1;�2) be the set20Note that A is fair, cf. Example 3.2.18 on page 46. Thus, s 6j=fair Prob<1(aUb).

224 CHAPTER 9. VERIFYING TEMPORAL PROPERTIESof � 2 Steps(s) such thatpmaxs (�1U�2) = Xt2S �(t) � pmaxt (�1U�2):We de�ne a set Tmax (�1;�2) for which we show (in Section 9.5.2, page 246 �) thatit contains exactly those states s such that pmaxs (�1U�2) = pFs (�1U�2) for some F 2Adv sfair .Notation 9.3.14 [The set Tmax (�1;�2)] We de�neTmax (�1;�2) = [i�0 Tmaxi (�1;�2)where Tmax0 (�1;�2) = Sat(�2) [(S n S+(�1;�2)) andTmaxj (�1;�2) = Tmaxj;1 (�1;�2) [Tmaxj;2 (�1;�2) for j � 1.Here,� Tmaxj;1 (�1;�2) consists of all states t 2 S n Si<j Tmaxi (�1;�2) such thatSupp(�) � [i<j Tmaxi (�1;�2)for some � 2 MaxSteps(t;�1;�2),� Tmaxj;2 (�1;�2) = ST2T T where T is the collection of all subsets T ofS n 0@ [i<j Tmaxi (�1;�2) [T admj;1 (�1;�2) 1Asuch that for all t 2 T :(i) MaxSteps(t;�1;�2) = Steps(t)(ii) for all � 2 Steps(t):Supp(�) � T [[i<j Tmaxi (�1;�2) [Tmaxj;1 (�1;�2):Example 9.3.15 We consider the system of Figure 9.8 (page 225). We write Tmax� ,pmax� and MaxSteps(s) rather than Tmax� (a; b), pmax� (aUb) and MaxSteps(s; a; b). Then,pmaxs5 = 1=2, pmaxs4 = pmaxs3 = pmaxs2 = 1=3,pmaxs6 = 19 � 1Xi=0 �12�i = 29and pmaxs1 = maxf2=3 � 1=3; 2=9g = 2=9. Hence, Steps(sj) = MaxSteps(sj), j = 1; : : : ; 5,�2 = �1u6 =2 MaxSteps(s6). Thus,� Tmax0 = S n S+(a; b) [Sat(b) = fu1; u3; u5; u6; u06; t5; t6g,� Tmax1;1 = fs5g, Tmax1;2 = fs3; s4g,� Tmax2;1 = fs2g, Tmax2;2 = ;,

9.3. MODEL CHECKING FOR PCTL 225

s1
s2 s4

s3 s5

s6 t6
u6u06u1 u3 t5

u5
fag

fag fag
fag

fag

fag
fbg
;;; ; fbg

;

7181912
1323 1434 25 35

2313 1212

�
��
�
��

�
�� �
��
�
�� �
��

�
�� �
��
�
���
�� �
�� �
��

�
��
�������

��
@@@@R

�����@@@@ -

�����
-

? --

t

tt tt t
�1�2

�1�2
-

�����@@@@R
�����@@@@R @@@@I �����@@@@R �����@@@@R

@@@@R'?

%�Figure 9.8: s6 j=sfair Prob< 29 (aUb) while pmaxs6 (aUb) = 29� Tmax3;1 = fs1gand Tmax� = ; in all other cases. We get Tmax (a; b) = S n fs6g.In Section 9.5.2 (page 246 �) we show: For all s 2 S n Tmax (�1;�2) and strictly fairadversaries F , there exists � 2 PathF�n(s) with F (�) =2 MaxSteps(last(�);�1;�2) and�(i) j= �1 ^ :�2, i = 0; 1; : : : ; j�j; thus, pF� (�1U�2) < pmaxlast(�)(�1U�2).21 We conclude:pFs (�1U�2) < pmaxs (�1U�2) for all F 2 Adv sfair and s =2 Tmax (�1;�2).(See Lemma 9.5.33 on page 249.) For instance, for the state s6 of the system in Example9.3.15 (see Figure 9.8 on page 225) and each F 2 Adv sfair , there is some �nite path � inPathF�n of the form s6 �1! s6 �1! : : : �1! s6 with F (�) = �2 =2 MaxSteps(s6; a; b). Hence,pFs6(aUb) < 29 = pmaxs6 (aUb):Vice versa, a strictly fair adversary F with F (�) = �t for all � 2 PathF�n with last(�) =t 2 Tmaxj;1 (�1;�2) (where �t is as in Notation 9.3.14, page 224) can be de�ned. For thisadversary F , pFt (�1U�2) = pmaxt (�1U�2) for all t 2 Tmax (�1;�2).(See Lemma 9.5.31 on page 248). For instance, for the system of Example 9.3.15 (seeFigure 9.8 on page 225) and each strictly fair adversary F with F (�) = �2 if � 2 PathF�n21Here, pF� (� � �) = pF 0last(�)(�) where F 0 is an adversary with F 0(
) = F (��
) for all
 2 Path�n (last(�)).

226 CHAPTER 9. VERIFYING TEMPORAL PROPERTIESand last(�) = s1, we have pFt (aUb) = pmaxt (aUb) for all t 2 Tmax (a; b). Note that there isno fair fulpath where s3 occurs in�nitely often. Thus, pFs3(aUb) = 1=3 = pmaxs3 (aUb) for allF 2 Adv sfair . These observations lead to the following theorem.Theorem 9.3.16 For all s 2 S:s j=sfair Prob<p(�1U�2) () (pmaxs (�1U�2) < p : if s 2 Tmax (�1;�2)pmaxs (�1U�2) � p : otherwise.Proof: see Section 9.5.2, Theorem 9.5.35 (page 250).Example 9.3.17 For the system of Example 9.3.15 (see Figure 9.8 on page 225) we have:s6 j=sfair Prob< 29 (aUb) but s6 6j=fair Prob< 29 (aUb)and s1 6j=sfair Prob< 29 (aUb).Corollary 9.3.18 If s =2 Tmax (�1;�2) then s j=sfair Prob<1(�1U�2).Example 9.3.19 For the system in Example 9.3.9 (page 223), we have S+(a; b) =fs; t; ug and Sat(b) = fug. Hence, Tmax0 (a; b) = fu; vg: For the simple adversary Awith A(s) = � we get pAs (aUb) = pAt (aUb) andpAs (aUb) = 12 + 12 � pAt (aUb):Hence, pAs (aUb) = 1. Thus, pmaxs (aUb) = 1. SinceXx �1v(x) � pmaxx (aUb) = pmaxv (a; b) = 0we get MaxSteps(s; a; b) = f�g 6= Steps(s). This yields Tmax1;1 (a; b) = Tmax1;2 (a; b) = ; andTmax (a; b) = Tmax0 (a; b) = fu; vg.By Corollary 9.3.18 (page 226), s j=sfair Prob<1(aUb) as s =2 Tmax (a; b).Formulas of the form Probwp(�1U�2)First, we consider j=fair and j=sfair . The following example shows thatpmins (�1U�2) < inf npFs (�1U�2) : F 2 Adv fairo(thus, s j=fair Probwp(�1U�2) while pmins (�1U�2) < p) is possible. In particular, thisexample shows the di�erence between j=fair and j=, and that, in item (ii) on page 220,the satisfaction relation j= cannot be replaced by j=fair or j=sfair .Example 9.3.20 Consider the following system and the path formula aUb.t sj jfagfbg � � �� �6

9.3. MODEL CHECKING FOR PCTL 227Then, pAs (aUb) = 0 for the simple adversary A with A(s) = �1s, whereas pFs (aUb) = 1 foreach fair adversary F . Hence, s j=fair Prob�1(a U b) but pmins (aUb) = 0.The above simple example demonstrates that the progress property Prob�1(aUb) cannotbe established unless fairness is required. The \problem" with the simple adversary Awhere A(s) = �1s is that it forces the system to stay forever in a \non-successful" state (s)from which a \successful" state (t) can be reached. In fair adversaries, with probability1, all states that are reachable from a state that is visited in�nitely often are also visitedin�nitely often (see Lemma 9.5.10 on page 242 and Lemma 9.5.12 on page 243). Thisexplains why pAs (aUb) cannot be \approximated" by fair adversaries. Moreover, we willsee (in Corollary 9.5.23, page 246) that, for each fair adversary F and state s, the measureof the fulpaths � 2 PathFful(s) where either �1U�2 holds or that eventually reach a statethat is not contained in S+(�1;�2) is 1. Thus, 1 � pFs (�1U�2) is the probability (withrespect to the adversary F) for s to reach a state in S n S+(�1;�2) via a �nite path thatonly passes states in S+(�1;�2) n Sat(�2).Notation 9.3.21 [The set S?(�1;�2)] Let S?(�1;�2) = S+(�1;�2) n Sat(�2):Having computed the sets S+(�1;�2) and S?(�1;�2) (which will be explained in Section9.3.5, page 231 �) we may extend AP by \fresh" atomic propositions that characterizethe sets S+(�1;�2) and S?(�1;�2).Notation 9.3.22 [The atomic propositions a+ and a?] In the sequel, we suppose a+,a? 2 AP with a+ 2 L(s) i� s 2 S+(�1;�2) and a? 2 L(s) i� a? 2 S?(�1;�2).The following theorem states that to handle formulas of the type Probwp(�1U�2) withrespect to j=fair it su�ces to compute the values pmaxs (a?U:a+).Theorem 9.3.23 For all s 2 S:s j=fair Probwp(�1U�2) i� 1� pmaxs (a?U:a+) w p.Proof: see Section 9.5.2, Theorem 9.5.25 (page 246).If Reach�1^:�2(s) � S+(�1;�2) and s 2 Sat(�1) then pmaxs (a?U:a+) = 0. Hence, s j=fairProb�1(�1U�2). Vice versa, if Reach�1^:�2(s) 6� S+(�1;�2) then there is a �nite path� 2 Path�n(s) with �(i) j= �1 ^ :�2, i = 0; 1; : : : ; j�j � 1, and last(�) =2 S+(�1;�2). Forany (fair) adversary F with � 2 PathF�n(s), we have pFs (�1U�2) � 1�P(�) < 1: Thus,s 6j=fair Prob�1(�1U�2). This leads to the following corollary.Corollary 9.3.24 For all s 2 S:s j=fair Prob�1(�1U�2) i� Reach�1^:�2(s) � S+(�1;�2):In particular, a concurrent probabilistic system S with initial state sinit satis�es a qual-itative progress property expressed by a PCTL formula of the form Prob�1(3�) (wheresatisfaction is understood to be with respect to j=fair) if and only if the system is \safe"in the sense that no \deadlocked" state (a state t from which no �-state can be reached,i.e. Reach(t) \ Sat(�) = ;) is reachable from the initial state sinit :sinit j=fair Prob�1(3�) i� Reach(sinit) � fs 2 S : Reach(s) \ Sat(�) 6= ;g

228 CHAPTER 9. VERIFYING TEMPORAL PROPERTIES

t u
vs

m m
mmtfagfag ;
fbg�12 12@@@@R����	 ?- -'

Figure 9.9: pmaxs (a?U:a+) = 1 but pFs (aUb) > 0 for all F 2 Adv sfairThus, for verifying qualitative progress properties as explained above, an analysis of the\topology" of the system su�ces. This result was �rst established in [HSP83]. A similarobservation for fully probabilistic systems is made in Section 3.1 (Lemma 3.1.10, page37).Example 9.3.25 For the system of Example 9.3.20 (page 226), we have Reach(s) = fs; tgand Sat(b) = ftg. Hence, s j=fair Prob�1(3b).Theorem 9.3.26 For all s 2 S:s j=sfair Prob�p(�1U�2) i� 1� pmaxs (a?U:a+) � p:Proof: see Section 9.5.2, Theorem 9.5.27 (page 246).A stronger version of Theorem 9.3.26 stating that s j=sfair Prob>p(�1U�2) i� 1 �pmaxs (a?U:a+) > p is incorrect, as can be seen from Example 9.3.27 below. (This ex-ample again demonstrates the di�erence between j=sfair and j=fair .)Example 9.3.27 We consider the system shown in Figure 9.9 (page 228). Clearly, u isthe only state that satis�es :a+. Thus, for the simple adversary A with A(s) = � we havepAs (a?U:a+) = 1. This yields pmaxs (a?U:a+) = 1 but pFs (aUb) > 0 for all F 2 Adv sfair .Hence, s j=sfair Prob>0(aUb) while pmaxs (a?U:a+) = 1.The next result is an analogue of Theorem 9.3.16 (page 226), in which we show how todeal with formulas Prob>p(�1U�2) with respect to the satisfaction relation j=sfair .Theorem 9.3.28 For all s 2 S:s j=sfair Prob>p(�1U�2) () (1� pmaxs (a?U:a+) > p : if s 2 Tmax (a?;:a+)1� pmaxs (a?U:a+) � p : otherwise.Proof: see Section 9.5.2, Theorem 9.5.36 (page 250).Corollary 9.3.29 If s =2 Tmax (a?;:a+) then s j=sfair Prob>0(�1U�2).Example 9.3.30 In Example 9.3.27 (page 228) we have Tmax (a?;:a+) = fu; vg. Hence,s j=sfair Prob>0(aUb) since s =2 Tmax (a?;:a+).

9.3. MODEL CHECKING FOR PCTL 229Next we consider formulas of the form Probwp(�1U�2) and the satisfaction relation j=Wfair .First, we observe that Theorem 9.3.23 (page 227) does not carry over to j=Wfair sinceinf npFt (�1U�2) : F 2 AdvW fairo < inf npFt (�1U�2) : F 2 Adv fairois possible. For this, consider the simple system of Figure 9.10 and the simple adversary Aw t sj j jfag fag fbg-'$
&%?6Figure 9.10: t 6j=Wfair Prob�1(aUb) while t j=fair Prob�1(aUb)with A(t) = �1w. Dealing with W = fwg, we get the W -fairness of A. Since pAt (aUb) = 0,the minimal probability for state t under all W -fair adversaries is 0. On the other hand,if fairness in state t is assumed then the state s will eventually be reached from t. Thus,pFt (aUb) = 1 for any adversary F that is fair in state t (e.g. F 2 Adv fair); hence, theminimal probability for state t under all fair adversaries is 1. In particular, if t =2 W thent 6j=Wfair Prob�1(aUb) while t j=fair Prob�1(aUb) (and pmaxt (a?U:a+) = 0).To deal with j=Wfair , we use an atomic proposition a0W (that characterizes all states swhich can reach S nS+(�1;�2) without passing a �2-state with probability 1 in a W -fairadversary) and replace in Theorem 9.3.23 (page 227) the path formula a?U:a+ by a?Ua0W .Notation 9.3.31 [The set S0W (�1;�2)] We de�neS0W (�1;�2) = [i�0 Tiwhere T0 = S n S+(�1;�2) and, for i � 1, Ti = Ti;1 [Ti;2 with:� Ti;1 is the set of states t 2 Sn(T0[: : :[Ti�1[Sat(�2)) such that, for some �t 2 Steps(t),Supp(�t) � T0 [: : : [Ti�1:� Ti;2 = ST2Ti T where Ti denotes the collection of all setsT � S n (T0 [: : : [Ti�1 [Ti;1 [Sat(�2))such that for all t 2 T :{ If t 2 W then Supp(�) � T0 [: : : Ti�1 [Ti;1 [T for all � 2 Steps(t).{ If t =2 W then there exists �t 2 Steps(t) with Supp(�t) � T0 [: : : Ti�1 [Ti;1 [T .Notation 9.3.32 [The atomic proposition a0W] We suppose a0W 2 AP witha0W 2 L(s) i� s 2 S0W (�1;�2).The following theorem is an analogue of Theorem 9.3.23 (page 227) which shows that, tohandle formulas of the type Probwp(�1U�2) with respect to j=Wfair , it su�ces to computethe values pmaxs (a?Ua0W).

230 CHAPTER 9. VERIFYING TEMPORAL PROPERTIESTheorem 9.3.33 For all s 2 S:s j=Wfair Probwp(�1U�2) i� 1� pmaxs (a?Ua0W) w p.Proof: see Section 9.5.2, Theorem 9.5.40 (page 252).Example 9.3.34 Consider the path formula aUb and the system of Figure 9.11 (page230) where W = fw1; w2g. The set S0W (a; b) is obtained as follows. We have S+(a; b) = S.Let Ti;1, Ti;2 be as in Notation 9.3.31 (page 229). Then, we get:� T0 = S n S+(a; b) = ; which yields T1;1 = ;� T1;2 = fv1g (consider the distribution �v1 = �1v1 2 Steps(v1))� T2;1 = fw1g (consider the distribution �w1 = �1v1 2 Steps(w1))� T2;2 = fw2; v2gand Ti;1 = Ti;2 = ; for all i � 3. Thus, S0W (a; b) = fv1; v2; w1; w2g and pmaxt (a?Ua0W) = 45 :Hence, t j=Wfair Prob�0:2(aUb) while t 6j=Wfair Prob0:5(aUb).On the other hand, t 6j=fair Prob�0:5(aUb) since pmaxt (a?U:a+) = 0 (as Sat(:a+) = ;).
s0 s1w1

w2
v1
v2t

�
�� �
���
��
�
���
���
��

�
��fbg fbgfag
fag
fagfagfag ttt � 1323 1212��15 45

�� HHHHHHHHj -

-'
?

@@@@R
'� �6
%�

����*HHHHj����	 @@@@R
� �? %�

Figure 9.11: S0W (a; b) = fv1; v2; w1; w2g for W = fw1; w2g9.3.4 The connection between j=, j=fair , j=sfair and j=WfairFrom the results of the previous sections we get that the four satisfaction relations onlydi�er for PCTL formulas whose outermost operator is the until operator (i.e. formulasof the type Prob./(�1U�2)). The di�erence between the standard satisfaction relation j=and the satisfaction relations with fairness (see e.g. Example 9.1.6, page 211) is due to thewell-known fact that appropriate fairness assumptions might be essential for establishingcertain liveness properties. However, the satisfaction relations j=, j=fair and j=Wfair coin-cide when dealing with formulas of the type Probvp(�1U�2) (provided that �1, �2 cannotbe distinguished by j=, j=fair and j=Wfair). Thus, we get:

9.3. MODEL CHECKING FOR PCTL 231Theorem 9.3.35 Let � be a PCTL formula that does not contain subformulas of theform Probwp(�1U�2) then, for all states s,s j= � i� s j=fair � i� s j=Wfair �.Proof: by (i) (page 220), Theorem 9.3.6 (page 222), Theorem 9.3.7 (page 222).From the results of the previous section, we get that the di�erence between the interpreta-tions j=fair and j=sfair is only marginal. This result is not surprising as it is already shownin [HSP83] that each strictly fair scheduler can be \approximated" by fair schedulers.The precise connection between j=fair and j=sfair is as follows.Theorem 9.3.36 Let � be a PCTL formula that does not contain subformulas of theform Prob<p(') or Prob>p('). Then, for all states s:s j=fair � i� s j=sfair �:Proof: follows by Theorem 9.3.6 (page 222), Theorem 9.3.8 (page 222), Theorem9.3.23 (page 227) and Theorem 9.3.26 (page 228).Clearly, fairness with respect to a proper subset W of S induces a satisfaction relationwhich, in general, di�ers from j=fair ; see e.g. Figure 9.10 (page 229). Dealing withW = S,the satisfaction relations j=fair and j=Wfair coincide, although fairness with respect toW = S (in the sense of De�nition 3.2.20 page 47) does not coincide with fairness in thesense of De�nition 3.2.17 (page 46).Theorem 9.3.37 If W = S then for all states s and PCTL formulas �:s j=fair � i� s j=Wfair �:Proof: see Section 9.5.2 (Theorem 9.5.41, page 252).9.3.5 Complexity of PCTL model checkingWe summarize the results of the previous sections and investigate the complexity of theresulting PCTL model checking algorithm. As before, we assume a �xed �nite concurrentprobabilistic system S = (S; Steps;AP ;L). Let n be the set of states (i.e. n = jSj) andm the number of transitions (i.e. m = Ps2S jSteps(s)j). W.l.o.g. we may assume thatm � n. Moreover, we �x a PCTL formula 	 for which we want to compute SatA().The size of the parse tree (the number of nodes) is linear in the length j	j. For everynode v of the parse tree where the associated formula �v is tt , an atomic propositionor of the form :� or �1 ^ �2, the costs for computing the set of states ful�lling �v isO(n). The nodes which represent formulas whose outermost operator is the probabilisticoperator combined with next-step (i.e. formulas of the form Prob./p(X�)) require O(nm)time since, for every transition � 2 Steps(s), we have to compute the sum Pt2SatA(�) �(t)(cf. Lemma 9.3.2, page 218). Computing the states that ful�ll a formula whose outermostoperator is the probabilistic operator combined with bounded until U�k takes O(knm)time when using the method of Lemma 9.3.3 (page 219). We now show that the timeneeded for the handling of unbounded until is polynomial in n and m.

232 CHAPTER 9. VERIFYING TEMPORAL PROPERTIESDealing with j=fair , j=sfair or j=Wfair and formulas of the form Prob./p(�1U�2) we pro-pose the following procedure. As before, we assume that the sets SatA(�i) are alreadyknown. We �rst compute the set S+(�1;�2) from which we derive the sets Sat(:a+) =S n S+(�1;�2), Sat(a?) = S?(�1;�2) and S0W (�1;�2). Using well-known methods oflinear programming, the maximal probabilities pmaxs (a1Ua2) under all adversaries can becomputed in time polynomial in n and m (cf. Remark 3.2.12, page 43). Here,(a1; a2) = 8><>: (�1;�2) : if ./ 2 f�; <g(a?;:a+) : if ./ 2 f�; >g and dealing with j=fair or j=sfair(a?; a0W) : if ./ 2 f�; >g and dealing with j=Wfair .Moreover, for the satisfaction relation j=sfair we compute the set Tmax (a1; a2). We nowshow that the above mentioned sets can be computed in polynomial time.Computation of S+(�1;�2): Let G+(�1;�2) be the directed graph (S;E) where (s; t) 2E i� t j= �1 ^ :�2 and �(s) > 0 for some � 2 Steps(t). Then, S+(�1;�2) is the set ofstates which are reachable in G+(�1;�2) from a state s 2 Sat(�2). Hence, S+(�1;�2)can be derived by a depth-�rst search in G+(�1;�2). This yields the time complexityO(nm) for the computation of S+(�1;�2).22Computation of Tmax (a1; a2): In what follows, we simply write MaxSteps(s) ratherthan MaxSteps(s; a1; a2). First, we compute MaxSteps(s) for all s 2 S and the setsT0 = Sat(a2) [(S n S+(a1; a2)), U = fv 2 S n T0 : MaxSteps(s) 6= Steps(s)g.We compute the strongly connected components in the directed graph (S n (T0 [U); E)where (s; t) 2 E i� �(t) > 0 for some � 2 MaxSteps(s) = Steps(s). Let C1; : : : ; Ck bean enumeration of the strongly connected components which satis�es: if s 2 Cj, s0 2 Clwith (s; s0) 2 E then l � j. For i = 1; : : : ; k we compute the set Si of states w 2 S n T0such that �(w) > 0 for some � 2 Steps(s) and s 2 Ci. Let Z be the set of pairs (v; V)such that v 2 S n T0, ; 6= V � S n T0 and V = Supp(�) n T0 for some � 2 Steps(v). Forz 2 Z, we denote the �rst component of z by z:state, the second component by z:nextand we de�ne jzj = jz:next j. Let S0 be the set of states s 2 S n T0 with s = z:state forsome z 2 Z with jzj = 0. Initially, we de�ne T = T0. We successively modify S0, T andjzj by the following procedure:For i = 1; 2; : : : ; k + 1 do:(1) While S0 6= ; do:(1.1) choose some s 2 S0(1.2) S0 := S0 n fsg, T := T [fsg(1.3) For all z 2 Z do:(1.3.1) If s 2 z:next then jzj := jzj � 1.(1.3.2) If jzj = 0 then S0 := S0 [fz:stateg.(2) If i � k and Si � Ci [T then S0 := S0 [Ci n T .Then, Tmax (a1; a2) = T .22The construction of G+(�1;�2) needs O(nm) steps. The time for performing a depth-�rst search ina directed graph G is linear in the number of nodes and edges. As the number of edges in G+(�1;�2) isbounded by minfn2; nmg we get the time complexity O(nm) for the computation of S+(�1;�2).

9.3. MODEL CHECKING FOR PCTL 233
s1 s2 s4

s3 s5k k k
k k- ����@@@R

-
Figure 9.12:Example 9.3.38 We consider the system of Example 9.3.15 (Figure 9.8, page 225) anddeal with a1 = a, a2 = b. Then, �1, �2 2 MaxSteps(s1) and MaxSteps(s6) = f�1g. Weobtain U = fs6g and T0 = S n fs1; : : : ; s6g. We �rst compute the strongly connectedcomponents of the directed graph shown in Figure 9.12 (page 233) and obtainC1 = fs5g, C2 = fs3; s4g, C3 = fs2g, C4 = fs1g,S1 = ;, S2 = fs3; s4; s5g, S3 = fs3; s4g, S4 = fs2; s6g.Initially, the set Z consists of the pairs(s5; ;); (s3; fs5g); (s3; fs4g); (s4; fs3; s4g); (s2; fs3; s4g); (s1; fs2g); (s1; fs6g); (s6; fs6g):This yields S0 = fs5g. In the �rst iteration step (i = 1), we �rst remove s5 from S0 andobtain S0 = fs3g and s5 2 T0. Then, we remove s3 from S0 and obtain S0 = ;, s3 2 T0.Thus, in the second iteration step (i = 2), step (1) is not applicable (since S0 = ;). Instep (2) we have S2 = fs3; s4; s5g � C2 [T0 and obtain S0 = fs4g. The third iterationstep (i = 3) removes s4 from S0 and yields S0 = fs2g, s4 2 T0. Then, we remove s2 fromS0 and obtain S0 = fs1g, s2 2 T0. Finally, we remove s1 from S0 and get S0 = ; ands1 2 T0. In the iteration steps i = 4; 5, only step (2) is applicable that yields S0 = ;. Thealgorithm returns Tmax (a; b) = S n fs6g.For the computation of MaxSteps(�), U , the components C1; : : : ; Ck, the sets S1; : : : ; Sk,Z and the function j � j, we need O(nm) time.23 We suppose the sets T , C1; : : : ; Ck andz:next for z 2 Z to be represented as boolean vectors (one bit for each state s 2 S n T0)and that each of the sets Z, S0; S1; : : : ; Sk is represented as a list consisting of pointers totheir elements. Then, the test in (1) and steps (1.1), (1.2) can be performed in constanttime. Step (1.3) can be performed in time linear in the size of Z. As jZj � m we get thetime complexity O(m) for step (1.3). As each state s 2 S n T0 can only be chosen oncein step (1.1) the while-loop can be performed at most n-times. Hence, ranging over alli 2 f1; 2; : : : ; k+ 1g and all executions of the while loop we need O(nm) time to performsteps (1.1), (1.2) and (1.3). Ranging over all i 2 f1; 2; : : : ; kg we needkXi=1 O (jSij) = O(k � jS n (T0 [U)j) = O(n2)23Note that for the computation of MaxSteps(s) we have to calculate Pt2S �(t) � pmaxs (a1Ua2) foreach � 2 Steps(s). As G has at most minfn2; nmg edges and as the strongly connected components of adirected graph can always be computed in time linear in the number of states and edges, the computationof C1; : : : ; Ck takes O(nm) time.

234 CHAPTER 9. VERIFYING TEMPORAL PROPERTIEStime for step (2). We conclude that the time complexity of computing Tmax (a1; a2) bythe method described above is O(nm). (Recall that we assume m � n.)Computation of S0W (�1;�2): S0W (�1;�2) can be computed in a similar way as weobtained Tmax (a1; a2). Thus, also the computation of S0W (�1;�2) needs O(nm) time.Complexity of PCTL model checking: Let p(n;m) be a polynomial that stands forthe cost function for the time for computing the values pmaxs (a1; a2) for atomic propositionsa1, a2. Summing up over all nodes in the parse tree we obtain the time complexityO � j	j � �k	 � n �m + p(n;m)� � :Here, k	 is either 1 (in the case where 	 does not contain the bounded until operator) orthe maximal value k such that 	 contains a subformula of the form Prob./p ��1U�k�2�.I.e., the time complexity is polynomial in the size of the structure and linear in the sizeof the formula. The space complexity is O(n(j	j + m)). This can be seen as follows.The representation of the set associated with each node v of the parse tree requires O(n)space. For the system (S; steps;AP ;L) itself, we need O(nm) space (where we neglectthe space needed for the representation of the labelling function L). For the computationof pmaxs (a1Ua2), we need O(n2) space while the computation of the sets Tmax (a1; a2) orS0W (�1;�2) needs O(nm) space. (Note that n � m.) We summarize:Theorem 9.3.39 Let S a �nite concurrent probabilistic system, 	 a PCTL formula andW a subset of the state space of S. Then, SatA() can be computed in time and spacepolynomial in the the size of S and linear in the size of 	 where A is one of the adversarytypes Adv, Adv fair , Adv sfair or AdvW fair .9.4 Model checking for LTLIn the literature, several methods are proposed to verify a probabilistic system againstLTL formulas or similar speci�cation formalisms. A wide range of these methods isbased on the deductive approach and/or deal with qualitative properties stating that alinear time formula holds with probability 0 or 1. See e.g. [LeSh82, HaSh84, Vard85,VaWo86, CoYa88, ACD91a] where methods for fully probabilistic systems are proposedand [HSP83, Pnue83, Vard85, PnZu86a, PnZu86b, VaWo86, PnZu93, CoYa95] wheremethods for concurrent probabilistic systems are presented.Following the !-automata approach proposed by Vardi & Wolper [Vard85, VaWo86] forverifying qualitative linear time properties, algorithms to establish quantitative linear timeproperties (and derived model checking algorithms for PCTL�) have been developed byseveral authors (see [CoYa95, IyNa96] for the fully probabilistic case and [dAlf97b] whereconcurrent probabilistic systems and the standard interpretation j= are considered). Thebasic idea behind the !-automata theoretic approach can be sketched as follows. Thestarting point is a probabilistic system S and a LTL formula ' over AP . Using well-known methods [WVS83, SVW85, Safr88, VaWo94], one constructs an !-automata A forthe formula ' (i.e. an !-automata over the alphabet 2AP that accepts exactly those wordsover 2AP for which the formula ' holds). Then, one de�nes a new probabilistic systemS � A which can be viewed as the product of S and A and, for which, there is a natural

9.4. MODEL CHECKING FOR LTL 235\embedding" s 7! sA of the states s of S into the the state space of the product systemS � A. From the acceptance condition of A, a set U 0 of states in S � A can be derivedsuch that the \probability" that ' holds in state s agrees with the \probability" for sAto reach a state in U 0.24In the fully probabilistic case (where it is possible to deal with a non-deterministic !-automaton), the time complexity of the !-automata-based method is (single) exponentialin the size of the system and linear in the size of the system, see [CoYa95, IyNa96].An alternative algorithm (with the same time complexity) to compute the probabilitiesps(') = Probf� 2 Path ful(s) : � j= 'g in a �nite fully probabilistic system is given byCourcoubetis & Yannakakis [CoYa88]. The main idea of this method is successively toremove the temporal operators from the given formula ' (�nally resulting in a proposi-tional formula '0) where at the same time the fully probabilistic systems is modi�ed. Asdescribed in Section 9.2, both methods can be used for a PCTL� model checking algorithmwith the same time complexity.For the concurrent case, the above mentioned relation between the original system Sand the product S � A requires that the !-automaton A is deterministic (or at least\deterministic in limit" [VaWo86, CoYa95]). The time complexity of the resulting methodfor verifying concurrent probabilistic systems against quantitative LTL speci�cations (andthe derived PCTL� model checking algorithm) with respect to the standard satisfactionrelation j= is double exponential in the size of the formula and linear in the size of thesystem. By the results of [CoYa95], this meets the lower bound for verifying concurrentprobabilistic systems against linear time speci�cations.In this section, we present methods for verifying concurrent probabilistic systems againstquantitative LTL specifations when fairness assumptions are made. More precisely, weexplain the !-automaton approach can be applied for LTL model checking with respectto the satisfaction relations j=fair , j=sfair and j=Wfair . The method we present here isan adaption of the one developped by deAlfaro [dAlf97b] for a PCTL� model checkingalgorithm with respect to the standard satisfaction relation j=.Remark 9.4.1 [Avoiding terminal states] The presented method assumes a �niteconcurrent probabilistic system without terminal states. This is a harmless restrictionsince any system can be transformed into an \equivalent" system without terminal states.Given a system S = (S; Steps;AP ;L) with terminal states, we insert a special state 0with a self-loop and transitions from any terminal state in S to 0.25 Given a LTL formula', we replace each subformula X by X(^:a0), '1U�k'2 by '1U�k('2^:a0) and eachsubformula '1U'2 by '1U('2 ^ :a0). Let '0 be the resulting LTL formula over AP 0. Itis easy to see that the interpretation of ' over S corresponds to the interpretation of '0over S 0. Hence, we may assume w.l.o.g. that the system does not have terminal states.Verifying !-automaton speci�cations: As suggested by Luca deAlfaro, we consider24Here, in the fully probabilistic case, \probability" stands for the usual probability measure; while inthe concurrent case, \probability" stands for the minimal or maximal probability under a certain kind ofadversaries.25Formally, we consider the system S 0 = (S0;Steps ;AP 0;L0) where S0 = S]f0g and AP 0 = AP]fa0g,L0(s) = L(s) if s 2 S and L0(0) = fa0g. If s 2 S is nonterminal then Steps 0(s) = Steps(s). If s 2 S isterminal then Steps 0(s) = f�10g. The self-loop at the auxiliary state 0 is modelled by Steps 0(0) = f�10g.

236 CHAPTER 9. VERIFYING TEMPORAL PROPERTIES!-automaton with the Rabin acceptance condition. We brie
y recall the de�nition. Adeterministic Rabin automaton is a tuple A = (Q; q0;Alph; d;AccCond) where� Q is a �nite set of states,� q0 2 Q the initial state,� Alph a nonempty �nite alphabet,� d : Q� Alph! Q the transition function,� AccCond the (Rabin) acceptance condition, i.e. AccCond = f(Hj;Kj) : j = 1; : : : ; rg isa set consisting of subsets Hj, Kj of Q.A run over A is a \sequence" p0 a0! p1 a1! p2 a2! : : : such that p0 = q0 and pi+1 = d(pi; ai),i = 0; 1; 2; : : :. In what follows, we refer to an in�nite sequence over Alph as a word overAlph. Each word a = a0a1 : : : over Alph ia associated with the runrun(a) = p0 a0! p1 a1! p2 a2! : : :where p0 = q0 and pi = d(pi�1; ai�1), i = 1; 2; : : :. Let qa = p0p1p2 : : : be the associatedsequence of (automata) states. The set AccWords(A) of accepted words over Alph is theset of words a over Alph such that, for the induced word qa = q0q1 : : : over Q,inf (q) � Hj and inf (q) \ Kj 6= ; for some j 2 f1; : : : ; rg.Here, inf (q) denotes the set of states q 2 Q that occur in�nitely often in q. In whatfollows, we �x a concurrent probabilistic system S = (S; Steps;AP ;L) without terminalstates and a deterministic Rabin automata A = (Q; q0; 2AP ; d;AccCond) over the alphabetAlph = 2AP . Let AccCond = f(Hj;Kj) : j = 1; : : : ; rg.Notation 9.4.2 [Accepted fulpaths] If � is a fulpath in S thenword(�) = L(�(0)) L(�(1)) L(�(2)) : : :denotes the induced word over Alph = 2AP . The set of accepted fulpaths is de�ned byAccPath = f� 2 Path ful : word(�) 2 AccWords(A)g:For A 2 Adv , s 2 S, we put AccPathA(s) = AccPath \ PathAful(s): Let I � [0; 1] be aninterval of the form I = I./p = fq 2 [0; 1] : q ./ pg. As before, A denotes a certain type ofadversaries, e.g. A = Adv or A = Adv fair . We aim at a method for computingSatA(hA; I./pi) = ns 2 S : Prob(AccPathA(s)) ./ p for all A 2 A o :De Alfaro [dAlf97a, dAlf97b] describes a method for the case A = Adv . We now presenta modi�cation of this method for the cases A 2 fAdv fair ;Adv sfair ;AdvW fairg. As in[dAlf97a, dAlf97b], we built the product of S and A, thus obtaining a new proposition-labelled concurrent probabilistic system S � A.Notation 9.4.3 [The distributions �q] For � 2 Distr(S), q 2 Q, we put�q(ht; pi) = (�(t) : if p = d(q;L(t))0 : otherwise.

9.4. MODEL CHECKING FOR LTL 237The steps in the product system are given by these \lifted" distributions �q 2 Distr(S�Q).Notation 9.4.4 [The product system S � A] The product systemS � A = (SA; StepsA;AP ;LA)is given by SA = S � Q, LA(hs; qi) = L(s) and StepsA(hs; qi) = f�q : � 2 Steps(s)g:Clearly, S � A is a proposition-labelled concurrent probabilistic system. The originalsystem S can be \embedded" into the product system by adding to each state s 2 Sthose automata state q that is reached from the initial automata state q0 by the L(s)-labelled transition.Notation 9.4.5 [The state sA] For s 2 S, let sA = hs; d(q0;L(s))i:The resulting embedding s 7! sA of the state space S of the original system into the statespace of the product can be extended to an embedding of the paths. For this, we lift anypath
 in S to a path
A in S � A as follows.Notation 9.4.6 [The paths
A] Let
 = s0 �1! s1 �2! : : : be a (�nite or in�nite) path inS. We de�ne
A to be the following path in SA.hs0; p0i �1! hs1; p1i �2! hs2; p2i �3! : : :where si = �(i), p0 = d(q0;L(s0)), pi+1 = d(pi;L(si+1) and �i = �pi�1i .Notation 9.4.7 [The sets �A] Let � � PathSful . Then, �A = f�A : � 2 �g:The function
 7!
A yields bijections PathS�n(s) ! PathS�A�n (sA) and PathSful(s) !PathS�Aful (sA) between the �nite paths starting in s and sA and the fulpaths starting in sand sA. Clearly, � 2 FairS i� �A 2 FairS�A. This also induces a connection between the(fair) adversaries of S and S � A. Any adversary A for S induces a set of adversaries inS �A. The adversaries of this set only di�er in those paths �0 that do not start in a stateof fsA : s 2 Sg.26Notation 9.4.8 [The adversary set AA] Let A 2 AdvS. Then, AA denotes the set ofadversaries A0 2 AdvS�A such that, for any �nite path � 2 PathS�n ,if A(�) = � and last(�A) = hs; qi then A0(�A) = �q.Clearly, the function A 7! AA is injective and, for each A0 2 AdvS�A, there is a (unique)adversary A with A0 2 AA. It is easy to see that, for any A 2 AdvS and A0 2 AA, thefunctions PathA�n(s) 7! PathA0�n(sA), � 7! �A, and PathAful(s) 7! PathA0ful(sA), � 7! �A,are bijections. Moreover, we have P(�) = P(�A) for any �nite path �. This yields anisomorphism between the induced probability spaces on PathAful(s) and PathA0ful(sA). Moreprecisely: Let A 2 AdvS , A0 2 AA and � � Path ful . Then, �A(s) is measurable i��A0A (sA) is measurable; in which case, the probability measures of �A(s) and �A0A (sA) arethe same. Moreover,26Of course, we do not have a one-to-one correspondence between the adversaries of S and S �A sincepaths in S � A that do not start in a state sA do not have a counterpart in S.

238 CHAPTER 9. VERIFYING TEMPORAL PROPERTIES� F is a (strictly) fair adversary for S i� there is a (strictly) fair adversary F 0 2 FA,� F is W -fair i� there is (W � Q)-fair adversary F 0 in FA.If we take � = AccPath then these observations lead to the following lemma.Notation 9.4.9 [The set AccPath] Let AccPath be the set of fulpaths �A in S �A where� is an accepted fulpath in S. I.e. AccPath = AccPathA:Lemma 9.4.10 Let p 2 [0; 1] and ./ 2 f�; >;�; <g and s 2 S. Then:(a) Prob �AccPathF (s)� ./ p for all fair adversaries F of Si� Prob �AccPathF 0(sA)� ./ p for all fair adversaries F 0 of S � A.(b) Prob �AccPathF (s)� ./ p for all strictly fair adversaries F of Si� Prob �AccPathF 0(sA)� ./ p for all strictly fair adversaries F 0 of S � A.(c) Prob �AccPathF (s)� ./ p for all W -fair adversaries F of Si� Prob �AccPathF 0(sA)� ./ p for all (W � Q)-fair adversaries F 0 of S � A.Proof: easy veri�cation. Uses the above mentioned facts.Next we show that, for any fair (strictly fair, W -fair) adversary F 0 of S �A and state s 2S, the probability Prob �AccPathF 0(sA)� is given by Prob n�0 2 PathF 0ful(sA) : �0 j= 3aU 0owhere aU 0 is an atomic proposition that characterizes a certain set U 0 of states in S � A.The de�nition of U 0 is derived from the acceptance condition in A and depends on thechosen satisfaction relation. When dealing with j=fair or j=sfair , the de�nition of U 0 isquite simple:Notation 9.4.11 [The sets U 0, H 0j and K 0j] We de�ne H 0j = S � Hj, K 0j = S � Kj,j = 1; : : : ; r, and U 0 = [1�j�rU 0jwhere U 0j is the largest subset of H 0j such that, for all u0 2 U 0j:ReachS�A(u0) � U 0j and ReachS�A(u0) \K 0j 6= ;:We de�ne AP 0 = AP [faU 0g where aU 0 =2 AP and extend the labelling function of S �Ato a labelling function S � Q ! 2AP 0 (also called LA) where aU 0 2 LA(s0) i� s0 2 U 0. InSection 9.5.3 (Lemma 9.5.43, page 253) we show thatProb(AccPathF 0(s0)) = Prob n�0 2 PathF 0ful (s0) : �0 j= 3aU 0 o :for all states s0 2 S � Q and fair adversaries F 0 of S � A. Thus, part (a) and (b)of Lemma 9.4.10 (page 238) yield the following characterization of the states satisfyingthe quantitative !-automaton speci�cation hA; I./pi with respect to the adversary typesAdv fair and Adv sfair .Sat fair(hA; I./pi) = fs 2 S : sA j=fair Prob./p (3aU 0) g ;Sat sfair(hA; I./pi) = fs 2 S : sA j=sfair Prob./p (3aU 0) g :

9.4. MODEL CHECKING FOR LTL 239
s1 s2 s5s3s4���
 ���
 ���
���
���
; fbg fbgfag

;r 1212- -���? PPPPq����1�����1PPPPPqFigure 9.13: The system SThus, the sets Sat fair (hA; I./pi) and Sat sfair (hA; I./pi) can be obtained by building the prod-uct S�A, computing the set U 0 and then applying the PCTL model checking algorithm ofSection 9.3 to compute the sets Sat fair (Prob./p(3aU 0)) and Sat sfair (Prob./p(3aU 0)). Forcomputing U 0, one might apply graph theoretical methods to obtain the sets U 0j. Alterna-tively, the set U 0j can be described as greatest �xed point of the operator Fj : 2S�Q ! 2S�Q,Fj(V 0) = nv0 2 H 0j : ReachS�A(v0) � V 0 ^ ReachS�A(v0) \K 0j 6= ;o ;and computed by the iteration V 00 = S � Q, V 0i+1 = Fj(V 0i), i = 0; 1; : : :. Dealing withW -fairness, similar ideas can be applied. The only di�erence is that the set U 0 has to bereplaced by the following set U 0W . We de�ne W 0 = W � Q and U 0 = S1�j�r U 0j whereU 0j = [T 02Tj T 0and where Tj is de�ned as follows. Tj consists of all subsets T 0 of H 0j such that, for eacht0 2 T 0 nW 0, there is some �t0 2 StepsA(t0) where the following conditions are satis�ed:(1) If t0 2 T 0 \W 0 and � 2 StepsA(t0), then Supp(�) � T 0.(2) If t0 2 T 0 nW 0 then Supp(�t0) � T 0.(3) Each state t0 2 T 0 can reach a state v0 2 K 0j in the system (T 0; Steps 0) whereSteps 0(t0) = (StepsA(t0) : if t0 2 T 0 \W 0,f�t0g : if t0 2 T 0 nW 0.We state (without proof) thatSatWfair (hA; I./pi) = ns 2 S : sA j=W 0fair Prob./p �3aU 0W � o :Model checking for LTL: As before, we �x a �nite concurrent probabilistic systemS = (S; Steps;AP ;L) without terminal states. Let h'; Ii be a quantitative LTL speci�ca-tion. Using well-known methods [WVS83, SVW85, Safr88, VaWo94], we can construct adeterministic Rabin automata A' over the alphabet Alph = 2AP such that AccWords(A')is the set of in�nite words over 2AP for which ' holds.27 For this, we need double expo-nential time in the size of '. Then, we obtain SatA(h'; Ii) = SatA(hA'; Ii) with themethod explained before. The time complexity is polynomial in the size of S and doubleexponential in the size of '. (Thus, the method is optimal by the results of [CoYa95]).Example 9.4.12 We apply the method described above to the system shown in Figure9.13 (page 239) and the quantitative LTL speci�cation h3(a^Xb); I�0:5i. The determin-istic Rabin automaton A = A3(a^Xb) is shown in Figure 9.14 (page 240) where we deal

240 CHAPTER 9. VERIFYING TEMPORAL PROPERTIES
q0 q1 q2l l l;, fbg fag

fag, fa; bg fbg, fa; bg;@@R��	6 ��	6 ��	6' $?� -
Figure 9.14: Rabin automata A for 3(a ^Xb)with the acceptance condition AccCond = f(Q; fq2g)g.28 The system S � A is shown inFigure 9.15 on page 240 where states that are not reachable from the state hs1; q0i areomitted. We get H 0 = S�Q and K 0 = f(si; q2) : i = 1; : : : ; 5g. Thus, U 0 contains hs3; q0i,

s1; q0 s2; q0 s3; q0
s4; q0

s5; q1
s5; q0

s5; q2�� �
 �� �
 �� �

�� �

�� �

�� �

�� �
1212s- - -
-

-- ��?

��?
? �
� �����@@@@RFigure 9.15: The product system S � Ahs5; q1i and hs5; q2i but none of the other states shown in Figure 9.15. Clearly,Prob n�0 2 PathF 0ful(hs1; q0i) : �0 j= 3aU 0o = 12for each fair adversary F 0 of S � A. Hence, hs1; q0i j=fair Prob�0:5(3(a ^ Xb)) whichyields s1 2 Sat fair(h3(a ^Xb); I�0:5i).Remark 9.4.13 By the results of [CoYa90, BidAl95], the minimal and maximal proba-bilities for PCTL path formulas under all adversaries agree with the minimal or maximalprobabilities under all simple adversaries (see items (i) and (ii) on page 220). This resultdoes not longer hold when dealing with general LTL formulas rather than PCTL pathformulas. We consider the LTL formula ' = Xb! 2a and the system shown in Figuret s uk k kfa; bg fag ;-� �� �6 ?

Figure 9.16: pAs (Xb! 2a) = 1 for all A 2 Adv simple9.16 (page 240). Then, pAs (') = Prob n� 2 PathAful(s) : � j= 'o = 1 for all simple adver-saries A, while pFs (') = Prob n� 2 PathFful(s) : � j= 'o = 0 for the fair adversaries F with27Here, the underlying satisfaction relation j= � 2AP � IN � LTL is de�ned in the obvious way.28This !-automata can be viewed as a deterministic B�uchi automata where the acceptance set is fq2g.

9.5. PROOFS 241F (s) = �1t and F (�) = �1u for all paths � with last(�) = s and j�j � 1. This examplealso shows that, unlike in Theorem 9.3.6 (page 222), a result stating that the equality ofsup npFs (') : F 2 Adv fairo and sup npAs (') : A 2 Advo cannot be established.9.5 ProofsThis section includes the proofs of the theorems established in Section 9.3 and Section9.4 which we have used to derive the model checking procedure for PCTL�.9.5.1 State and total fairnessIn this section we introduce state and total fairness. State fairness is an instance ofp-fairness (see Chapter 8, page 193 �) which is de�ned in the fully probabilistic andconcurrent case. Total fairness for concurrent probabilistic systems requires both fairnessof adversaries (see Section 3.2.3, page 45 �) and state fairness. State and total fairnessare introduced for technical reasons only; they yield a simple proof technique for showingthe equality of the probability measures of certain events. For instance, state fairness infully probabilistic systems yields a simple proof for Lemma 3.1.10 (page 37) that gives agraph-theoretical criteria for establishing \qualitative progress properties".De�nition 9.5.1 [State fairness (fully probabilistic case)] Let S = (S;P) be a fullyprobabilistic system and � 2 PathSful . � is called state fair i�, for each s 2 inf (�), ifP(s; t) > 0 then there are in�nitely many indices j with �(j) = s and �(j + 1) = t.Clearly, state fairness is a special instance of p-fairness (cf. De�nition 8.1.1, page 194).We take L = S � S and l(s; t) = f(s; t)g. Then, for each fulpath �, � is state fair i� � is(L; l)-fair.Lemma 9.5.2 Let S = (S;P) be a �nite fully probabilistic system and � a state fairfulpath in S. Then, inf (�) = Reach(s) for all states s 2 inf (�).Proof: Let s 2 inf (�). Clearly, inf (�) � Reach(s). For t 2 Reach(s), let dist(s; t)be the length of a shortest path from s to t. By induction on k it is easy to see that, ifdist(s; t) = k then t 2 inf (�).Notation 9.5.3 [The set StateFair] StateFairS (or shortly StateFair) denotes the setof state fair fulpaths in S.Lemma 9.5.4 Let (S;P) be a bounded fully probabilistic system. Then, for all s 2 S,Prob (StateFair(s)) = 1:In particular, whenever � � Path ful such that �(s) is measurable thenProb(�(s)) = Prob (StateFair \�(s)) :Proof: follows immediately from Theorem 8.1.5 (page 196).

242 CHAPTER 9. VERIFYING TEMPORAL PROPERTIESCorollary 9.5.5 (cf. Lemma 3.1.10, page 37) Let (S;P) be a �nite fully probabilisticsystem. Let U be a subset of S and � the set of �nite paths � where �(i) 2 S n U ,i = 0; 1; : : : ; j�j � 1, and last(�) 2 U . Let � = � ". Let s 2 S and T = flast(�) : � 2Path�n(s); � =2 � "�ng. Then, we have:�(t) 6= ; for all states t 2 T i� Prob(�(s)) = 1.Proof: The \if" part is clear. For the \only if" part, we assume that �(t) 6= ; for allstates t 2 T . Using Lemma 9.5.2 (page 241) it is easy to see that StateFair(s) � �(s):Thus, Lemma 9.5.4 (page 241) yields the claim.The de�nition of state fairness in the concurrent case is as follows.De�nition 9.5.6 [State fairness (concurrent case)] Let S = (S; Steps) be a concur-rent probabilistic system and � a fulpath in S. � is called state fair i�, for each s 2 S and� 2 Steps(s) such that �(i) = s, step(�; i) = � for in�nitely many i and each t 2 Supp(�),there are in�nitely many indices j with �(j) = s, step(�; j) = � and �(j + 1) = t.Note that state fairness is a special instance of p-fairness (cf. De�nition 8.2.1, page 200).Let L = f(s; �; t) : s 2 S; � 2 Steps(s); t 2 Supp(�)g and l(s; �; t) = f(s; �; t)g. Then,for each fulpath �, � is state fair i� � is (L; l)-fair. As in the fully probabilistic case,StateFairS (or shortly StateFair) denotes the set of state fair fulpaths in S.Lemma 9.5.7 Let S = (S; Steps) be a �nite concurrent probabilistic system, A a simpleadversary for S. Then, for each � 2 StateFairA, ReachA(s) = inf (�) for all s 2 inf (�).Proof: follows immediately by Lemma 9.5.2 (page 241) applied to the �nite fullyprobabilistic system SA induced by the simple adversary A.Lemma 9.5.8 Let (S; Steps) be a �nite concurrent probabilistic system. Then:Prob �StateFairA(s)� = 1for all adversaries A and s 2 S. In particular, whenever � � Path ful such that �A(s) ismeasurable then Prob ��A(s)� = Prob �StateFair \�A(s)� :Proof: follows immediately from Theorem 8.2.3 (page 200).We de�ne total fairness as the combination of state fairness and fairness with respect tothe non-deterministic choices (in the sense of De�nition 3.2.14, page 45).De�nition 9.5.9 [Total fairness] Let S = (S; Steps) be a concurrent probabilistic sys-tem and � a fulpath in S. � is called total fair i� � is fair and state fair.Lemma 9.5.10 Let S = (S; Steps) be a �nite concurrent probabilistic system. Then, foreach total fair fulpath � in S, Reach(s) = inf (�) for all s 2 inf (�).Proof: easy veri�cation. Uses induction on the \distance" between two states as inthe proof of Lemma 9.5.2 (page 241).Notation 9.5.11 [The set TotalFair] TotalFairS (or shortly TotalFair) denotes the setof total fair fulpaths.

9.5. PROOFS 243Lemma 9.5.12 Let (S; Steps) be a �nite concurrent probabilistic system. Then:Prob �TotalFairF (s)� = 1for all fair adversaries F and s 2 S. In particular, if � � Path ful such that �F (s) ismeasurable then Prob ��F (s)� = Prob �TotalFair \�F (s)� :Proof: follows immediately from Lemma 9.5.8 (page 242).9.5.2 Correctness of the PCTL model checking algorithmWe �x a proposition-labelled concurrent probabilistic system S = (S; Steps;AP ;L), asubset W of S and two PCTL formulas �1 and �2 which we treat as atomic propositions(i.e. we assume that �1, �2 2 AP). Moreover, we assume atomic propositions a?, a+and a0W as in Notation 9.3.22 (page 227) and Notation 9.3.32 (page 229). We often usethe following lemma which follows from the results of [BidAl95] (Corollary 20, part 1, in[BidAl95]), cf. item (i) and (ii) on page 220.Lemma 9.5.13 (cf. [BidAl95]) There exist Amax , Amin 2 Adv simple withpAmaxs (�1U�2) � pBs (�1U�2) � pAmins (�1U�2)for all states s 2 S and all adversaries B. In particular,pAmaxs (�1U�2) = pmaxs (�1U�2); pAmins (�1U�2) = pmins (�1U�2):Maximal probabilities under all fair adversaries: We give the proof of Theorem9.3.6 (page 222) and Theorem 9.3.8 (page 222).Lemma 9.5.14 Let (S; Steps) be a �nite concurrent probabilistic system and S1, S2 � S.Let A be a simple adversary for S and � � PathA�n be the set of all fulpaths � such that�(i) 2 S1 n S2, i = 0; 1; : : : ; j�j � 1, and last(�) 2 S2. Then, we have:If � 2 StateFair then there are only �nitely many indices i such that �(i) 2 � #.Proof: We assume that there is a fulpath � 2 StateFair such that �(i) 2 � # forin�nitely many i. Then, �(i) 2 � # for all i. Hence, � 2 PathAful . Thus, � 2 StateFairA.By Lemma 9.5.7 (page 242),(*) inf(�) = ReachA(s).By de�nition of � and since �(i) 2 � # for in�nitely many (all) i, we have �(i) 2 S1 n S2and ReachA(�(i)) \ S2 6= ; for all i. This contradicts (*). Thus, we get the claim.Lemma 9.5.15 Let (S; Steps) be a �nite concurrent probabilistic system and S1, S2 � S.Let � � Path�n be the set of all fulpaths � such that �(i) 2 S1 n S2, i = 0; 1; : : : ; j�j � 1,and last(�) 2 S2. Then:For each simple adversary A, there exists a fair adversary F with �A � PathF�n .

244 CHAPTER 9. VERIFYING TEMPORAL PROPERTIESIn particular, �A � �F andProb ��A(s) "� � Prob ��F (s) "�for all states s 2 S. Moreover, there is a sequence (Fk)k�0 of strictly fair adversaries suchthat Prob ��A(s) "� � supk�0 Prob ��Fk(s) "�for all states s 2 S.Proof: Let A be a simple adversary. Let � a subset of �A. We de�ne an adversaryF� as follows. For each state s 2 S, we choose an enumeration �s0; : : : ; �sms�1 of Steps(s).� If
 2 Path�n is a proper pre�x of some � 2 �, i.e. if
 = �(i) for some � 2 � and someinteger i with i < j�j then we de�ne F�(
) = step(�; i):� If
 2 Path�n is not a proper pre�x of some � 2 � then we de�ne F�(
) = �sj wheres = last(
), j = r mod ms and r the number of indices i < j
j with
(i) = s.Here, mod denotes the \modulo-division" function. Clearly, � � PathF��n . Thus,(1) Prob(�(s) ") � Prob(�F�(s) ")It is easy to see that,(2) if � 2 PathF�ful is not fair then, for each i, �(i) is a proper pre�x of some �i 2 �.Clearly, (2) yields that, if � is �nite then F� is strictly fair. Thus, dealing with thesequence (Fk)k�0 where Fk = F�k and �k = f� 2 �A : j�j � kg; we get: Fk is strictly fairand supk�0 Prob ��Fk(s) "� � supk�0 Prob (�k(s) ") = Prob ��A(s) "� :Here, we use (1), the fact that Sk�0 �k(s) = �A(s) and that �k is �nite.29Next we consider F = F�A. Since �A � PathF�n we haveProb ��A(s) "� � Prob ��F (s) "�for all s 2 S. Next we show that F is fair. Lemma 9.5.14 (page 243) yields:(3) If � 2 StateFairF then there are only �nitely many indices i with �(i) 2 �A ".By (2) and (3), we get StateFairF � FairF . By Lemma 9.5.8 (page 242),Prob �FairF (s)� = 1for all s 2 S. Thus, F is fair.Remark 9.5.16 In Lemma 9.5.15 (page 243) we cannot ensure the existence of a strictlyfair adversary F with �A � PathF�n (unless �A is �nite). For instance, consider the system29The �niteness of �k can be seen as follows. Recall that A is simple and (S;Steps) �nite. Thus, thefully probabilistic system associated with A is �nite, and hence, the set of all �nite paths in A up to a�xed length k is �nite.

9.5. PROOFS 245
t u

vs
m m

mmt�12 12fag fbg
;fag

@@@@R����	 ?- -'
Figure 9.17:shown in Figure 9.17 (page 245) and the simple adversary A with A(s) = �. Then, withS1 = Sat(a) = fs; tg, S2 = Sat(b) = fug, we have:�A = f� 2 PathA�n : last(�) = u; �(i) 6= u; i = 0; 1; : : : j�j � 1g:Then, for each adversary F with �A � PathF�n : if last(�) = s then F (�) = �. Hence, Fcontains the unfair fulpath s ��! t �s�! s ��! t �s�! : : : ; i.e. F cannot be strictly fair.Lemma 9.5.17 For each A 2 Adv simple there exist(a) F 2 Adv fair with pAs (�1U�2) � pFs (�1U�2) for all s 2 S(b) a sequence (Fk)k�1 in Adv sfair such that, for all s 2 S,pAs (�1U�2) � supk�1 pFks (�1U�2):Proof: follows immediately by Lemma 9.5.15 (page 243).Corollary 9.5.18 For all s 2 S:maxnpFs (�1U�2) : F 2 Adv fairo = maxnpFs (�1U�2) : F 2 AdvW fairo = pmaxs (�1U�2):Proof: follows immediately by Lemma 9.5.13 (page 243), part (a) of Lemma 9.5.17(page 245) and the fact that Adv fair � AdvW fair .Theorem 9.5.19 (cf. Theorem 9.3.6, page 222, and Theorem 9.3.7, page 222)s j=fair Probvp(�1U�2) i� s j=Wfair Probvp(�1U�2) i� pmaxs (�1U�2) v p.Proof: follows immediately by Corollary 9.5.18 (page 245).Corollary 9.5.20 For all s 2 S: sup npFs (�1U�2) : F 2 Adv sfairo = pmaxs (�1U�2):Proof: by Lemma 9.5.13 (page 243) and part (b) of Lemma 9.5.17 (page 245).Theorem 9.5.21 (cf. Theorem 9.3.8, page 222) For all s 2 S:s j=sfair Prob�p(�1U�2) i� pmaxs (�1U�2) � p.

246 CHAPTER 9. VERIFYING TEMPORAL PROPERTIESProof: follows by Corollary 9.5.20 (page 245).Minimal probabilities under all fair adversaries: We give the proof of Theorem9.3.23 (page 227) and Theorem 9.3.26 (page 228).Lemma 9.5.22 Let � be a total fair fulpath. Then, � j= �1U�2 i� � 6j= a?U:a+.Proof: Clearly, if � j= �1U�2 then � 6j= a?U:a+. Let � 6j= a?U:a+. Then,(*) �(i) 2 S+(�1;�2) � Sat(�1) for all i � 0.Hence, inf (�) � S+(�1;�2). Let s 2 inf (�). By Lemma 9.5.10 (page 242), Reach(s) �inf (�): By de�nition of S+(�1;�2) (and since s 2 S+(�1;�2)), Reach(s) \ Sat(�2) 6= ;:Thus, Sat(�2) \ inf (�) 6= ;. From this and (*), we get � j= �1U�2.Corollary 9.5.23 For all F 2 Adv fair , s 2 S: pFs (�1U�2) = 1� pFs (a?U:a+):Proof: follows from Lemma 9.5.22 (page 246) and Lemma 9.5.12 (page 243).Corollary 9.5.24 For all s 2 S:minnpFs (�1U�2) : F 2 Adv fairo = 1� pmaxs (a?U:a+):Proof: If F 2 Adv fair then pFs (�1U�2) = 1 � pFs (a?U:a+) � 1 � pmaxs (a?U:a+)(by Corollary 9.5.23). By Corollary 9.5.18 (page 245), pFs (a?U:a+) = pmaxs (a?U:a+) forsome F 2 Adv fair . For this adversary F , we get (again by Corollary 9.5.23),pFs (�1U�2) = 1� pFs (a?U:a+) = 1� pmaxs (a?U:a+):This yields the claim.Theorem 9.5.25 (cf. Theorem 9.3.23, page 227) For all s 2 S:s j=fair Probwp(�1U�2) i� 1� pmaxs (a?U:a+) w p.Proof: follows immediately by Corollary 9.5.24 (page 246).Corollary 9.5.26 For all s 2 S:inf npFs (�1U�2) : F 2 Adv sfairo = 1� pmaxs (a?U:a+):Proof: follows by Corollary 9.5.23 (page 246) and Corollary 9.5.18 (page 245).Theorem 9.5.27 (cf. Theorem 9.3.26, page 228) For all s 2 S:s j=sfair Prob�p(�1U�2) i� 1� pmaxs (a?U:a+) � p:Proof: follows immediately by Corollary 9.5.26 (page 246).Maximal and minimal probabilities under all strictly fair adversaries: We nowgive the proof of Theorem 9.3.16 (page 226) and Theorem 9.3.28 (page 228).

9.5. PROOFS 247Lemma 9.5.28 Let F 2 Adv fair , � = f� 2 PathFful : � j= �1U�2g and �k = S�2�k � "Fwhere �k = n�(k) : � 2 �o Then, for all s 2 S:pFs (�1U�2) = limk!1 Prob(�k(s))Proof: We have �0 � �1 � : : : � �. Let � 0 = Tk�1�k. Then, � 0(s) is measurableand � 0(s) � �(s). Hence,pFs (�1U�2) = Prob(�(s)) � Prob(� 0(s)) = limk!1Prob(�k(s)):Using Lemma 9.5.10 (page 242) it can be shown that TotalFair \ � 0(s) � �(s). ByLemma 9.5.12 (page 243):Prob(� 0(s)) = Prob(TotalFairF (s) \� 0(s)) � Prob(�(s)) = pFs (�1U�2):Hence, pFs (�1U�2) = Prob(� 0(s)) = lim Prob(�k(s)).Notation 9.5.29 [The probabilities pA� (�1U�2)] Let A 2 Adv, � 2 PathA�n . Then,pA� (�1U�2) = pA0� (�1U�2)where A0 is an adversary with A0(
) = A(� �
) for each
 2 Path�n(last(�)).Lemma 9.5.30 Let F 2 Adv sfair , s 2 S and � = f� 2 PathA�n(s) : �(i) j= �1^:�2; i =0; 1; : : : ; j�jg. The following are equivalent:(i) F (�) 2 MaxSteps(last(�);�1;�2) for all � 2 �.(ii) pmaxs (�1U�2) = pFs (�1U�2):(iii) pmaxlast(�)(�1U�2) = pF� (�1U�2) for all � 2 �.Proof: For simplicity, we omit the argument �1U�2 and shortly write pF� and pmaxsrather than pF� (�1U�2) and pmaxs (�1U�2). The implication (iii) =) (ii) is obvious.(ii) =) (iii): We suppose pF�0 < pmaxlast(�0) for some �0 2 �. Let B be an adversary withpBlast(�0) = pmaxlast(�0) (which exists by Lemma 9.5.13, page 243). Let A be the adversarygiven by: A(�) = F (�) if �0 6�pre�x � and A(�0 �
) = B(
) if last(�0) = �rst(
). Then,(*) pA�0 = pBlast(�0) = pmaxlast(�0) > pF�0 :Let k = j�0j and �k = f� 2 � : j�j = kg. Let �k the set of paths � 2 PathF�n(s) with� j�j � k,� �(l) j= �1 ^ :�2, l = 0; 1; : : : ; j�j � 1,� last(�) j= �2.Clearly, �k, �k � PathA�n(s). Moreover, by de�nition of A, pA� = pF� for all � 2 �k nf�0g.Since �0 2 �k we obtain by (*):pFs = X�2�k P(�) � pF� + X�2�k P(�) < X�2�k P(�) � pA� + X�2�k P(�) = pAs � pmaxs

248 CHAPTER 9. VERIFYING TEMPORAL PROPERTIESContradiction.(iii) =) (i): If � 2 �, s = last(�) and � = F (�) thenpmaxs = pF� = Xt2S �(t) � pF�t = Xt2S �(t) � pmaxtwhere �t is the path � �! t. Hence, � 2 MaxSteps(s;�1;�2).(i) =) (iii): We de�ne � = f� 2 PathFful : � j= �1U�2g and Let � 2 � and �(�) be theset of fulpaths � 2 Path ful(last(�)) where � � � 2 �F and�k(�) = n�(k) : � 2 �(�)o ; �(�) = [k�0 �k(�):Lemma 9.5.28 (page 247) applied to the fair adversary F 0 with F 0(�) = F (� � �) if�rst(�) = last(�) yieldspF� = limk!1 pk� where pk� = X�2�k(�)P(�):By induction on k it can be shown that pk� � pmaxlast(�) for all � 2 �. This yields pF� � pmaxlast(�)for all � 2 �. Hence, pF� = pmaxlast(�) for all � 2 �.Lemma 9.5.31 There exists F 2 Adv sfair with pFs (�1U�2) = pmaxs (�1U�2) for all s 2Tmax (�1;�2).Proof: We simplify the notations introduced in Notation 9.3.14 (page 224) and writeTmax , Tmaxj and Tmaxj;l rather than Tmax (�1;�2), Tmaxj (�1;�2) and Tmaxj;l (�1;�2). LetT = [j�1 Tmaxj;1 :For each j � 1, t 2 Tmaxj;1 we choose some �t 2 MaxSteps(t;�1;�2) withSupp(�t) � [i<j Tmaxi :We de�ne an adversary F as follows. For each s 2 S, let �s0; : : : ; �sms�1 be an enumerationof Steps(s) (and ms the cardinality of Steps(s)). For � 2 Path�n , let �(�) be the numberof indices i < j�j with �(i) = last(�). Let� = f� 2 Path�n : �(i) j= �1 ^ :�2; i = 0; 1; : : : ; j�jg :We de�neF (�) = (�sj : if s = last(�), j = �(�) mod ms and either � =2 � or s 2 S n T�t : if t = last(�) 2 T and � 2 �It is easy to see that F is strictly fair. By de�nition of F it is immediately clear that� flast(�) : � 2 �F (t)g � Tmax for all t 2 Tmax ,� F (�) 2 MaxSteps(last(�);�1;�2) for all � 2 � with last(�) 2 Tmax .

9.5. PROOFS 249By Lemma 9.5.30 (page 247), we get pFt (�1U�2) = pmaxt (�1U�2) for all t 2 Tmax .Corollary 9.5.32 There exists F 2 Adv sfair with pFs (�1U�2) = 1� pmaxs (a?U:a+) forall s 2 Tmax (a?U:a+).Proof: follows from Lemma 9.5.31 (page 248) and Corollary 9.5.26 (page 246).Lemma 9.5.33 If F 2 Adv sfair , s =2 Tmax (�1;�2) then pFs (�1U�2) < pmaxs (�1U�2):Proof: We write pAs instead of pAs (�1U�2), and pmaxs instead of pmaxs (�1U�2). Sim-ilarly, we simply write Tmax , Tmaxj , Tmaxj;l and MaxSteps(s) rather than Tmax (�1;�2),Tmaxj (�1;�2), Tmaxj;l (�1;�2) and MaxSteps(s;�1;�2).We suppose pFs = pmaxs for some F 2 Adv sfair and s 2 S nTmax . Let � be the set of paths� 2 PathF�n(s) with �(i) j= �1 ^ :�2 for all i � j�j. By Lemma 9.5.30 (page 247):(1) F (�) 2 MaxSteps(last(�)) for all � 2 �.By de�nition of Tmax we have S n Tmax � S+ n Sat(�2): LetU = fu 2 S n Tmax : MaxSteps(u) 6= Steps(u)g :Claim 1: For each � 2 � with last(�) =2 Tmax , there exists� 2 � with � <pre�x � and last(�) 2 U .Proof: Let � 2 � with last(�) 2 S n Tmax . We suppose that there does not exists a path� 2 � with � <pre�x � and last(�) 2 U .First, we observe that last(�) cannot be terminal. All terminal states either belong toSat(�2) or S n S+(�1;�2). Thus, all terminal states are contained in Tmax . Moreover,there exists � 2 Steps(last(�)) with Supp(�) \ (Sat(�1) n Sat(�2)) 6= ;.30 Thus, the setof �nite paths �0 2 � with � <pre�x �0 is not empty. LetT = flast(�0) : �0 2 �; � <pre�x �0g n Tmax :By our assumption, T \ U = ;. For each t 2 T , we choose some �t 2 � "F�n \ � witht = last(�t) and de�ne �t = F (�t). Then,(2) Supp(�t) � T [Tmax for all t 2 T .31Since T \ U = ;, we have MaxSteps(t) = Steps(t) for all t 2 T . By de�nition of Tmax ,we get T � Tmax and therefore T = ; (as T is de�ned as a subset of S n Tmax). Let� = F (�). Then, we get Supp(�) � Tmax which yields last(�) 2 Tmaxj;1 for some j. Thus,last(�) 2 Tmax . Contradiction. cClaim 2: There exists � 2 PathFful(s) with�(i) j= �1 ^ :�2, i = 0; 1; 2; : : : and U \ inf (�) 6= ;.30Note that Supp(�) \ (Sat(�1) n Sat(�2)) = ; for all � 2 Steps(last(�)) implies Supp(�) � Tmax forall � 2 Steps(s) which yields last(�) 2 Tmax .31Note that, for u 2 Supp(�t), the �nite path �t �t! u belongs to � "F�n \ �.

250 CHAPTER 9. VERIFYING TEMPORAL PROPERTIESProof: For each � 2 � with last(�) 2 S n Tmax , we choose some � 2 � with � <pre�x �and last(�) 2 U (which exists by Claim 1). Let �0 = s and �j+1 = �j, j = 0; 1; 2; : : :.Then, the unique fulpath � with �i <pre�x �, i = 0; 1; 2; : : :, has the desired properties. cWe choose some � 2 PathFful(s) with �(i) j= �1 ^:�2, i = 0; 1; 2; : : : and u 2 inf (�)\U(which exists by Claim 2). As F is strictly fair and MaxSteps(u) 6= Steps(u) for all u 2 Uthere exists j � 0 with F (�(j)) =2 MaxSteps(�(j)). Contradiction (to (1)) as �(j) 2 �.Corollary 9.5.34 If F 2 Adv sfair and s =2 Tmax (a?;:a+) thenpFs (�1U�2) > 1� pmaxs (a?U:a+):Proof: follows by Lemma 9.5.33 (page 249) and Corollary 9.5.26 (page 246).Theorem 9.5.35 (cf. Theorem 9.3.16, page 226) For all s 2 S:s j=sfair Prob<p(�1U�2) () (pmaxs (�1U�2) < p : if s 2 Tmax (�1;�2)pmaxs (�1U�2) � p : otherwise.Proof: follows by Lemma 9.5.31 (page 248), Lemma 9.5.33 (page 249) and Theorem9.5.21 (page 245).Theorem 9.5.36 (cf. Theorem 9.3.28, page 228) For all s 2 S:s j=sfair Prob>p(�1U�2) () (1� pmaxs (a?U:a+) < p : if s 2 Tmax (a?;:a+)1� pmaxs (a?U:a+) � p : otherwise.Proof: follows by Corollary 9.5.32 (page 249), Corollary 9.5.34 (page 250) and Corol-lary 9.5.26 (page 246).Minimal probabilities under all W -fair adversaries: We give the proof of Theorem9.3.33 (page 230). In the sequel, W is a �xed subset of S. For simplicity, we write S0Wrather than S0W (�1;�2), S+ rather than S+(�1;�2) and S? rather than S?(�1;�2).Lemma 9.5.37 Let � be a fulpath which is W -fair and state fair and such that � 6j=�1U�2. Then, � j= a?Ua0W .Proof: We assume � 6j= a?Ua0W . It is easy to see that � is in�nite and �(i) 2 S? forall i. Let T = inf (�). Then, T � S? � S n Sat(�2): For t 2 T nW , we choose some�t 2 Steps(t) such that �t = step(�; i) for in�nitely many indices i with �(i) = t. Then,we have:� Let t 2 T \W and � 2 Steps(t). Since � is W -fair we have � = step(�; i) for in�nitelymany i. By the state fairness of �, we get Supp(�) � inf (�) = T:� Let t 2 T nW . Then, Supp(�t) � inf (�) = T (by the state fairness of � and thechoice of �t).By de�nition of S0W , we get T � S0W which yields � j= a?Ua0W . Contradiction.Lemma 9.5.38 If F 2 AdvW fair , s 2 S then pFs (�1U�2) � 1� pmaxs (a?Ua0W):

9.5. PROOFS 251Proof: Let � = f� 2 PathFful : � 6j= �1U�2g and let � be the set of fulpaths� 2 PathFful that are W -fair and state fair. Then, by Lemma 9.5.8 (page 242) and theW -fairness of F , Prob(�(s)) = 1 and Prob(�(s)) = Prob(�(s) \ �): By Lemma 9.5.37(page 250), �(s) \ � � n� 2 PathFful(s) : � j= a?Ua0Wo :Thus, Prob(�(s) \ �) � pFs (a?Ua0W) � pmaxs (a?Ua0W). We conclude1� pFs (�1U�2) = Prob(�(s)) = Prob(�(s) \ �) � pmaxs (a?Ua0W)which yields pFs (�1U�2) � 1� pmaxs (a?Ua0W).Lemma 9.5.39 There exists F 2 AdvW fair with pFs (�1U�2) = 1� pmaxs (a?Ua0W) for alls 2 S.Proof: Let A be a simple adversary with pAs (a?Ua0W) = pmaxs (a?Ua0W) (which existsby Lemma 9.5.13, page 243) and� = f� 2 Path�n : �(i) j= a? ^ :a0W ; i = 0; 1; : : : ; j�j � 1; last(�) j= a0Wg:We de�ne a W -fair adversary F such that �A � �F and pFs (�1U�2) = 0 for all s 2 S0W .Let � be the set of �nite paths � 2 PathA�n such that � <pre�x � for some � 2 �A. LetTi, Ti;1, Ti;2 be as in the de�nition of S0W = S0W (�1;�2) (see Notation 9.3.31, page 229).Then, S0W = Si�0 Ti, T0 = S n S+ and Ti = Ti;1 [Ti;2. LetT = [i�1 (Ti;1 [(Ti;2 nW)) :By de�nition of Ti, for each t 2 T , there exists some �t 2 Steps(t) such that:(1) If t 2 Ti;1 then Supp(�t) � T0 [: : : [Ti�1.(2) If t 2 Ti;2 nW then Supp(�t) � T0 [: : : [Ti.By de�nition of the sets Ti;2, we have(3) Supp(�) � T0 [: : : [Ti for all t 2 Ti;2 \W and � 2 Steps(t).For s 2 S n T , let ms be the cardinality of Steps(s) and �s0 ; : : : ; �sms�1 an enumeration ofSteps(s). We de�ne an adversary F as follows. Let � 2 Path�n .(I) If � 2 � then we put F (�) = A(last(�)):(II) If last(�) 2 S n T and � =2 � then we de�ne F (�) = �si where s = last(�) andi = �(�) mod ms. Here, �(�) denotes the number of indices i < j�j such that�(i) = last(�) and mod the \modulo-division" function.(III) If last(�) 2 T and � =2 � then F (�) = �t where t = last(�).It is easy to see that each fulpath � 2 StateFairF is W -fair. Thus, Lemma 9.5.8 (page242) yields the W -fairness of F . Moreover, (I) yields �A � �F . Thus,pFs (a?Ua0W) � pAs (a?Ua0W) = pmaxs (a?Ua0W)which yields pFs (a?Ua0W) = pmaxs (a?Ua0W) for all s 2 S. Clearly, by (1), (2), (3), (II) and(III), we get that,

252 CHAPTER 9. VERIFYING TEMPORAL PROPERTIESwhenever � 2 PathFful with �(i) 2 S0W for some i then �(j) 2 S0W for all j � i.In particular, if � 2 PathFful and � j= a?Ua0W then � 6j= �1U�2. From this,(4) pmaxs (a?Ua0W) = pFs (a?Ua0W) � 1� pFs (�1U�2) for all s 2 S.By Lemma 9.5.38 (page 250) and (4), pFs (�1U�2) = 1� pmaxs (a?Ua0W) for all s 2 S.Theorem 9.5.40 (cf. Theorem 9.3.33, page 230) For all s 2 S:s j=Wfair Probwp(�1U�2) i� 1� pmaxs (a?Ua0W) w p.Proof: follows by Lemma 9.5.38 (page 250) and Lemma 9.5.39 (page 251).The connection between j=fair and j=Sfair: We give the proof of Theorem 9.3.37 (page231) which states that, when dealing with W = S, the satisfaction relations j=fair andj=Wfair coincide.Theorem 9.5.41 (cf. Theorem 9.3.37, page 231) If W = S then for all states s andPCTL formulas �: s j=fair � i� s j=Wfair �:Proof: Because of Theorem 9.5.19 (page 245), Theorem 9.5.25 (page 246) and The-orem 9.5.40 (page 252) it su�ces to show that pmaxs (a?U:a+) = pmaxs (a?Ua0S) for alls 2 S. Since S nS+(�1;�2) � S0S(�1;�2) we have pmaxs (a?U:a+) � pmaxs (a?Ua0S): Let Fbe de�ned as in the proof of Lemma 9.5.39 (page 251). Since we deal with W = S, theso obtained adversary F is fair. Using Lemma 9.5.10 (page 242) it is easy to see that, foreach � 2 TotalFairF , � j= a?Ua0S i� � j= a?U:a+.By Lemma 9.5.12 (page 243), pFs (a?U:a+) = pFs (a?Ua0S) for all s 2 S. From this, we getpmaxs (a?U:a+) � pFs (a?U:a+) = pFs (a?Ua0S) = pmaxs (a?Ua0S)for all s 2 S. Hence, pmaxs (a?U:a+) = pmaxs (a?U:a0S) for all s 2 S.9.5.3 Correctness of the LTL model checking algorithmWe now show the correctness of our LTL model checking algorithm (Section 9.4, page 234�). Recall that our algorithm is based on a method for verifying concurrent probabilisticsystems systems against !-automata speci�cations. For this, we needed the fact that, forany fair adversary of the product system S � A (of a concurrent probabilistic system Sand a deterministic Rabin automata A), the probability of accepting paths agrees withthe probability eventually to reach the set U 0 (de�ned as in Notation 9.4.11, page 238).This fact can be derived from the following observation whose proof uses total fairness(see Section 9.5.1, page 241 �).Lemma 9.5.42 Let (S; Steps;AP ;L) be a �nite proposition-labelled concurrent proba-bilistic system that does not contain terminal states. Let a1, a2 2 AP and let U be thelargest subset of Sat(a1) such that, for all u 2 U ,

9.5. PROOFS 253Reach(u) � U and Reach(u) \ Sat(a2) 6= ;.Then, for all � 2 TotalFair:� j= 32(a1 ^3a2) i� � j= 3aUwhere aU 2 AP such that Sat(aU) = U .Proof: If � j= 32(a1 ^ 3a2) then inf (�) � Sat(a1) and inf (�) � Sat(a2). Byde�nition of U , we get inf (�) � U ; in particular, � j= 3aU . Now we assume that � istotal fair and � j= 3aU . Let i � 0 be an integer with �(i) 2 U . Then,(1) inf (�) � Reach(�(i)) � U � Sat(a1).Let u 2 inf (�). By de�nition of U , we have Reach(u) \ Sat(a2) 6= ;. By Lemma 9.5.10(page 242), inf (�) = Reach(u). Hence,(2) inf (�) \ Sat(a2) 6= ;.(1) and (2) yield � j= 32(a1 ^3a2).Lemma 9.5.43 In the notations of Section 9.4 (page 236 �), we have:Prob(AccPathF 0(sA)) = Prob n�0 2 PathF 0ful(sA) : �0 j= 3aU 0 o :for all states s 2 S and fair adversaries F 0 of S � A.Proof: Because of Lemma 9.5.12 (page 243), it su�ces to show that, for any totalfair fulpath �0 2 PathS�Aful (sA):(*) �0 j= 3aU 0 i� �0 2 AccPath(sA).We assume atomic propositions aj;1; aj;2; bj 2 AP such that aj;1 2 LA(s0) i� s0 2 H 0j,aj;2 2 LA(s0) i� s0 2 K 0j and bj 2 LA(s0) i� s0 2 U 0j. Clearly,AccPath(sA) = 8<:�0 2 PathS�Aful (sA) : �0 j= _1�j�r 32(aj;1 ^3aj;2)9=;and f�0 : �0 j= 3aU 0g = f�0 : �0 j= W1�j�r bjg. Then, by Lemma 9.5.42 (page 252), if �0is total fair then �0 j= 32(aj;1 ^ 3aj;2) i� �0 j= 3bj. Thus, we obtain (*) which yieldsthe claim.

254 CHAPTER 9. VERIFYING TEMPORAL PROPERTIES

Chapter 10Symbolic model checking
As in the non-probabilistic case, the veri�cation methods for probabilistic systems thatassume an explicit representation of the state space su�er from the state explosion problemand might fail for systems of industrial size. In the last decade, two general techniqueshave been developed to attack the state explosion problem for (non-probabilistic) parallelsystems:� the symbolic methods that are based on an implicit representation of the state spaceby ordered binary decision diagrams [BCM+90, McMil92]� the partial order methods which can be classi�ed into reduction techniques that inves-tigate only certain parts of the state space [Pele93, Valm94, Gode94] and techniquesthat work with net unfoldings [McMil92a, Espa94].Both techniques have been implemented in tools and successful applied to realistic (verylarge) systems. In the literature, only a few work has been done on how to avoid thestate explosion problem for probabilistic systems. To the best of the author's knowledge,the adaption of the partial order approach for probabilistic systems has not yet beeninvestigated. The research on symbolic veri�cation methods for probabilistic systems hasstarted so far. Clarke proposed an extension of Bryant's ordered BDDs to multiterminalBDDs (MTBDDs) [CFM+93] and their use for the symbolic representation of Markovchains. This idea has been further developed by Hachtel et al [HMP+94] and Hartonas-Garmhausen [HarG98]. [HMP+94] presents MTBDD-based algorithms to compute thesteady-state probabilities for very large �nite state machines and reports on experimentalresults for systems with more than 1027 states. In her thesis, Vicky Hartonas-Garmhausenhas implemented a MTBDD-based tool for verifying probabilistic systems against PCTLspeci�cations [HarG98].1 The probabilistic systems in [HarG98] arise through the (lazy)synchronous parallel composition of several sequential components. The use of a (lazy)synchronous parallel composition allows for a representation by a fully probabilistic systemwhose transition probability function is described by MTBDD. As far as the author knows,symbolic methods for concurrent probabilistic systems are not yet investigated.In this chapter we present MTBDD-based algorithms for verifying fully probabilisticand concurrent probabilistic systems against several types of speci�cation formalisms.1The theoretical foundations of the underlying symbolic PCTL model checker can be found in[BCH+97]. 255

256 CHAPTER 10. SYMBOLIC MODEL CHECKINGMore precisely, we will describe MTBDD-based PCTL model checking algorithms forfully probabilistic systems and strati�ed systems2 and the satisfaction relations j= andj=fair (and brie
y sketch how to deal with j=sfair and j=Wfair). Moreover, we will explainhow the MTBDD-based approach can be applied for deciding strong or weak bisimu-lation equivalence.3 The results of this chapter are based on the joint work with EdClarke [BaCl98] and uses results from the joint work with Ed Clarke, Vicky Hartonas-Garmhausen, Marta Kwiatkowska and Mark Ryan [BCH+97].In what follows, the reader is supposed to be familiar with ordered binary decision dia-grams (OBDDs or BDDs for short) [Brya86] and the main ideas behind the BDD-approachfor verifying parallel systems, see e.g. [BCM+90, McMil92, CGL93]. The de�nition ofmulti-terminal BDDs (MTBDDs for short) as introduced by Clarke et al [CFM+93] andrelated notations are summarized in the appendix (Section 12.3, page 315 �). In Section10.4 (page 295 �) and the remainder of this introduction, we assume familiarity withthe logic PCTL and PCTL model checking (see Section 9.3, page 216), strong bisimu-lation (see Section 3.4.1, page 54) and weak bisimulation (see Section 7.1.1, page 161).Throughout this chapter, we assume �nite systems.The basic idea behind the MTBDD-based approach for verifying probabilistic systems isthe representation of the system by a (real-valued) MTBDD. Using an encoding of thestate space in f0; 1gk for some k, the transition probability matrix of a fully probabilisticor strati�ed system can be viewed as a function from bit vectors into the unit intervaland represented by a MTBDD. To obtain symbolic MTBDD-based veri�cation methodsthe operators used in the veri�cation algorithms of the literature have to be replacedby operators on MTBDDs. The main operators that are used in almost all veri�cationalgorithms for probabilistic systems are the following.(1) The computation of the probabilities of certain events requires arithmetic operators(like summation + or multiplication �, minimum and maximum) and least �xedpoints of certain self-mappings of the function space S ! [0; 1]. For instance, forPCTL model checking for fully probabilistic systems, the probabilitiesps(�1U�2) = Prob f� 2 Path ful(s) : � j= �1U�2gare needed to compute the set of states where the formula Prob./p(�1U�2) holds.The function s 7! ps(�1U�2) can be characterized as the least �xed point of theoperator F : (S ! [0; 1])! (S ! [0; 1]),F (f)(s) = 8><>: 1 : if s j= �2Pt2S P(s; t) � f(t) : if s j= �1 ^ :�20 : otherwiseand computed either by solving a linear equation system or iteration (see Theorem3.1.6, page 36, and Remark 3.1.8, page 36). Dealing with concurrent probabilisticsystems, the corresponding operator F involves minimum or maximum operations.2The reason why we deal with strati�ed systems rather than (general) concurrent probabilistic systemswill be explained on page 297.3We deal with fully probabilistic or reactive systems in the case of strong bisimulation and fullyprobabilistic systems in the case of weak bisimulation.

257E.g. the maximal probabilitiespmaxs (�1U�2) = supA2Adv Prob n� 2 PathAful(s) : � j= �1U�2oin a strati�ed system are given by the least �xed point of the operator F : (S ![0; 1]) ! (S ! [0; 1]) which is de�ned by: F (f)(s) = 1 if s j= �2, F (f)(s) = 0 ifs 6j= �1 _ �2 and, for s j= �1 ^ :�2,F (f)(s) = (Pt2S P(s; t) � f(t) : if s is a probabilistic statemaxt2S P(s; t) � f(t) : if s is non-probabilisticand can be calculated by solving a linear optimization problem or iteration (seeTheorem 3.2.11, page 43, and Remark 3.2.12, page 43).(2) For some speci�cation formalisms, comparison operators (like �, <, =) are needed.For instance, for PCTL model checking for fully probabilistic systems, the com-putation of the set Sat(Prob./p(�1U�2)) requires the comparison of the constant pwith the probabilities ps(�1U�2). For deciding bisimulation equivalence, we needan equality test for the probabilities P(s; �; C) and P(s0; �; C) for the states s, s0 toreach a C-state via an �-labelled transition.(3) Several algorithms require a reachability analysis in the underlying directed graph.This can be performed with the help of set-based operators like [, \, n and operatorsfor computing least or greatest �xed points of monotonic set-valued functions. Forexample, for PCTL model checking with respect to the satisfaction relation j=fair wehave to compute the set S+(�1;�2) of all states s 2 S that can reach a �2-statevia a path through �1-states (cf. Section 9.3, Notation 9.3.11, page 223). The setS+(�1;�2) can be described as the least �xed point of the operator F : 2S ! 2S,F (Z) = Sat(�2) [fs 2 Sat(�1) : 9� 2 Steps(s) [Supp(�) \ Z 6= ;] g :Hence, a general MTBDD-based framework in which a wide range of veri�cation algo-rithms for probabilistic systems requires a language for manipulating MTBDDs via theabove mentioned operators.(1) requires binary arithmetic operators op (like +, �, min, max, etc.) on MTBDDs,i.e. operators that take as their input two MTBDDs Q1 and Q2 and return the MTBDDfor the function fQ1 op fQ2 .4 In our applications, the self-mappings of S ! [0; 1] forwhich the least �xed points have to be computed meet the conditions of Tarski's �xedpoint theorem for continuous operators on the complete lattice S ! [0; 1]. Thus, the least�xed points can be obtained by iteration. Hence, we aim at an operator that computesleast �xed points of certain MTBDD-valued operators (representing self-mappings of thefunction space S ! [0; 1]) by iteration. Moreover, the de�nition of the higher-orderfunction F requires arithmetic quanti�ers like Pt or maxt where the index t ranges overall states. (2) requires an operator that takes as its input two MTBDDs Q1 and Q2 andreturns the BDD for the boolean functionf(x1; : : : ; xn) = (1 : if fQ1(x1; : : : ; xn) ./ fQ2(x1; : : : ; xn)0 : otherwise.4Here, fQ denotes the function that is associated with the MTBDD Q (see Section 12.3, page 315 �).

258 CHAPTER 10. SYMBOLIC MODEL CHECKINGHere, ./ is a comparsion operator like �, < or =. This operator can just be seen as aspecial kind of combining two MTBDDs via a binary arithmetic operator, namely theoperator op./ : IR � IR ! f0; 1g where q1 op./ q2 is 1 i� q1 ./ q2. The operators requiredin (3) arise as special instances of the operators obtained from (2). For this, we identifyeach �nite set with its characteristic function that we represent by a BDD (which is justa special case of a MTBDD). The boolean connectives on sets like union [or intersection\ correspond to the maximum and minimum operators applied to the BDDs for thecharacteristic functions; similarly, the boolean quanti�ers 9t or 8t are obtained from the\arithmetic quanti�ers" maxt and mint. Any operator F : 2S ! 2S can be viewed as aself-mapping of the function space S ! f0; 1g. In our applications, these mappings havea natural extension to self-mappings of the function space S ! [0; 1] and can be viewed asMTBDD-valued operators. Thus, the above mentioned iteration operator on MTBDDsshould also be applicable to compute the BDD for the least or greatest �xed point ofa monotonic set-valued operator. In summary, the necessary ingredients for a uniformlanguage for MTBDDs that is expressive enough to subsume a wide range of veri�cationmethods for probabilistic systems are� operators for combining two MTBDDs via arithmetic operators,� \arithmetic quanti�ers" like Pt, mint or maxt,� an iteration operator that returns (an approximation of) the limit of (the MTBDDrepresentations of) certain function sequences.The algebraic mu-calculus: These requirements have lead to the algebraic mu-calculuswhich can be viewed as a generalization Park's relational mu-calculus [Park74]. While therelational mu-calculus deals with formulas (interpreted by the usual truth values 0 and 1)and relational terms (interpreted by relations, or equivalently, boolean-valued functions)the algebraic mu-calculus deals with algebraic expressions (interpreted by real numbers)and algebraic terms (interpreted by real-valued functions). The main concepts of therelational mu-calculus are the boolean connectives ^, _, :, quanti�cation 9t and 8t, �-abstraction of the formulas and least/greatest �xed point operators. These are replacedby arithmetic connectives +, �, etc., the algebraic quanti�ers Pt, mint and maxt, �-abstraction of the algebraic expressions and an iteration operator (which might specializeto a �xed point operator).MTBDD-based compilation: We present an algorithm that computes the semanticsfor the expressions and terms where the underlying data structure are MTBDDs. Inthe same way as the relational mu-calculus (together with the BDD-based method of[BCM+90] for evaluating the formulas and terms of the relational mu-calculus) can beviewed as a language for BDDs the algebraic mu-calculus yields a language for MTBDDswhere the algorithm to compute the MTBDD representations for the expressions andterms can be viewed as \compiler".Applications: The algebraic mu-calculus together with this MTBDD-based algorithmhas applications in various areas. Several temporal and modal logics can be embed-ded into the algebraic mu-calculus. Hence, the algebraic mu-calculus itself can serveas a speci�cation language for several types of programs. In particular, the algebraicmu-calculus subsumes the logic PCTL (with the interpretations over fully probabilistic[HaJo94] and strati�ed systems with e.g. the standard interpretation �a la [BidAl95] or

10.1. THE ALGEBRAIC MU-CALCULUS 259j=fair as introduced in Chapter 9) and can express bisimulation equivalence �a la Larsen &Skou [LaSk89] or weak bisimulation in the sense of Chapter 7. In these applications, thealgebraic mu-calculus together with its MTBDD-based \compiler" specializes to a sym-bolic model checker for probabilistic systems. Beside the veri�cation of probabilistic (orother types of) programs, the algebraic mu-calculus is applicable in other contexts, e.g. forsolving graph-theoretical problems (such as shortest path problems) or for MTBDD-basednumerical methods in linear algebra (such as solving linear equation systems or computingeigenvalues).Organization of that chapter: The syntax and semantics of the algebraic mu-calculusis presented in Section 10.1. Section 10.2 shows that the algebraic mu-calculus subsumesseveral temporal or modal logics (and hence, can serve itself as speci�cation language forseveral types of parallel systems). In Section 10.3 we describe the MTBDD-based algo-rithm for computing the semantics of the algebraic mu-calculus. Section 10.4 explains howthe algebraic mu-calculus can be applied to obtain symbolic model checking algorithmsfor verifying probabilistic systems.10.1 The algebraic mu-calculusThis section presents the syntax and semantics of the algebraic mu-calculus. The algebraicmu-calculus can be viewed as an extension of Park's relational mu-calculus [Park74].While the relational mu-calculus contains formulas (interpreted by the usual truth values0 and 1) and relational terms (interpreted by relations that { when identi�ed with theircharacteristic function { can be viewed as boolean-valued functions), the algebraic mu-calculus deals with algebraic expressions (interpreted by real numbers) and algebraic terms(interpreted by real-valued functions). The relational terms are mainly built by predicatesymbols, �-abstraction from the formulas and a least or greatest �xed point operator.For an interpretation by real-valued functions (rather than boolean-valued functions),the predicate symbols are replaced by function symbols; the concept of �-abstraction ismaintained. The �xed point operators of the relational mu-calculus are partial operatorsthat can only be applied to those relational terms where the induced semantic operatoryields a monotonic set-valued function. The existence of the least or greatest �xed pointis then ensured by Tarski's �xed point theorem. Dealing with real-valued functions ratherthan boolean-valued functions (sets) leads to the problem that least or greatest �xedpoint (or even �xed points at all) of monotonic operators might not exist; or, if theyexist, one might be interested in other �xed points than the least or greatest ones. Forthis reason, we replace the least/greatest �xed point operators by a limit operator. Theintended meaning of this limit operator is the limit of function sequences of the formf; F (f); F (F (f)); F (F (F (f))); : : : for some function f and some higher-order operator F .In the case where F can be restriced to a monotonic operator on boolean-valued functions(sets), i.e. an operator (D ! f0; 1g)! (D ! f0; 1g), or equivalently, 2D ! 2D for some�nite set D, and where f is the boolean function that always returns the truth value 0(resp. 1), i.e. f represents the empty set (resp. the set D), the above sequence convergesto the least (resp. greatest) �xed point of F (as an operator 2D ! 2D on sets). Thus, ourlimit operator generalizes the least and greatest �xed point operators of the relational mu-calculus. Clearly, for arbitrary f and F , the above function sequence does not converge.

260 CHAPTER 10. SYMBOLIC MODEL CHECKING
expr ::= q ��� expr1 op expr2 ��� term(z1; : : : ; zn) ��� Xz [expr] ���minz [expr] ��� maxz [expr]term ::= fct ��� Z ��� �z1; : : : ; zn[expr] ��� lim Z [term " term0] ���iterate Z [term "k term0]Figure 10.1: Syntax of the algebraic mu-calculusFor this reason, the meanings of the algebraic terms are partial real-valued functions.The semantics of the limit operator returns a partial function that is unde�ned for thosearguments d where the sequence f(d); F (f)(d); F (F (f))(d); : : : does not converge.10.1.1 Syntax of the algebraic mu-calculusThe syntax of the algebraic mu-calculus arises from Park's relational mu-calculus [Park74]by using arbitary arithmetic operators (e.g. summation + or multiplication �) instead ofthe boolean connectives _ and ^, replacing the quanti�ers 9z and 8z by arithmetic onesPz, minz and maxz and the least/greatest �xed point operators by a limit operator.Moreover, we add a bounded iteration operator (that could be added to the relationalmu-calculus as well) whose intended meaning is the function fk obtained by an iterationof the form f0 = f fi+1 = F (fi) for a certain function f and a higher-order operator F .The algebraic mu-calculus: Let IndVar be a set of of individual variables, TermVar aset of term variables and Fct a set of function symbols. The term variables and functionsymbols are associated with an arity (a natural number � 1). TermVarn and Fctn denotethe set of n-ary term variables resp. n-ary function symbols. Let Op be a set of binaryarithmetic operators on the reals including summation +, minus �, multiplication �, thebinary minimum and maximum operators opmin and opmax (where e.g. q1 opmin q2 =minfq1; q2g) and the comparison operators op./ where ./ 2 f�; <;�; >;=; 6=g andq1 op./ q2 = (1 : if q1 ./ q20 : otherwise.Op might also contain partial operators such as division % which is unde�ned if thesecond argument is 0. Expressions and n-ary terms of the algebraic mu-calculus (calledalgebraic expressions and algebraic terms) are built from the production system shown inFigure 10.1 on page 260. Here, q is a real number, op 2 Op, z, z1; : : : ; zn are individualvariables such that z1; : : : ; zn are pairwise distinct, fct is an n-ary function symbol, Z isan n-ary term variable and k a natural number. For the terms lim Z [term " term0]and iterate Z [term "k term0], we require that Z is a term variable and term and term0are algebraic terms such that Z, term and term0 have the same arity. As usual, we de�ne

10.1. THE ALGEBRAIC MU-CALCULUS 261the boundedness of occurrences of variables in algebraic expressions or algebraic terms.The individual variables can be bounded by the operators P, min, max and �-abstractionwhile the term variables can be bounded by the limit or bounded iteration operator. Anoccurrence of an individual variable or a term variable in an algebraic expression or termis said to be free if it is not bounded. An algebraic expression or term is called closed ifit does not contain free occurrences of term and individual variables. For the expressionsterm(z1; : : : ; zn), we require that none of the individual variables z1; : : : ; zn occurs free interm. In what follows, we write� �expr rather than 0� expr,� minfexpr1; expr2g rather than expr1 opmin expr2,� maxfexpr1; expr2g rather than expr1 opmax expr2,� jexprj rather than maxfexpr;�exprg.Moreover, we often writeXz1;:::;zn [expr] rather than Xz1 " Xz2 ": : :Xzn [expr] : : :# # :The notations minz1;:::;zn[expr] and maxz1;:::;zn[expr] are used with corresponding mean-ings. Intuitively, lim Z[term " term0] stands for the \limit" of the sequence (termi)i�0where termi+1 = termfZ termig, i = 0; 1; 2; : : : and where the brackets f: : :g denotesyntactic replacement. The intended meaning of iterate Z [term "k term0] is termkwhere term0; term1; : : : are de�ned as before.The boolean mu-calculus: The boolean mu-calculus is a subcalculus of the algebraicmu-calculus where only those operators op are allowed that are closed under the booleanvalues 0 and 1 (i.e. that can be restricted to operators f0; 1g2 ! f0; 1g). Formally,expressions and terms of the boolean mu-calculus are built from the production systemshown in Figure 10.2 (page 261). Here, expr1, expr2 are arbitrary algebraic expressionsbexpr ::= 0 ��� 1 ��� bexpr1 ^ bexpr2 ��� bexpr1 _ bexpr2 ��� :bexpr ���expr1 op./ expr2 ��� bterm(z1; : : : ; zn) ��� 8z [bexpr] ��� 9z [bexpr]bterm ::= fct ��� �z1; : : : ; zn [bexpr] ��� Z ��� lfp Z [bterm] ��� gfp Z [bterm] ���iterate Z [bterm "k bterm0]Figure 10.2: Syntax of the boolean mu-calculusand ^ = opmin , _ = opmax , :bexpr = 1� bexpr and8z [bexpr] = minz [bexpr]; 9z [bexpr] = maxz [bexpr]:

262 CHAPTER 10. SYMBOLIC MODEL CHECKINGThe least and greatest �xed point operators lfp Z [: : :] and gfp Z [: : :] are given by:5lfp Z [bterm] = lim Z [bterm " �z1; : : : ; zn[0]],gfp Z [bterm] = lim Z [bterm " �z1; : : : ; zn[1]] :Here, we assume that n is the arity of Z and bterm. As usual, other boolean connectives,such as \implication" ! or \equivalence" $, can be derived from ^, _ and :. In theboolean subcalculus, we write expr1 ./ expr2 rather than expr1op./ expr2. We refer to theterms and expressions of the boolean mu-calculus as boolean terms or boolean expressions.The relational mu-calculus �a la Park can be viewed as a subcalculus of the boolean mu-calculus. More precisely, formulas (resp. terms) of the relational mu-calculus are thoseexpressions (resp. terms) of the boolean mu-calculus that do not contain subexpressionsof the form expr1 ./ expr2 and the bounded iteration operator. In Section 10.2.1 (seepage 275) we show that the standard semantics for the relational mu-calculus �a la Parkcoincides with the induced semantics of the relational mu-calculus as a sublanguage ofthe algebraic mu-calculus.10.1.2 Semantics of the algebraic mu-calculusIntuitively, algebraic expressions are interpreted by real numbers, algebraic terms by real-valued functions.6 To handle non-converging behaviour in the case of the limit operatorlim Z[: : :], we extend the real line by a special symbol ? which can be interpreted as\unde�ned" or \divergence". Functions with range IR [f?g can be viewed as partialfunctions that are unde�ned for those arguments where the value ? is returned.De�nition 10.1.1 [Extended reals] Let IR be the set of real numbers and ? =2 IR.Then, IR = IR [f?g is called the domain of extended reals.In the sequel, we use subscripts to denote certain subsets of reals or extended reals. Forinstance, IR>0 denotes the set of positive reals and IR�1 = fq 2 IR : q � 1g [f?g.The limit operator for converging sequences of reals is extended to an operator lim onarbitrary sequences of extended reals.Notation 10.1.2 [The operator lim] Let q0; q1; q2; : : : be an in�nite sequence in IR.� If qn 2 IR for almost all n, e.g. qn 2 IR for all n � n0, thenlim(q0; q1; q2; : : :) = (? : if (qn)n�n0 does not converge in IRlim qn : if (qn)n�n0 converges in IR.Here, lim qn denotes the usual limit of (qn)n�n0 in IR.5The reason not to use the standard notations �Z[: : :] and �Z[: : :] to denote the least and greatest�xed point operators is that, in the other chapters of that thesis, the greek letters � and � range overdistributions. Of course, instead of the least and greatest �xed point operators, the more general limitoperator limZ [bterm " bterm0] could be added to the boolean mu-calculus. However, for the applicationsof the boolean mu-calculus that are considered in that thesis, only the least and greatest �xed pointoperators are needed.6For the boolean expressions, we have an interpretation by the usual truth values 0 or 1 and for theboolean terms an interpretation by boolean-valued functions in mind.

10.1. THE ALGEBRAIC MU-CALCULUS 263� If qn = ? for in�nitely many n then lim(q0; q1; q2; : : :) = ?.If X is a set and (fj)j�0 is a sequence of functions fj : X ! IR then lim(f0; f1; f2; : : :)denotes the function X ! IR, x 7! lim (f0(x); f1(x); f2(x); : : :).Algebraic expressions are interpreted by extended real numbers, n-ary algebraic terms byn-ary functions into the extended reals where the interpretation for the individual andterm variables and the function symbols is given by a model for the algebraic mu-calculus.De�nition 10.1.3 [Models for the algebraic mu-calculus] A model for the algebraicmu-calculus is a pairM = (D; I) consisting of a nonempty �nite set D (called the domain)and an interpretation I for the individual and term variables and the function symbols,i.e. a function I which assigns� to each individual variable z an element I(z) 2 D,� to each n-ary term variable Z a function I(Z) : Dn ! IR,� to each n-ary function symbol fct a function I(fct) : Dn ! IR.Remark 10.1.4 From a purely mathemetical point of view, the concept of function sym-bols can be removed from the algebraic mu-calculus since function symbols can be con-sidered as special term variables (namely, term variables that cannot be bounded by thelimit or bounded iteration operator). However, the use of both function symbols andterm variables is motivated by the convention that function symbols represent functionsfor which we have a �xed meaning in mind (e.g. the transition probability function of afully probabilistic system) while the term variables are used in the scope of the limit orbounded iteration operator lim Z [: : :] or iterate Z [: : :]. Thus, the term variables areauxiliary symbols that are needed for technical reasons only while the function symbolsstand for objects of the \real world".Notation 10.1.5 [The models M[: : :]] Let M = (D; I) be a model. If n, m � 0 andz1; : : : ; zn are pairwise distinct individual variables and Z1; : : : ; Zm are pairwise distinctterm variables where the arity of Zj is kj and di 2 D, fj : Dkj ! IR thenM[z1 := d1; : : : ; zn := dn; Z1 := f1; : : : ; Zm := fm]denotes the model (D; I[z1 := d1; : : : ; zn := dn; Z1 := f1; : : : ; Zm := fm]) whereI[z1 := d1; : : : ; zn := dn; Z1 := f1; : : : ; Zm := fm]is those interpretation J for the individual and term variables and the function symbolssuch that J(fct) = I(fct) for all function symbols fct and J(zi) = di, i = 1; : : : ; n, J(Zj) =fj, j = 1; : : : ; m, and J(z) = I(z), J(Z) = I(Z) in all other cases.LetM = (D; I) be a model. For each algebraic expression expr and algebraic term term,[[expr]]M 2 IR and [[term]]M : Dn ! IR are de�ned as shown in Figure 10.3 on page 264.Here, we assume that all operators op 2 Op are extended to total operators on IR. Forinstance, the partial division operator % on the reals is extended to a total operator onIR by q1%q2 = ? if q2 = 0 or ? 2 fq1; q2g.

264 CHAPTER 10. SYMBOLIC MODEL CHECKING[[q]]M = q[[expr1 op expr2]]M = [[expr1]]M op [[expr2]]M[[term(z1; : : : ; zn)]]M = [[term]]M(I(z1); : : : ; I(zn))[[Pz[expr]]]M = Pd2D [[expr]]M[z:=d][[minz[expr]]]M = minn[[expr]]M[z:=d] : d 2 Do[[maxz[expr]]]M = maxn[[expr]]M[z:=d] : d 2 Do[[fct]]M = I(fct), [[Z]]M = I(Z)[[�z1; : : : ; zn[expr]]]M(d1; : : : ; dn) = [[expr]]M[z1:=d1;:::;zn:=dn][[lim Z [term " term0]]]M = lim(f0; f1; f2; : : :)[[iterate Z [term "k term0]]]M = fkwhere f0 = [[term0]]M, fi+1 = [[term]]M[Z:=fi].Figure 10.3: Semantics of the algebraic mu-calculusExample 10.1.6 [Computing shortest paths] Let G = (V;E; cost) be a �nite di-rected graph with a positive cost function, i.e. V is a �nite set of vertices, E � V � V aset of directed edges and cost : E ! IR>0 a function that assigns to each edge (v; w) thecost cost(v; w) for passing the edge from v to w. Let mincost : V �V ! IR be the functionthat returns for any pair (v; w) of nodes in G the length of a shortest path from v to w.(We put mincost(v; w) = ? if there is no path from v to w.) It is easy to see that thefunction mincost is the limit of the sequence (fi)i�0 where the functions fi : V � V ! IRare given by f0(v; w) = (0 : if v = w? : otherwiseand fi+1(v; w) = min f fi(v; w); minffi(v; u) + cost(u; w) : (u; w) 2 Eg gwhere the limit is taken in IR (cf. Notation 10.1.2, page 262).7 We use binary functionsymbols cost and id and the modelM = (V; I) where the underlying domain is the vertexset V and the interpretation I is given by I(id) = f0 andI(cost)(v; w) = (cost(v; w) : if (v; w) 2 E? : otherwise.7Here, we assume that the natural order on the real line is extended by q < ? for all real numbers q.(This yields minQ = min(Q n f?g) if ; 6= Q � IR, Q 6= f?g.) For the extension of + to an operator onthe extended reals, we require that ?+ q = q +? = ?.

10.1. THE ALGEBRAIC MU-CALCULUS 265Then, the semantics of the algebraic term lim Z [term " id] is the function mincostwhere term = �v; w � min � Z(v; w); minu [Z(v; u) + cost(u; w)] � � :This can be seen as follows. We have f0 = [[id]]M. By induction on i, we get thatfi+1 = [[term]]M[Z:=fi], i = 0; 1; 2; : : :.Thus, [[lim Z [term " id]]]M = lim(f0; f1; f2; : : :) = mincost . The semantics of theterm iterate Z � �v; w � minu [Z(v; u) + cost(u; w)] � "k id �with respect to M is the function fk. The value fk(v; w) is the cost of a shortest pathv = v0; v1; : : : ; vl = w where l � k.Example 10.1.7 [Matrix multiplication] Let A be a n�m-matrix, B a m� l-matrix.A(i; j) denotes the element of A in the i-th row and j-th column; similarly, the elementof B in the j-th row and k-th column is denoted by B(j; k). The following algebraic termsdescribes the matrix product A �B.term = �i; k 24 Xj [A(i; j) � B(j; k)] 35where A and B are binary function symbols that represent the matrices A and B respec-tively. More precisely, if N = maxfn;m; lg andM = (f1; : : : ; Ng; I) whereI(A)(i; j) = (A(i; j) : if 1 � i � n and 1 � j � m? : otherwiseI(B)(j; k) = (B(j; k) : if 1 � j � m and 1 � k � l? : otherwisethen [[term]]M represents A �B in the sense that [[term]]M(i; k) is the element of A �B inthe i-th row and k-th column (provided that 1 � i � n and 1 � k � l).8Example 10.1.8 [Iterative squaring] In certain applications, one has to compute AKfor a quadratic matrix A and some large K.9 For simplicity, we assume that K = 2k.Instead of computing AK by the iteration Ai+1 = Ai �A, i = 2; : : : ; K � 1, it is better touse iterative squaring which is based on the iteration A2i+1 = A2i �A2i, i = 0; 1; : : : ; k�1.This can be described by the algebraic termiterate Z 24 �i; k 24 Xj [Z(i; j) � Z(j; k)] 35 "k�1 A 35where A is a binary function symbol that represents A.8Here, we assume that ? � q = q � ? = ?+ q = q +? = 0 if q 2 IR and ? � ? = ?+? = ?.9For example, one of the two methods for the handling of the bounded until operator U�K in thePCTL model checking algorithm of [HaJo94] is based on the computation of AK for some matrix A.

266 CHAPTER 10. SYMBOLIC MODEL CHECKINGIn the literature about numerical analysis, a variety of iterative methods for matrix op-erations are proposed; see e.g. [Varg62, YoGr73]. Using the limit operator, most of themcan be described as terms of the algebraic mu-calculus. In Example 10.1.9, we considerthe \naive" method for solving linear equation systems of the type z = q + A � z thatis based on the iteration zk+1 = q +A � zk. This method can be viewed as the basis ofseveral iterative methods, e.g. the methods by Jacobi or Gauss-Seidel or the relaxationmethods. Another possible application of the algebraic mu-calculus in the �eld of matrixoperations is the computation of eigenvalues by well-known iterative methods, e.g. themethods by Mises or Wielandt (see Example 10.1.10, page 266).Example 10.1.9 [Solving linear equation systems] Let A be a real n � n-matrix,I the n � n-identity matrix. We assume that kI � Ak < 1 for some matrix norm k � k.Then, I � A is regular and, for each vector q 2 IRn, the sequence (zk)k�0 converges tothe unique solution of the equation system (I �A) � z = q where z0 is an arbitrary realvector with n components and zk+1 = q + A � zk. We use a binary function symbol A(that represents A) and 1-ary function symbols q and z0 (that represent the vector q andthe starting vector z0) and consider the algebraic termterm = lim Z 24 �i 24 q(i) + Xj [A(i; j) � Z(j)] 35 " z0 35 :LetM = (f1; : : : ; ng; I) where I(A)(i; j) = A(i; j), I(q)(i) is the i-th component of q andI(z0)(i) the i-th component of z0. Then, [[term]]M represents the solution of (I�A)�z = q,i.e. the vector ([[term]]M(i))1�i�n is the unique solution of z = q+A � z.The Jacobi-approach for solving linear equation systems of the type B � z = q is a modi�-cation of this naive method. It is based on a decomposition of the matrixB intoD+L+Uwhere D is a diagonal matrix, L a lower triangular matrix and U an upper triangularmatrix (where all entries in the diagonals of L and U are 0). We assume that D is regular(i.e. all elements in the diagonal of B are non-zero) and that A = D�1(L +U) satis�esthe conditions of the naive method (i.e. kI�Ak < 1 for some matrix norm k � k). Then,the Jacobi-method is based on the observation thatB � z = q i� z = D�1 � (q � (L+U) � z)and uses the iteration zk+1 = D�1 � (q� (L+U) � zk). This corresponds to the algebraicterm lim Z 24 �i 24 0@ q(i) � Xj [h(i; j) � B(i; j) � z(j)] 1A % B(i; i) 35 " z0 35where B, z0, q are function symbols with the obvious interpretations. h is a binary functionsymbol for which we assume the interpretation I(h) : f1; : : : ; ng2 ! f0; 1g, I(h)(i; j) = 1i� i 6= j.Example 10.1.10 [Computing eigenvectors] We sketch how the iterative method byMises for computing eigenvectors can be described by an algebraic term. LetA be a n�n-matrix that is similar to a diagonal matrix and let z0 be a real vector with n components.Let k � k be a vector norm and letzk+1 = 1kykk � yk where yk = A � zk; k = 0; 1; 2; : : : :

10.1. THE ALGEBRAIC MU-CALCULUS 267Under certain conditions about z0, the sequence (zk)k�0 converges to an eigenvector ofA. Using a binary function symbol A (that represents A) and a 1-ary function symbolz0 (that represents the starting vector z0) this iterative method can be described in thealgebraic mu-calculus by the term lim Z [term " z0] whereterm = �i 24 Xj [A(i; j) � Z(j)] % maxj [jA(i; j) � Z(j)j] 35 :The underlying vector norm that we use here is the maximum norm kyk1 = maxfjyij :i = 1; : : : ; ng if y = (yi)1�i�n.Having a �xed model M = (D; I) in mind, it is often useful to extend the syntax ofthe algebraic mu-calculus by expressions of the form term(�1; : : : ; �n) where �i are eitherindividual variables that do do occur free in term or values of the underlying domain D.Then, term(�1; : : : ; �n) stands short for the algebraic expression term0(z1; : : : ; zk) wherefz1; : : : ; zkg = IndVar \ f�1; : : : ; �ng,term0 = �z1; : : : ; zk 24 X�1;:::;�n [term(�1; : : : ; �n) � bexpr] 35and bexpr = d̂2D ^1�i�n�i=d Ed(�i) ^ ^1�j�k ^1�i�n�i=zj E(�i; zj):Here, �1; : : : ; �n are \fresh" pairwise distinct individual variables that do not occur freein term. E is a binary function symbol (that represents the equality predicate on D), Edare 1-ary function symbols (that stand for the singleton set fdg). The intended meaningsof E and Ed are formalized by the requirement that the interpretations for E and Ed aregiven by:I(E)(d1; d2) = (1 : if d1 = d20 : otherwise I(Ed)(d0) = (1 : if d = d00 : otherwise.For example, term(d; z; z) stands short for term0(z) whereterm0 = �z 24 X�1;�2;�3 [term(�1; �2; �3) � bexpr] 35and bexpr = (�1 = d) ^ (�2 = z) ^ (�3 = z) where we write �1 = d rather than Ed(�1)and �i = z rather than E(�i; z), i = 2; 3.Example 10.1.11 [Computing the probabilities Prob(s; � �; C)] Let S = (S;Act ;P)be a �nite action-labelled fully probabilistic system and R an equivalence relation onS. We show how the probabilities Prob(s; � �; C) (where s 2 S and C 2 S=R) can bedescribed by a term of the algebraic mu-calculus.10 For this, we use the following fact.The function S � S ! [0; 1], (s; t) 7! Prob(s; � �; [t]R), is the least �xed point of the10Recall that Prob(s; ��; C) denotes the probability for s to reach a C-state via internal actions, seepage 50.

268 CHAPTER 10. SYMBOLIC MODEL CHECKINGoperator F : (S � S ! [0; 1]) ! (S � S ! [0; 1]) that is given by F (f)(s; t) = 1 if(s; t) 2 R and, if (s; t) =2 R,F (f)(s; t) = P(s; �; [t]R) + Xu2Sn[t]R P(s; �; u) � f(u; t)(cf. Proposition 3.3.4, page 49). Here, [t]R = ft0 2 S : (t; t0) 2 Rg. By Tarski's �xed pointtheorem, the least �xed point is obtained as limit of the function sequence (F i(f0))i�0where f0(s; t) = 0 for all s; t 2 S. This iteration can be described by an algebraic termof the form lim Z [: : : " �s; t[0]]: For this, we rewrite the de�nition of F . Let fR be thecharacteristic function of R. Then,F (f)(s; t) = max f fR(s; t); (1� fR(s; t)) �G(f)(s; t) gwhereG(f)(s; t) = Xt02S P(s; �; t0) � fR(t; t0) + Xu2S P(s; �; u) � (1� fR(t; u)) � f(u; t):We use a ternary function symbol P (that represents P) and a binary function symbol R(that represents R). We consider the modelM = (D; I) where D = S] Act andI(P)(s; a; t) = (P(s; a; t) : if s, t 2 S and a 2 Act0 : otherwiseI(R)(s; t) = (1 : if s, t 2 S and (s; t) 2 R0 : otherwise.We use s, t, t0 and u as individual variables and de�neterm = lim Z [�s; t [maxf R(s; t); (1� R(s; t)) � expr g] " �s; t[0]]whereexpr = Xt0 [P(s; �; t0) � R(t; t0)] + Xu [P(s; �; u) � (1� R(t; u)) � Z(u; t)] :Here, in the expressions P(s; �; t0) and P(s; �; u), we use the notation term(�1; : : : ; �n)explained on page 267.11 The meaning of term with respect toM is the function [[term]]M :D2 ! IR which is given by [[term]]M(s; t) = Prob(s; � �; [t]R) if s, t 2 S.Remark 10.1.12 There are several possible extensions of the algebraic mu-calculus thatmight be useful in certain applications.� The algebraic mu-calculus could be extended by (total or partial) 1-ary arithmeticoperators such as square rootpexpr, logarithms (such as log2(expr)) or exponentiation(such as 2expr) together with an appropriate semantics, e.g. in the case of square root[[pexpr]]M = (q[[expr]]M : if [[expr]]M 2 IR�0? : otherwise.11Note that � is an element of the domain D.

10.1. THE ALGEBRAIC MU-CALCULUS 269� Another possible extension is to deal with tuples of term variables in the limit orbounded iteration operator; i.e. to deal with an operatorlimj Z [term " term0]where, for some natural number l � 1, Z = (Z1; : : : ; Zl) is a l-tuple of term vari-ables, term = (term1; : : : ; terml) and term0 = (term1;0; : : : ; terml;0) are l-tuples ofalgebraic terms and j 2 f1; : : : ; lg such that the arity of Zh, termh and termh;0 isthe same, h = 1; : : : ; l. The semantics of this limit operator with index j is given bylim(fj;0; fj;1; fj;2; : : :) where fh;0 = [[termh;0]]M andfh;i+1 = [[termh]]M[Z1:=f1;i;:::;Zl:=fl;i]; h = 1; : : : ; l and i = 0; 1; 2; : : :.Similarly, the bounded iteration operator could be extended for tuples of term variables.� Instead of just using the symbol ? { that we use to handle all kinds of non-convergingsequences { one might extend the real line by three symbols �1, +1 and ?. Thisallows the distinction between sequences that diverge to �1 (e.g. �1;�2;�3; : : :) andsequences that diverge to +1 (e.g. 1; 2; 3; : : :) and sequences that neither diverge to+1 or �1 nor converge to a real number (e.g. �1; 1;�1; 1; : : :).Notation 10.1.13 [The range RangeM(term)] Let term be an n-ary algebraic term andM = (D; I) a model. Then,RangeM(term) = n[[term]]M(d) : d 2 Dnodenotes the range of (the semantics of) term with respect toM.De�nition 10.1.14 [<-models] Let < be a subset of IR. A modelM = (D; I) is calleda <-model i� Range(I(Z)), Range(I(fct)) � < for all term variables Z and functionsymbols fct.12De�nition 10.1.15 [<-closedness] Let < be a subset of IR, M = (D; I) a model andZ an n-ary term variable. An algebraic term term is called <-closed with respect to ZandM i� RangeM[Z:=f](term) � < for all functions f : Dn ! <. Similarly, an algebraicexpression expr is said to be <-closed with respect to Z and M i� [[expr]]M[Z:=f] 2 <for any function f : Dn ! <. An algebraic term or expression is called <-closed i� it is<-closed with respect to any term variable Z and any <-model (i.e. if RangeM(term) � <resp. [[expr]]M 2 < for any <-modelM).Clearly, the subcalculus of <-closed expressions and terms contains any constant q 2 <\IRand is closed under �-abstraction and term application and all those operators op 2 Opthat are closed in < (i.e. whenever q1, q2 2 < then q1 op q2 2 <).Example 10.1.16 [f0; 1;?g-closedness] Given a f0; 1g-modelM = (D; I), the seman-tics [[bexpr]]M for expressions of the boolean mu-calculus is either 0 or 1 or ?. Similarly,the meaning [[bterm]]M of a term of the boolean mu-calculus is a partial boolean function,i.e. returns 0, 1 or ?. Thus, each boolean expression or term is f0; 1;?g-closed.12In the notations of Section 2.1, page 29, Range(f) denotes the image of the function f , i.e. if f :X ! Y then Range(f) = f(X) = ff(x) : x 2 Xg.

270 CHAPTER 10. SYMBOLIC MODEL CHECKING10.1.3 Fixed point operatorsThis section shows that under certain conditions the limit operator lim Z [term " term0]specializes to a �xed point operator in the sense that the semantics of lim Z [term " term0]is a certain �xed point of the higher-order function f 7! [[term]]M[Z:=f]. The conditionsthat we present here are based on Banach's or Tarski's �xed point theorem which yieldoperators that describe unique or least or greatest �xed points.13 To apply Banach'sor Tarski's �xed point theorem we have to ensure that the higher-order operator f 7![[term]]M[Z:=f] is a self-mapping of a complete metric space (in the case of Banach's �xedpoint theorem) or a complete lattice (in the case of Tarski's �xed point theorem). In bothcases, we deal with function spaces of the form Dn ! < where < is a certain nonemptycompact subset of IR, namely either a real interval [a; b] or a �nite nonempty set of reals.Then, < { and hence, the function space Dn ! < { is a complete metric space and acomplete lattice.14Proposition 10.1.17 Let term be an n-ary algebraic term, Z an n-ary term variableandM = (D; I) a model for the algebraic mu-calculus. Let < be a nonempty subset of IRsuch that term is <-closed with respect toM and Z. Then, the operatorF : (Dn ! <)! (Dn ! <), F (f) = [[term]]M[Z:=f],is well-de�ned. Moreover:(a) If F is contracting, < is a compact interval [a; b] and term0 an n-ary algebraic termsuch that RangeM(term0) � < then[[lim Z [term " term0]]]M = �x (F)is the unique �xed point of F .(b) Let a = min< and b = max< and < either a compact interval or �nite (i.e. either< = [a; b] or < = fa1; : : : ; akg where a = a1 < a2 < : : : < ak = b). If F preservessuprema and in�ma then[[lim Z [term " �z1; : : : ; zn[a]]]]M = lfp(F) is the least �xed point of F ,[[lim Z [term " �z1; : : : ; zn[b]]]]M = gfp(F) is the greatest �xed point of F .Proof: follows immediately by Banach's and Tarski's �xed point theorem (see Section12.1.2, page 310, and Section 12.1.1, page 308).In the remainder of this section we present conditions that ensure that the conditions ofpart (b) of Proposition 10.1.17 are ful�lled. Clearly, if the operators op preserve supremaand in�ma for all subexpressions expr1 op expr2 of term that contain a free occurrenceof Z then the operator f 7! [[term]]M[Z:=f] preserves suprema and in�ma. But, in manyapplications, the requirement that only those operators op that preserve suprema andin�ma are allowed is not su�cient because the multiplication operator � and the minusoperator � (and also the derived negation operator :) are not monotonic and hence do13This observation justi�es the name \mu-calculus" because usually (e.g. in the case of the relationalmu-calculus) the greek letter \mu" denotes \least �xed point".14We assume the natural metric d(x; y) = jx � yj and the natural order � on <. The function spaceDn ! < is equipped with the induced metric or partial order; see page 308 and page 310.

10.1. THE ALGEBRAIC MU-CALCULUS 271not preserve suprema and in�ma. In what follows, we shrink our attention to the compactinterval < = [0; 1] and de�ne a subcalculus of the algebraic mu-calculus which is [0; 1]-closed and contains least and greatest �xed point operators. Similar conditions for othercompact intervals [a; b] can be derived using the bijection [a; b]! [0; 1], q 7! (q�a)=(b�a).[0; 1]-closedness requires the restriction to constants q 2 [0; 1] and the use of such operatorsop 2 Op that are total operators on [0; 1] and always return values between 0 and 1(i.e. operators that can be restricted to functions [0; 1]� [0; 1]! [0; 1]). For this reason,we cannot use the addition operator + or the minus operator �. Instead of the binaryminus operator, we use the 1-ary operator q 7! 1 � q and deal with expressions of theform 1 � expr. One general possibility to handle summation is to combine the plusoperator + with the 1-ary minimum operator q 7! minf1; qg and to deal with the operator(q1; q2) 7! minf1; q1 + q2g which yields expressions of the form minf1; expr1 + expr2g.Another possibility is to use boolean guards for the summation. For this, we deal withspecial function symbols bfct for which we assume an interpretation by a boolean-valuedfunction and use expressions of the formbfct(z1; : : : ; zn) � expr1 + (1� bfct(z1; : : : ; zn)) � expr2:Expressions of the above form can be read as \if bfct(z1; : : : ; zn) then expr1 else expr2".Similarly, for the summation quanti�er Pz[expr] we could make the requirement that itcan only be used in the context of the minimum operator, i.e. in the formminf1;Pz[expr]g.Alternatively, we can generalize the idea of the boolean guards by non-negative weightsthat sum up to 1. This leads to a weighted sum e.g. of the formXz1;:::;zk [wfct(z1; : : : ; zk; y1; : : : ; yn�k) � expr]where (z1; : : : ; zk; y1; : : : ; yn�k) is a tuple of pairwise distinct individual variables and wfcta special function symbol that is interpreted in such a way that, whenever we �x interpre-tations e1; : : : ; en�k for y1; : : : ; yn�k and sum up the values I(wfct)(d1; : : : ; dk; e1; : : : ; en�k)where d1; : : : ; dk range over all possible values for z1; : : : ; zk then we obtain a value in [0; 1].The algebraic [0; 1]-mu-calculus: We assume a subset Op[0;1] of Op such that alloperators op 2 Op[0;1] can be restricted to an operator [0; 1] � [0; 1] ! [0; 1]. Moreover,we assume that q op ?, ? op q, ? op ? 2 [0; 1][f?g for any operator op 2 Op[0;1]. LetBFctn � Fctn be a set of boolean function symbols. For n � 1 and 1 � i1 < : : : < ik � n,let WFctn(i1; : : : ; ik) � Fctn be a set of n-ary function symbols. The algebraic [0; 1]-mu-calculus is those subcalculus of the algebraic mu-calculus whose expressions and n-aryterms are built from the grammar shown in Figure 10.4 (page 272). Here, q 2 [0; 1], op isan operator in Op[0;1], wfct 2WFctn(i1; : : : ; ik) and bfct 2 BFctn. The least and greatest�xed points operators are given by lfp Z [term] = lim Z [term " �z1; : : : ; zn[0]] andgfp Z [term] = lim Z [term " �z1; : : : ; zn[1]]. The expression if bfct(z1; : : : ; zn) thenexpr1 else expr2 stands short forbfct(z1; : : : ; zn) � expr1 + (1� bfct(z1; : : : ; zn)) � expr2:A model for the algebraic [0; 1]-mu-calculus is a [0; 1]-modelM = (D; I) for the algebraicmu-calculus such that� I(bfct)(d) 2 f0; 1g for all bfct 2 BFctn and d 2 Dn,

272 CHAPTER 10. SYMBOLIC MODEL CHECKING
expr ::= q ��� expr1 op expr2 ��� 1� expr ��� term(z1; : : : ; zn) ���if bfct(z1; : : : ; zn) then expr1 else expr2 ���Xzi1 ;:::;zik [wfct(z1; : : : ; zn) � expr] ��� minz [expr] ��� maxz [expr]term ::= fct j Z ��� �z1; : : : ; zn [expr] ��� lfp Z [term] ��� gfp Z [term] ���iterate Z h term "k term0 iFigure 10.4: Syntax of the algebraic [0; 1]-mu-calculus� for all wfct 2WFctn(i1; : : : ; ik) and di 2 D, i 2 f1; : : : ; ng n fi1; : : : ; ikg,Xdi1 ;:::;dik2D I(wfct)(d1; : : : ; dn) � 1:Example 10.1.18 The term in Example 10.1.11 (page 267) that describes the functionS � S ! [0; 1], (s; t) 7! Prob(s; � �; [t]R) can be rewritten aslfp Z [�s; t [if R(s; t) then 1 else expr]] :which is a term of the algebraic [0,1]-mu-calculus provided that P 2 WFct3(2; 3) andR 2 BFct2. The model M = (D; I) considered in Example 10.1.11 is a model for thealgebraic [0,1]-mu-calculus.It is easy to see that, for any expression expr of the algebraic [0; 1]-mu-calculus andany model M for the algebraic [0; 1]-mu-calculus, [[expr]]M 2 [0; 1] [f?g. Similarly, ifterm is a term of the algeraic [0; 1]-mu-calculus then RangeM(term) � [0; 1][f?g for anymodelM for the algebraic [0; 1]-mu-calculus. We now present conditions that ensure thatthe semantics returns values in [0; 1] rather than the auxiliary symbol ?. For this, wemake some syntactic requirements about the occurrences of the term variable Z withinsubterms lfp Z [term] and gfp Z [term]. The �rst condition (\formal monotonicity")is taken from the relational mu-calculus where, for the least and greatest �xed pointoperators lfp Z [bterm] and gfp Z [bterm], the monotonicity of the induced operatorf 7! [[bterm]]M[Z:=f] is ensured by the requirement that all free occurrences of Z in btermfall under an even number of the negation operator :bexpr.De�nition 10.1.19 [Formal monotonicity] Let term be an algebraic term, expr analgebraic expression and Z an n-ary term variable. Z is formally monotone in term (orexpr) i� all free occurrences of Z in term (resp. expr) fall under an even number of minusoperations.1515The number of minus operations under which an occurrence of a term variable Z falls in an expressionor term is given by the number of subexpressions 1�expr of that expression or term where the occurenceof Z is contained in expr.

10.1. THE ALGEBRAIC MU-CALCULUS 273Example 10.1.20 Let Z be a 1-ary term variable, fct a 1-ary function symbol and z, yindividual variables. Z is formally monotone in the expressions 13 �Z(z) � (1� fct(y)) andZ(z) � (1� (1�Z(z))) while it is not in (1� Z(z)) � (1�Z(z)). In the third expression,both occurrences of Z fall under an odd number of minus operations. In the expression(1�Z(z))�Z(z), the �rst occurrence of Z falls under an odd number of minus operations(which yields that Z is not formally monotone in (1 � Z(z)) � Z(z)) while the secondoccurrence falls under an even number of minus operations.Remark 10.1.21 Formal monotonicity of term variables in terms or expressions of therelational mu-calculus (as a subcalculus of the algebraic mu-calculus) in the sense ofDe�nition 10.1.19 is the same as formal monotonicity �a la Park [Park74].The second condition that we need to ensure that the function f 7! [[term]]M[Z:=f] pre-serves suprema and in�ma is that, for each subexpression expr1 op expr2, if Z occursfree in expr i then the operator op preserves suprema and in�ma in the i-th argument.To formalize this condition, we de�ne the operator sets Op[0;1]1 and Op[0;1]2 as follows. LetOp[0;1]1 be a set of operators op 2 Op[0;1] such that the function [0; 1] � [0; 1] ! [0; 1],(q1; q2) 7! q1 op q2, preserves suprema and in�ma in its �rst argument, i.e. whenever Q isa nonempty subset of [0; 1] with q+ = supQ and q� = infQ and q2 2 [0; 1] thensup fq1 op q2 : q1 2 Qg = q+ op q2; inf fq1 op q2 : q1 2 Qg = q� op q2:Similarly, Op[0;1]2 denotes a set of operators op 2 Op[0;1] where the function [0; 1]� [0; 1]![0; 1], (q1; q2) 7! q1 op q2, preserves suprema and in�ma in its second argument. Clearly,any operator op 2 Op[0;1]i is monotonic in the i-th argument. For instance, multiplication�, minimum opmin and maximum opmax belong to Op[0;1]1 \ Op[0;1]2 while the operator(q1; q2) 7! q1=(1 + q2) is contained in Op[0;1]1 nOp[0;1]2 (provided that it belongs to Op[0;1]).The comparison operators op./ are not contained in Op[0;1]1 or Op[0;1]2 .16De�nition 10.1.22 [Formal continuity] Let Z be an n-ary term variable. Z is calledformally continuous in a term or expression of the algebraic [0; 1]-mu-calculus i�, for anyfree occurrence of Z in that term or expression within a subexpression expr1 op expr2:If Z occurs free in expr i then op 2 Op[0;1]i .Example 10.1.23 Let Z, Y be 1-ary term variables. Z is formally continuous in theexpressions 12 � (1� Z(z)) andminfZ(z); Z(z) � Z(z)g � � (13 � Y (y)) op< 23 �while it is not in Z(z) op< 25 .Remark 10.1.24 Clearly, the algebraic [0; 1]-mu-calculus subsumes the boolean mu-cal-culus. In the boolean mu-calculus, only the operators _ = opmax , ^ = opmin and thecomparison operators op./ are allowed. Thus, if bterm is a term of the boolean mu-calculus then Z is formally continuous in bterm i� there is no free occurrence of Z withina subexpression of the form expr1 op./ expr2. In particular, for the relational mu-calculus �a16Note that the comparison operators op./ are not monotonic. For instance, 0:4 op> 0:3 = 1 while0:4 op> 0:5 = 0 although 0:3 < 0:5.

274 CHAPTER 10. SYMBOLIC MODEL CHECKINGla Park (the boolean mu-calculus without the comparison operators op./ and the boundediteration operator), all expressions and terms are formally continuous.De�nition 10.1.25 [Formal divergence freedom] A term or expression of the alge-braic [0; 1]-mu-calculus is called formally divergence free i�, for each subterm lfp Z [term]or gfp Z [term], Z is formally monotone and formally continuous in term.Example 10.1.26 The term in Example 10.1.11 (page 267) that describes the functionS � S ! [0; 1], (s; t) 7! Prob(s; � �; [t]R) is formally divergence free when we deal withP 2WFct3(2; 3) and R 2 BFct2.Theorem 10.1.27 Let term be an n-ary term of the algebraic [0; 1]-mu-calculus that isformally divergence free. Let M = (D; I) be a model for the algebraic [0; 1]-mu-calculusand Z an n-ary term variable. Then, the functionF : (Dn ! [0; 1])! (Dn ! [0; 1]), F (f) = [[term]]M[Z:=f],is well-de�ned. Moreover, if Z is formally monotone and formally continuous in termthen F preserves suprema and in�ma and we have the following.(a) [[lfp Z[term]]]M = lfp(F) is the least �xed point of F ,(b) [[gfp Z[term]]]M = gfp(F) is the greatest �xed point of F .Proof: We say that an n-ary term variable Z is formally antitone in expr i� Z isformally monotone in 1� expr. Z is called formally antitone in a k-ary term term i� Zis formally antitone in the expression term(z1; : : : ; zk). Let l, m be natural numbers withl +m � 1. We say that a functionF : (Dn1 ! [0; 1])� : : :� (Dnl+m ! [0; 1])! [0; 1]is (l; m)-continuous i�, for all nonempty subsets �i of functions fi : Dni ! [0; 1],F �f+1 ; : : : ; f+l ; f�l+1; : : : ; f�l+m� = sup fF (f1; : : : ; fl+m) : fi 2 �i; i = 1; : : : ; l +mg ;F �f�1 ; : : : ; f�l ; f+l+1; : : : ; f+l+m� = inf fF (f1; : : : ; fl+m) : fi 2 �i; i = 1; : : : ; l +mg :Here, f+i = supf2�i f and f�i = inff2�i f . Similarly, we de�ne (l; m)-continuity forfunctions F : (Dn1 ! [0; 1])� : : :� (Dnl+m ! [0; 1])! (Dn ! [0; 1]):By structural induction on the expressions and terms of the algebraic [0; 1]-mu-calculuswe get the following. Whenever Z1; : : : ; Zl+m are pairwise distinct term variables and a isan algebraic expression or term such that a is formally divergence free and� Z1; : : : ; Zl+m are formally continuous is a,� Z1; : : : ; Zl are formally monotone in a,� Zl+1; : : : ; Zl+m are formally antitone in athen the function Fa is (l; m)-continuous. Here, Fa is given byFa(f1; : : : ; fl+m) = [[a]]M[Z1:=f1;:::;Zl+m:=fl+m]:With a = term, l = 1, m = 0, Z1 = Z we get that the operator F = Fa preserves supremaand in�ma. Parts (a), (b) can be derived from Proposition 10.1.17(b) (page 270).

10.2. THE ALGEBRAIC MU-CALCULUS AS A SPECIFICATION LANGUAGE 27510.2 The algebraic mu-calculus as a speci�cation lan-guageIn this section we show that the algebraic mu-calculus subsumes several temporal or modallogics that can serve as speci�cation languages for (several types of) parallel systems. Therelational mu-calculus with its standard semantics �a la Park [Park74] and Kozen's modalmu-calculus [Koze83] can be viewed as subcalculi of the boolean mu-calculus (see Sections10.2.1 and 10.2.2). In particular, the boolean mu-calculus (and hence, the algebraic mu-calculus) has the expressiveness of all formalisms { e.g. automata on in�nite words andseveral kinds of temporal logics such as CTL or LTL { that are contained in the relationalor modal mu-calculus; see e.g. [StEm84, EmLei86, Niwi88, BCM+90, EmJu91, Dam94].Moreover, the algebraic mu-calculus contains several temporal and modal logics for rea-soning about quantitative properties of concurrent systems. For instance, the algebraicmu-calculus subsumes the extensions of Emerson [Emer92] and Seidl [Seidl96] of Kozen'smodal mu-calculus for specifying (certain kind of) real time properties and several logicsto reason about probabilistic systems such as the probabilistic mu-calculus �a la [HuKw97,HuKw98] or PCTL [HaJo94, BidAl95]; see Sections 10.2.2 and 10.2.3. Moreover, the alge-braic mu-calculus can serve as speci�cation language for arithmetic circuits as it subsumesthe temporal logic Word Level CTL [CCH+96, CKZ96, Zhao96]; see Section 10.2.4. Inall these cases, we have an embedding of the respective (temporal or modal) logic L intothe algebraic mu-calculus of the following form. For each formula ' of L, there is an\equivalent" algebraic term term'. Here, \equivalence" is in the following sense: For anymodel N for L, there is a modelM for the algebraic mu-calculus with(*) [[term']]M = [[']]N :Hence, all properties that can be speci�ed by a formula of L can also be expressed inthe algebraic mu-calculus. Moreover, the de�nition of term' is by structural inductionon the syntax of '; i.e. the de�nition of term' is constructive. Thus, any method thatautomatically computes the semantics of the terms of the algebraic mu-calculus yields amodel checker for L.10.2.1 The relational mu-calculusThe syntax of Park's relational mu-calculus is obtained from the boolean mu-calculus(see page 261) by removing the expressions built from the comparison operators op./ andthe bounded iteration operator iterate Z [: : : "k : : :]. We now show that the semanticsof the relational mu-calculus (as a subcalculus of the algebraic or boolean mu-calculuswhere the semantics of the least and greatest �xed point operators are de�ned as limitsof certain function sequences) agrees with the standard semantics �a la Park [Park74]. Inthe approach of Park, the use of the least and greatest �xed point lfp Z [bterm] andgfp Z [bterm] operators is restricted to those relational terms bterm and term variables Zwhere Z is formally monotone in bterm.17 The meanings of lfp Z [bterm] and gfp Z [bterm]with respect to a f0; 1g-model M = (D; I) (which can be viewed as a model for the17Recall that formal monotonicity of a term variable Z in a relational term bterm means that all freeoccurrences of Z in bterm fall under an even number of the negation operator :bexpr.

276 CHAPTER 10. SYMBOLIC MODEL CHECKINGrelational mu-calculus in the sense of Park) are de�ned as the least and greatest �xedpoints of the higher-order operator f 7! [[bterm]]M[Z:=f] on the function space Dn !f0; 1g. To see that the operators lfp Z [bterm] and gfp Z [bterm] of the boolean mu-calculus are indeed least and greatest �xed point operators we apply Theorem 10.1.27(page 274).18Theorem 10.2.1 Let bterm be a n-ary term of the boolean mu-calculus that is formallydivergence free. Let Z be an n-ary term variable that is formally monotone and formallycontinuous in bterm. Then, for any f0; 1g-modelM:(a) [[lfp Z [bterm]]]M = lfp(F) is the least �xed point of F(b) [[gfp Z [bterm]]]M = gfp(F) is the greatest �xed point of Fwhere F : (Dn ! f0; 1g)! (Dn ! f0; 1g) is given by F (f) = [[bterm]]M[Z:=f].Proof: follows immediately by Theorem 10.1.27 (page 274).19Since formal continuity in expressions and terms of the relational mu-calculus is alwayssatis�ed (see Remark 10.1.24, page 273), Theorem 10.2.1 yields that the standard seman-tics for the relational mu-calculus �a la Park agrees with the semantics of the relationalmu-calculus when viewed as a sublanguage of the algebraic mu-calculus. Thus, the rela-tional mu-calculus can be viewed as a subcalculus of the algebraic mu-calculus.10.2.2 The modal mu-calculusThe modal mu-calculus was introduced by Kozen [Koze83] as a language for analyzingthe behaviour of possibly in�nite computations. Formulas of the modal mu-calculus arebuilt from the boolean connectives ^, _, :, modal next step operators h�i and [�] (where� ranges over certain actions) and least or greatest �xed point operators. They areinterpreted by sets of states of a �nite action-labelled transition system and might expresse.g. safety or liveness properties. The modal next step operator h�i can be viewed as themodal counterpart to the boolean quanti�er 9x and states that \there is an �-labelledtransition" while [�] is its dual (\for all �-labelled transitions"). Using 2-ary functionsymbols R� { where R� represents the characteristic function of the transition relationfor the action label � (i.e. we assume an interpretation I such that I(R�) is a boolean-valued function where I(R�)(s; t) is true i� s ��!t) { each modal mu-formula ' can betranslated into an \equivalent" 1-ary boolean term bterm'. For instance, for mu-formulaswith modal next step h�i or least �xed points,btermh�i' = �z [9z0 [R�(z; z0) ^ bterm'(z0)]] ; btermlfp Z ['] = lfp Z [bterm']:18It should be observed that the boolean mu-calculus is a subcalculus of the algebraic [0; 1]-mu-calculus.Note that the summation quanti�erPz is not contained in the boolean mu-calculus, only the operators^ = opmin , _ = opmax and op./ are allowed and the boolean negation operator :bexpr is modelled by1� bexpr.19For this, we use the following simple fact. If F : (Dn ! [0; 1]) ! (Dn ! [0; 1]) is an operator thatpreserves suprema and in�ma and such that F (f)(d1; : : : ; dn) 2 f0; 1g for any function f : Dn ! f0; 1gand d1; : : : ; dn 2 D then the least and greatest �xed points of F are functions with range f0; 1g.

10.2. THE ALGEBRAIC MU-CALCULUS AS A SPECIFICATION LANGUAGE 277Here, \equivalence" is in the sense of condition (*) on page 275. Thus, Kozen's modalmu-calculus can be viewed as a sublanguage of the boolean mu-calculus.In the literature, Kozen's modal mu-calculus has been extended to reason about quan-titaive properties of timed systems [Emer92, Seidl96] or probabilistic systems [HuKw97,MoMcI97, HuKw98, McIv98]. In the approach of [Emer92], formulas are still interpretedover sets of states of a labelled transition system while [Seidl96, HuKw97, MoMcI97,HuKw98, McIv98] deal with an interpretation by functions from the states into the reals.Emerson [Emer92] extends the modal mu-calculus by bounded iteration operators thatare used to formulate real time properties such as \the process will terminate within thenext k time units". The above mentioned embedding of Kozen's modal mu-calculus in theboolean mu-calculus can be extended to an embedding of Emerson's modal mu-calculuswhere we describe Emerson's bounded iteration operator with the help of our boundediteration operator iterate Z [: : : "k : : :]. In the remainder of this section, we brie
yexplain how the modal mu-calculus with the interpretations by Seidl [Seidl96] over dura-tional transition systems and Huth & Kwiatkowska [HuKw97, HuKw98] over probabilistic(reactive) systems can be embedded into the algebraic mu-calculus.The durational mu-calculus �a la Seidl: [Seidl96] deals with an interpretation offormulas by functions from the states of a �nite action-labelled transition system intoa discrete time domain Time. The transitions are endowed with an duration (i.e. theamount of time that is needed to perform the transitions). In some sense, the semanticsof the formulas gives a measure for the time of how long a certain property holds.The time domain Time is a subinterval of the non-negative integers extended by ? thatwe treat as 1.20 Moreover, Time is equipped with a set Op of binary operators such asmaximim opmax , minimum opmin , addition + and a sequence operator (x; y) 7! x; y = y.Formulas are given by the following grammar' ::= bta j Z ��� '1 op '2 ��� [�]' ��� h�i' ��� lfp Z ['] ��� gfp Z [']where bta is a basic time assignment, � 2 Act , Z a variable and op 2 Op. Here, Actis a �xed �nite set of actions. Formulas are interpreted over the states of a durationaltransition system, i.e. a tuple S = (S;!; dur) where S is a �nite set of states, ! �S�Act �S a transition relation and dur a function that assigns to each transition s �! tits duration dur(s; �; t). A model N = (S; J) consists of a durational transition systemS = (S;!; dur) and an interpretation J for the variables and basic time assignmentsby functions S ! Time. The meaning [[']]N : S ! Time is de�ned as shown in Figure10.5 (page 278). We associate with each formula ' an 1-ary term term' as follows. Eachbasic time assignment bta is viewed as a 1-ary function symbol. For each action �, weuse binary function symbols R� and dur�. Intuitively, R� represents the the �-labelledtransitions (i.e. R� stands for a boolean-valued function S � S ! f0; 1g where (s; t) 7! 1is true i� s ��!t) while dur� stands for the duration of the �-labelled transitions (i.e. dur�represents the partial function S � S ! IR where (s; t) 7! dur(s; �; t) if s ��!t). Thevariables Z of the durational mu-calculus are viewed as 1-ary term variables.termZ = Z, termbta = bta, term'1op'2 = �s[term'1(s) op term'2(s)],20To be precisely, [Seidl96] also uses the symbol �1 to express unaccessibility. Using an extension ofthe real line by the three symbols �1 and ? rather than just the single symbol ?, we could also dealwith �1.

278 CHAPTER 10. SYMBOLIC MODEL CHECKING[[Z]]N = J(Z), [[bta]]N = J(bta), [['1 op '2]]N (s) = [['1]]N (s) op [['2]]N (s)[[[�]']]N (s) = min ndur(s; �; t) + [[']]N (t) : s �! to[[h�i']]N (s) = max ndur(s; �; t) + [[']]N (t) : s �! to[[lfp Z [']]]N = least �xed point of (S ! Time)! (S ! Time), f 7! [[']]N [Z:=f][[gfp Z [']]]N = greatest �xed point of (S ! Time)! (S ! Time), f 7! [[']]N [Z:=f]Figure 10.5: Semantics of the durational mu-calculus �a la [Seidl96]term[�]' = �s [mint [R�(s; t) � (dur�(s; t) + term'(t))]],termh�i' = �s [maxt [R�(s; t) � (dur�(s; t) + term'(t))]],termlfp Z ['] = lim Z [term' " �s[timemin]],termgfp Z ['] = lim Z [term' " �s[timemax]].Here, timemin = minft : t 2 Timeg and timemax = maxft : t 2 Timeg. Given a modelN = (S; J) where S is as before, we de�ne a model M = (S; I) for the algebraic mu-calculus by I(bta) = J(bta),I(R�)(s; t) = (1 : if s �! t0 : otherwise I(dur�)(s; t) = (dur(s; �; t) : if s �! t? : otherwiseand I(Z) = J(Z) for all variables Z. By structural induction on ', we get [[']]N =[[term']]M.The probabilistic mu-calculus �a la Huth & Kwiatkowska: In the probabilisticmu-calculus of [HuKw97, HuKw98], formulas are given by the grammar' ::= ap j Z ��� '1 ^ '2 ��� :' ��� '1 _ '2 ��� [�]' ��� h�i' ��� lfp Z ['] ��� gfp Z [']where ap is an atomic proposition, � 2 Act an action and Z a variable. Formulas areinterpreted with respect to a model N = (S; J) consisting of a reactive system S =(S;Act ;P) (cf. De�nition 3.3.10 on page 51 and Notation 3.3.11 on page 52) and aninterpretation J for the atomic propositions ap and the variables Z by functions S ! [0; 1].The meaning [[']]N : S ! [0; 1] of a formula ' is de�ned as shown in Figure 10.6 (page279). For disjunction _ and conjunction ^, several interpretations by binary operatorsare possible. To guarantee the existence of least/greatest �xed points for formulas withalternating depth � 1 the following operators op_ and op^ can be used.21� op_ is opmax or one of the operators (q1; q2) 7! q1+q2�q1 �q2, (q1; q2) 7! minf1; q1+q2g� op^ is opmin , � or the operator (q1; q2) 7! maxfq1 + q2 � 1; 0g.Similarly to the way in which we describe each formula ' of Seidl's durational mu-calculusby an \equivalent" algebraic term term', we obtain a transformation from the positive21Alternating depth � 1 means that, for any subformula lfpZ[] or lfpZ[], at most the variable Zoccurs free in . This ensures the existence of least and greatest �xed points of the associated operatorand that they can be computed by the standard iterations. See Proposition 1 and 2 in [HuKw98].

10.2. THE ALGEBRAIC MU-CALCULUS AS A SPECIFICATION LANGUAGE 279[[Z]]N = J(Z), [[ap]]N = J(ap), [[:']]N (s) = 1� [[']]N (s),[['1 _ '2]]N = [['1]]N op_ [['2]]N , [['1 ^ '2]]N = [['1]]N op^ [['2]]N ,[[h�i']]N (s) = Pt2S P(s; �; t) � [[']]N (t),[[[�]']]N (s) = 1�Pt2S P(s; �; t) � (1� [[']]N (t)),[[lfp Z [']]]N = least �xed point of (S ! [0; 1])! (S ! [0; 1]), f 7! [[']]N [Z:=f],[[gfp Z [']]]N = greatest �xed point of (S ! [0; 1])! (S ! [0; 1]), f 7! [[']]N [Z:=f].Figure 10.6: Semantics of the probabilistic mu-calculus �a la [HuKw97]modal mu-calculus with the Fuzzy interpretations of [HuKw97, HuKw98] to the algebraicmu-calculus. For each formula ', we de�ne an 1-ary algebraic term term' by structuralinduction. The atomic propositions ap are viewed as 1-ary function symbols. For eachaction �, we use a binary function symbols P�. Intuitively, P�(s; t) stands for the prob-ability for s to move to t via an �-labelled transition, i.e. P� represents the functionS � S ! [0; 1], (s; t) 7! P(s; �; t). The variables Z of the positive modal mu-calculus areviewed as 1-ary term variables. We suppose that op_, op^ 2 Op and de�ne termZ = Z,termap = ap, term:' = 1� term' andterm'1_'2 = �s[term'1(s) op_ term'2(s)],term'1^'2 = �s[term'1(s) op^ term'2(s)],termh�i' = �s [Pt [P�(s; t) � term'(t)]],term[�]' = �s [1�Pt [P�(s; t) � (1� term'(t))]],termlfp Z ['] = lim Z [term' " �s[0]], termgfp Z ['] = lim Z [term' " �s[1]],Given a model N = (S; J) where S = (S;Act ;P), we de�ne a modelM = (S; I) for thealgebraic mu-calculus as follows. For each variable Z, we de�ne I(Z) = J(Z); similarly,I(ap) = J(ap) for all atomic propositions ap. For the binary function symbols P�,we de�ne I(P�)(s; t) = P(s; �; t). By structural induction on ' it can be shown that[[']]N = [[term']]M. Here, we assume that ' is a formula of alternating depth � 1.10.2.3 The logic PCTLIn Section 10.4 (page 295 �) we describe how the MTBDD-based algorithm to evaluatethe expressions and terms of the algebraic mu-calculus (presented in Section 10.3, page285 �) can be applied to obtain symbolic veri�cation methods for probabilistic systems.Thus, the method described in Section 10.4 focusses on a �xed data structure (namelyMTBDDs) for representing probabilistic systems. Here, we explain how { from a purelymathematical point of view { PCTL formulas (with the interpretations over fully prob-abilistic and concurrent probabilistic systems) can be reformulated as boolean terms.Hence, any method that automatically evaluates the expressions and terms of the alge-braic mu-calculus, can be used as basis for a model checker for PCTL, independent of thechosen data structure of an implementation.

280 CHAPTER 10. SYMBOLIC MODEL CHECKINGRecall the syntax and semantics of PCTL that is explained in Chapter 9 (page 212 �).In the concurrent case, we shrink our attention to strati�ed systems (see De�nition 3.2.3,page 39) and consider the standard interpretation j= �a la [BidAl95] and the satisfactionrelation j=fair that involves fairness with respect to the non-deterministic choices.We now explain how any PCTL formula � can be translated into an \equivalent" booleanterm bterm�. For this, we use the following function symbols. For each atomic propositiona 2 AP , we use an 1-ary boolean function symbol Sata that represents the (characteristicfunction of the) set Sat(a) of states where a holds. Moreover, we use a binary termvariable P that stands for the transition probability matrix of a fully probabilistic systemor a strati�ed system. In addition, in the concurrent (strati�ed) case, we assume an 1-aryboolean function symbol Sprob that stands for the (characteristic function of the) set ofprobabilistic states.The boolean terms bterm� are de�ned by structural induction. We de�ne btermtt =�s[1], bterma = Sata and, for formulas whose outermost operator is : or ^,bterm:� = �s [:bterm�(s)], bterm�1^�2 = �s [bterm�1(s) ^ bterm�2(s)].The de�nition of the boolean terms for formulas built from the probabilistic operatorProb./p depends on whether we assume an interpretation over fully probabilistic or strat-i�ed systems. In what follows, we brie
y write lfp Z[: : :] rather than lim Z [: : : " �s[0]]and use expressions of the form if bexpr then expr1 else expr2 instead of bexpr � expr1+ (1� bexpr) � expr2.Fully probabilistic case: For formulas whose outermost operator is the probabilisticoperator Prob./p we de�ne btermProb./p(') = �s[term'(s) ./ p] where the algebraic termsterm' for the path formulas are de�ned as follows.termX� = �s [Pt [P(s; t) � bterm�(t)]]term�1U�k�2 = iterate Z h �s[expr] "k �s[0] iterm�1U�2 = lfp Z [�s[expr]]with expr = if bterm�2(s) then 1 else bterm�1(s) � Xt [P(s; t) � Z(t)]! :Let S = (S;P;AP ;L) be a proposition-labelled fully probabilistic system. We de�neM = (S; I) where I(P) = P and I(Sata)(s) = 1 if a 2 L(s), I(Sata)(s) = 0 otherwise.Then, [[bterm�]]M is the characteristic function of Sat(�) = fs 2 S : s j= �g while[[term']]M agrees with the function S ! [0; 1], s 7! ps(�1U�2) whereps(�1U�2) = Probf� 2 Path ful (s) : � j= �1U�2g:This can be seen as follows. Theorem 3.1.6 (page 36) yields that the function S ! [0; 1],s 7! ps(�1U�2), is the least �xed point of the operator F : (S ! [0; 1]) ! (S ![0; 1]) which is given by: F (f)(s) = 1 if s j= �2, F (f)(s) = 0 if s 6j= �1 _ �2 andF (f)(s) = Pt2S1[S2 P(s; t) � f(t) if s j= �1 ^ :�2. Using structural induction and

10.2. THE ALGEBRAIC MU-CALCULUS AS A SPECIFICATION LANGUAGE 281Theorem 10.1.27 (page 274) we obtain that, for all states s, s j= � i� [[bterm�]]M(s) = 1and ps(') = [[term']]M(s).22 Thus,term�1U�2 = lfp Z[�s[expr]] and [[term�1U�2]]M(s) = lfp(F)(s) = ps(�1U�2):Concurrent case: Depending on the comparison operator ./ and depending on thesatisfaction relation we need the minimal or maximal probabilities under all (or under allfair) adversaries. For both satisfaction relations j= and j=fair , the boolean terms for theformulas involving the probability operator Probvp are de�ned as follows.btermProbvp(') = �s h termmax' (s) v p iwhere v 2 f<;�g. For the path formulas ', termmax' is de�ned as follows.termmaxX� = �s [exprmaxX�] where exprmaxX� isif Sprob(s) then Xt [P(s; t) � bterm�(t)] else maxt [P(s; t) � bterm�(t)]termmax�1U�k�2 = iterate Z h �s h exprmax�1U�2 i "k �s[0] i,termmax�1U�2 = lfp Z h �s h exprmax�1U�2 i iThe expression exprmax�1U�2 is de�ned as follows.exprmax�1U�2 = if bterm�2(s)then 1 else bterm�1(s) � expr 0where expr 0 = if Sprob(s) then Xt [P(s; t) � Z(t)] else maxt [P(s; t) � Z(t)]:Now we consider formulas of the form Probwp(') where w 2 f>;�g. If the outermostoperator of ' is the next step operator or the bounded until operator then the de�nitionof the corresponding boolean term is the same for the interpretations j= and j=fair . For' 2 fX�;�1U�k�2g, we de�ne btermProbwp(') = �s h termmin' (s) w p i where thede�nition of the algebraic terms termmin' is similar to the de�nition of termmax' .termminX� = �s [exprminX�] where exprminX� isif Sprob(s) then Xt [P(s; t) � bterm�(t)] else mint [P(s; t) � bterm�(t)]termmin�1U�k�2 = iterate Z h �s h exprmin�1U�2 i "k �s[0] iwith exprmin�1U�2 = if bterm�2(s)then 1 else bterm�1(s) � expr 00 where expr 00 isif Sprob(s) then Xt [P(s; t) � Z(t)] else mint [P(s; t) � Z(t)]:22Note that { with P 2 WFct2(2) { the terms term' are terms of the algebraic [0; 1]-mu-calculusthat are formally divergence free; the term variable Z is formally monotone and formally continuous in�s[expr].

282 CHAPTER 10. SYMBOLIC MODEL CHECKINGNext we consider the until operator, i.e. formulas of the form Probwp(�1U�2). We de�nebtermProbwp(�1U�2) = �s h termmin�1U�2(s) w p iwhere the de�nition of termmin�1U�2 depends on whether we deal with j= or j=fair . Dealingwith the standard interpretation j=, we de�netermmin�1U�2 = lfp Z h �s h exprmin�1U�2 i iwhere exprmin�1U�2 is as in the case of the bounded until operator. Dealing with the satis-faction relation j=fair we use the result of Theorem 9.3.23 (page 227) stating thats j=fair Probwp(�1U�2) i� 1� pmaxs (a?U:a+) w pwhere a+ and a? are fresh atomic propositions representing the sets S+(�1;�2) andS?(�1;�2) = Sat(�1) n S+(�1;�2). Recall that S+(�1;�2) is the set of all states s 2 Sthat can reach a �2-state via a path through �1-states (Notation 9.3.11, page 223). Thus,S+(�1;�2) = lfp(F) where the monotonic operator F : 2S ! 2S is given byF (Z) = Sat(�2) [fs 2 Sat(�1) : 9t 2 S [(P(s; t) > 0) ^ t 2 Z] g :The de�nition of the term termmin�1U�2 with respect to the satisfaction relation j=fair is asfollows. We put termmin�1U�2 = �s [1� termmaxa?U:a+(s)] :The algebraic term termmaxa?U:a+ is de�ned as described above with the only di�erence thatwe deal with the boolean terms bterm? = �s hbterm�1(s) ^ :bterm+(s)i and bterm+rather than the function symbols Sata? and Sata+. Here, bterm+ is given bylfp Z [�s [bterm�2(s) _ (bterm�1(s) ^ 9t [(P(s; t) > 0) ^ Z(t)])]] :As in the fully probabilistic case (and using Theorem 10.1.27 (page 274), Theorem 3.2.11(page 43) and the results of Section 9.3) we obtain the following. Let S = (S;P;AP ;L)be a �nite proposition-labelled strati�ed system. Let M = (S; I) where I(Sata) andI(Sprob) are the boolean-valued functions S ! f0; 1g with I(Sata)(s) = 1 i� a 2 L(s)and I(Sprob)(s) = 1 i� s is a probabilistic state. The interpretation I(P) for the binaryfunction symbol P is given the transition probability function P (de�ned as in Notation3.2.4, page 40); more precisely, we deal withI(P)(s; t) = 8><>: P(s; t) : if s 2 Sprob1 : if s =2 Sprob and s �! t? : otherwise.Then, for all states s 2 S, s j=A � i� [[bterm�]]M(s) = 1 and[[termmin']]M(s) = infA2A Prob n� 2 PathAful(s) : � j=A 'o ;[[termmax']]M(s) = supA2A Prob n� 2 PathAful(s) : � j=A 'o

10.2. THE ALGEBRAIC MU-CALCULUS AS A SPECIFICATION LANGUAGE 283where A stands for Adv or Adv fair (depending on whether we deal with j= or j=fair).23 Ina similar way, we can deal with the satisfaction relations j=sfair (where strict fairness issupposed) or j=Wfair (where fairness in the W -states is supposed). For the de�nition of theboolean terms btermProb./p(�1U�2) for formulas involving the unbounded until operator, onehas to describe the set Tmax (�1;�2) (see Notation 9.3.14, page 224) resp. the set S0W (seeNotation 9.3.31, page 229) by a boolean term. In both cases, the corresponding booleanterm is of the form lfp Z[bterm]. For instance, for the set Tmax (�1;�2), the de�nition ofbterm is given by�s [:bterm+(s) _ bterm�2(s) _ (Sprob(s) ^ 8t [(P(s; t) > 0)! Z(t)])_ (:Sprob(s) ^ 9t [(P(s; t) > 0) ^ (termmax�1U�2(s) = termmax�1U�2(t))])]:10.2.4 Word level CTLWord Level CTL [CCH+96, CKZ96, Zhao96] is an extension of CTL to reason aboutproperties involving the relationships among data words. Such properties are needed forthe veri�cation of arithmetic circuits. Word Level CTL distinguishes between severaltypes of formulas: atomic formulas �AF that are built from atomic propositions andequations or inequalities for expressions, static formulas �SF that are built from atomicformulas and the boolean connectives ^ and : and temporal formulas �TF that are givenby static formulas, the boolean connectives and the CTL path quanti�ers combined withthe temporal operators X and U .�AF ::= a ��� 8(e1 ./ e2) ��� 9(e1 ./ e2)�SF ::= �AF ��� �SF1 ^ �SF2 ��� :�SF�TF ::= �SF ��� �TF1 ^ �TF2 ��� :�TF ��� 8X�TF ��� 9(�TF1 U�TF2) ��� 92�TFwhere a 2 AP and ./ 2 f=; <;�; >;�g. The words are tuples of propositional formulas,i.e. they are of the form word = h�PF1 ; : : : ;�PFn i where the propositional formulas �PFare built from the atomic propositions a 2 AP and the boolen connectives ^ and :. Theexpressions are given by:e ::= const ��� word ��� next(word) ��� e1 op e2 ��� if �SF then e1 else e2Formulas, expressions and words are interpreted over �nite proposition-labelled transitionsystems (S;R;AP ;L) where S is a set of states, R � S � S the transition relation andL : S ! 2AP the labelling function for the states by atomic propositions. Propositional,atomic, static and temporal formulas are interpreted by sets of the states:[[a]] = fs 2 S : a 2 L(s)g, [[�1 ^ �2]] = [[�1]] \ [[�2]], [[:�]] = S n [[�]],[[8(e1 ./ e2)]] = f s 2 S : 8s0 2 S [R(s; s0) ! [[e1]](s; s0) ./ [[e2]](s; s0)] g,[[9(e1 ./ e2)]] = f s 2 S : 9s0 2 S [R(s; s0) ! [[e1]](s; s0) ./ [[e2]](s; s0)] g,23Here, for the extension of multiplication *, the minimum/maximum operators and the comparisonoperators op./ on the extended reals, we assume that, if q 2 IR and ; 6= Q � IR then q � ? = ? � q = ?,qop./? = ?op./q = 1, minQ = min(Q n f�g), maxQ = max(Q n f�g) and minf?g = maxf?g = ?.

284 CHAPTER 10. SYMBOLIC MODEL CHECKING[[8X�TF]] = f s 2 S : 8s0 2 S [R(s; s0)! s0 2 [[�TF]]] g[[9(�TF1 U�TF2)]] = f s 2 S : 9k � 0 9s0; : : : ; sk 2 S [(s0 = s) ,^ �sk 2 [[�TF2]]� ^ V0�i<k �R(si; si+1) ^ (si 2 [[�TF1]])� i o,[[92�TF]] = f s 2 S : 9s0; s1; s2 : : : 2 S [(s0 = s)^ Vi�0(R(si; si+1) ^ (si 2 [[�TF]]) i o.The interpretation [[word]] : S ! IN of a word is given by:[[h�PF1 ; : : : ;�PFn i]](s) = nXi=0 [[�PFi]](s) � 2iwhere the set [[�PFi]] is identi�ed with their characteristic function S ! f0; 1g. Theinterpretation [[e]] : S � S ! IN of an expression e is given by:[[const]](s; s0) = const , [[e1 op e2]](s; s0) = [[e1]](s; s0) op [[e2]](s; s0),[[word]](s; s0) = [[word]](s), [[next(word)]](s; s0) = [[word]](s0)and [[if �SF then e1 else e2]](s; s0) = ([[e1]](s; s0) : if s 2 [[�SF]][[e2]](s; s0) : otherwise.We associate with each formula � of the word level CTL an 1-ary boolean term bterm�while the words and the expressions are associated with algebraic terms termW� and termE� .The terms for the expressions are binary while the terms for the words have the arity 1.We use a binary function symbol R (that represents the transition relationR), 1-ary termvariables Sata for all atomic propositions a (that represent the sets [[a]]) and individualvariables s and s0. The 1-ary algebraic terms for the words are given by:termWh�PF1 ;:::;�PFn i = �s 24 X1�i�n bterm�PFi (s) � 2i 35The binary terms for the expressions are given by termEconst = �s; s0[const] andtermEword = �s; s0[termWword (s)], termEnext(word) = �s; s0 h termWword (s0) itermEe1 op e2 = �s; s0 h termEe1(s; s0) op termEe2(s; s0) itermEif �SF then e1 else e2= �s; s0 h if bterm�SF (s) then termEe1(s; s0) else termEe2(s; s0) iThe boolean terms for formulas built from the boolean connectives are clear:bterma = Sata, bterm:� = �s[:bterm�(s)], bterm�1^�2 = �s[bterm�1(s)^ bterm�2(s)]For the atomic formulas we de�ne:bterm8(e1./e2) = �s h 8s0 h R(s; s0) ! � termEe1(s; s0) ./ termEe2(s; s0) � i i ;bterm9(e1./e2) = �s h 9s0 h R(s; s0) ! � termEe1(s; s0) ./ termEe2(s; s0) � i i :For the temporal operators we use the following boolean terms:

10.3. A \COMPILER" FOR THE ALGEBRAIC MU-CALCULUS 285bterm8X�TF = �s [8s0 [R(s; s0) ! bterm�TF (s0)]]bterm9(�TF1 U�TF2)= lfp Z h �s h bterm�TF2 (s) _ � bterm�TF1 (s) ^ 9s0 [R(s; s0) ^ Z(s0)] � i ibterm92�TF = lfp Z [�s [bterm�TF (s) ^ (9s0 [R(s; s0) ^ Z(s0)])]]The connection between the word level CTL formulas and the associated algebraic termsis as follows. LetM = (S; I) where I(R) = R andI(Sata)(s) = (1 : if a 2 L(s)0 : otherwise.Using structural induction and Theorem 10.2.1 (page 276) we obtain: [[termWword]]M =[[word]], [[termEe]]M = [[e]] and[[bterm�]]M(s) = (1 : if s 2 [[�]]0 : otherwisefor all formulas �, words word and expressions e.10.3 A \compiler" for the algebraic mu-calculusThe algebraic mu-calculus can be viewed as a language for manipulating real-valued func-tions. Any closed algebraic term term yields an operator (f1; : : : ; fk) that takes theinterpretations fi = I(fcti) for the function symbols as its input and describes how tocombine these functions f1; : : : ; fk via arithmetic operators and iteration. The semantics[[term]]M (where M = (D; I)) stands for the composed function. For instance, in theexample for solving linear equation systems of the type z = q +A � z with the \naive"method (Example 10.1.9, page 266), the termterm = lim Z 24 �i 24 q(i) + Xj [A(i; j) � Z(j)] 35 " z0 35can be viewed as the operator that takes as its arguments the functions I(A) for thematrix A, I(q) for the vector q and I(z0) for the starting vector z0 and \returns" thefunction that represents the unique solution z.In this section, we turn to the question how the terms (and expressions) can be evaluatedautomatically and present an algorithm that takes as its input an algebraic term (orexpression) and a modelM = (D; I) and returns the semantics [[: : :]]M of that term (orexpression) with respect toM. In some sense, this algorithm can be viewed as a compilerfor the algebraic mu-calculus. Such an algorithm requires an adequate data structure forthe functions Dn ! IR. Of course, \adequacy" of the chosen data structure dependson the concrete application. In that thesis where we concentrate on the veri�cation ofprobabilistic systems we shrink our attention to the use of MTBDDs as chosen datastructure since MTBDDs are known to be e�cient for representing probabilistic systems

286 CHAPTER 10. SYMBOLIC MODEL CHECKING[HMP+94, HarG98].24 Clearly, in other applications, the use of MTBDDs might be note�cient. For instance, in Section 10.2.4 (page 283 �), we saw that the algebraic mu-calculus can also serve as speci�cation language for arithmetic circuits. In that case, itis known that the use of MTBDDs is not e�cient (the resulting MTBDDs might haveexponential size) and the use of other decision diagrams like HDDs is preferable. See[CCH+96, CKZ96, Zhao96].In a �rst step, we introduce the mixed calculus which is a variant of the algebraic mu-calculus that is based on a �xed interpretation for the function symbols. For this, weassume the domain D = f0; 1g of the underlying modelM = (D; I) and a representationof the functions I(fct) : f0; 1gn ! IR for the n-ary function symbols by MTBDDs. Theexpressions and terms of the mixed calculus are interpreted by partial functions fromthe individual variables into the reals. These functions are represented by MTBDDswhose nonterminal vertices are labelled by individual variables.25 For the mixed calculus,we describe an algorithm that takes a term or expression of the mixed calculus as itsinput and generates the corresponding MTBDD. Given a model M = (D; I) for thealgebraic mu-calculus, we use an encoding of the domain D in f0; 1gk and transform thealgebraic expressions and terms into \equivalent" expressions and terms of the mixedcalculus. The MTBDD for that expression or term of the mixed calculus can be viewed asa representation for the semantics [[: : :]]M with respect toM.26 Thus, the transformationalgorithm from the algebraic to the mixed calculus and the algorithm for computingthe MTBDDs for the expressions and terms of the mixed calculus can be composed toa method that automatically computes the semantics of the algebraic expressions andterms. On the other hand, the mixed calculus in its own can be viewed as a languagefor manipulating MTBDDs where our algorithm acts as a compiler that automaticallygenerates the MTBDD described by an expression or term of the mixed calculus.10.3.1 The mixed calculusWe present the syntax and semantics of the mixed calculus. In essential, the syntax ofthe mixed calculus arises from the syntax of the algebraic mu-calculus where the functionsymbols are replaced by MTBDDs. The expressions of the mixed calculus are interpretedby partial functions from the individual variables into the reals; the semantics of the n-aryterms are partial functions that take as their arguments the individual variables and ann-bit vector.Syntax of the mixed calculus: We �x sets IndVar of individual variables, TermVar ofterm variables where each term variable Z is associated with an arity (a natural number� 1) and a set f#1; #2; : : :g of dummy variables. As before, Op denotes a set of totalbinary operators on the extended reals. The syntax of mixed expressions and n-ary termsis given by the production system shown in Figure 10.7 on page 287. Here, q 2 IR and24The reader not familiar with MTBDDs should recall the de�nition of MTBDDs which is presentedin Section 12.3 (page 315 �).25To be precisely, the n-ary terms also take a n-bit vector as input. Thus, the MTBDDs for them alsocontain nonterminal vertices labelled by other variables.26For this, we surpress the interpretation I(z) for the individual variables of the algebraic mu-calculusand consider [[expr]]M as a function (IndVar ! D) ! IR and [[term]]M as a function (IndVar ! D) �f0; 1gn ! IR.

10.3. A \COMPILER" FOR THE ALGEBRAIC MU-CALCULUS 287
expr ::= q ��� z ��� expr1 op expr2 ��� term(z1; : : : ; zn) ���Xz [expr] ��� minz [expr] ��� maxz [expr]term ::= Q ��� Z j �z1; : : : ; zn [expr] ��� lim Z [term " term0]iterate Z [term "k term0]Figure 10.7: Syntax of the mixed calculusop 2 Op. Q is a MTBDD over (#1; : : : ; #n). z, z1; : : : ; zn 2 IndVar such that z1; : : : ; zn arepairwise distinct. Z 2 TermVar is an n-ary term variable. Free and bounded occurrencesof individual or term variables in mixed expressions or terms are de�ned in the obviousway. For the expressions term(z1; : : : ; zn), we require that there are no free occurrencesof the individual variables zi in term. A mixed expression or term is called closed i� itdoes not contain free occurrences of individual or term variables. For z = (z1; : : : ; zn),we brie
y write Pz or Pz1;:::;zn rather than Pz1 : : :Pzn. Similarly, minz, maxz or �z havethe obvious meanings. The mixed boolean calculus is de�ned in analogy to the booleanmu-calculus (see page 261).Semantics of the mixed calculus: Intuitively, the mixed expressions and terms areinterpreted by functions with values in the extended reals and whose arguments are theindividual variables. Moreover, the functions for the n-ary mixed terms depend on ann-bit vector (that represents the values of the dummy variables #1; : : : ; #n). Formally,the semantics of the mixed calculus is de�ned with respect to an interpretation J for then-ary term variables by functions f0; 1gn! IR. The semantics[[expr]]J : (IndVar! f0; 1g)! IR; [[term]]J : (IndVar! f0; 1g)� f0; 1gn ! IRof the mixed expressions and terms with respect to J is de�ned by structural induction asshown in Figure 10.8 (page 288). Here, � is a function IndVar! f0; 1g and hb1; : : : ; bni 2f0; 1gn. �[z1 := c1; : : : ; zk := ck] denotes those function IndVar! f0; 1g that agrees with �on all individual variables z 2 IndVarnfz1; : : : ; zkg and returns the value ci for the variablezi.27 The interpretation J [Z := f] is de�ned in the obvious way.10.3.2 Inference from the algebraic to the mixed calculusGiven an expression or term of the algebraic mu-calculus and a model M = (D; I) forthe algebraic mu-calculus, we de�ne an \equivalent" mixed expression or term. Thisinference from the algebraic mu-calculus to the mixed calculus is based on an encodingof the elements of D by k-bit vectors. The individual variables z of the algebraic mu-calculus are replaced by k-tuples (zz1; : : : ; zzk) of individual variables of the mixed calculus.27Here, we assume that z1; : : : ; zk 2 IndVar are pairwise distinct and that c1; : : : ; ck 2 f0; 1g.

288 CHAPTER 10. SYMBOLIC MODEL CHECKING[[q]]J (�) = q [[z]]J (�) = �(z)[[expr1 op expr2]]J (�) = [[expr1]]J (�) op [[expr2]]J (�)[[term(z1; : : : ; zn)]]J (�) = [[term]]J (�; h�(z1); : : : ; �(zn)i)[[Pz[expr]]]J (�) = [[expr]]J (�[z := 0]) + [[expr]]J (�[z := 1])[[minz[expr]]]J (�) = min n [[expr]]J (�[z := 0]); [[expr]]J (�[z := 1]) o[[maxz[expr]]]J (�) = max n [[expr]]J (�[z := 0]); [[expr]]J (�[z := 1]) o[[Q]]J (�; hb1; : : : ; bni) = fQ(b1; : : : ; bn) [[Z]]J = J (Z)[[�z1; : : : ; zn[expr]]]J (�; hb1; : : : ; bni) = [[expr]]J (�[z1 := b1; : : : ; zn := bn])[[lim Z [term " term0]]]J = lim(f0; f1; f2; : : :)[[iterate Z [term "k term0]]]J = fkwhere f0 = [[term0]]J , fi+1 = [[term]]J [Z:=fi].Figure 10.8: Semantics of the mixed calculusWhile the individual variable z of the algebraic mu-calculus is interpreted by an elementI(z) of the domain D, the individual variable zzi of the mixed calculus stands for the i-thcomponent of the bit vector that encodes I(z). Moreover, we represent the interpretationsI(fct) : Dn ! IR for the n-ary function symbols by functions f0; 1gn�k ! IR and replace fctby the corresponding MTBDD. Thus, n-ary algebraic terms are translated into (n �k)-arymixed terms.We �x a modelM = (D; I) for the algebraic mu-calculus and choose an encoding of Din f0; 1gk, i.e. an injection code : D ! f0; 1gk (where k = dlog jDje). For each n-aryfunction symbol fct, we assume a representation of the function I(fct) : Dn ! IR by afunction dI(fct) : f0; 1gn�k ! IR. For instance, we may putdI(fct)(code(d1); : : : ; code(dn)) = I(fct)(d1; : : : ; dn)for all d1; : : : ; dn 2 D. If bi 2 f0; 1gk, i = 1; : : : ; n, such that at least one k-bit tupe biis not of the form code(d) for some d 2 D then we put dI(fct)(b1; : : : ; bn) = ?.28 If fct isan n-ary function symbol in the algebraic mu-calculus then we associate with fct thoseMTBDD Qfct over (#1; : : : ; #n�k) where the induced function fQfct is dI(fct). Let IndVar bethe individual variables used in the algebraic mu-calculus. Then, in the mixed calculus28Note that also other representations of I(fct) by a function f0; 1gn�k ! IR are possible. E.g. if n = 2then dI(fct) might be de�ned by dI(fct)(b1; c1; : : : ; bk; ck) = f(d1; d2) where hb1; : : : ; bki = code(d1) andhc1; : : : ; cki = code(d2).

10.3. A \COMPILER" FOR THE ALGEBRAIC MU-CALCULUS 289we use the individual variablesIndVar = fzzi : z 2 IndVar; i = 1; : : : ; kg:Each n-ary term variable Z of the algebraic mu-calculus is viewed as (n � k)-ary termvariable of the mixed calculus. I.e., in the mixed calculus, we deal with set TermVar =TermVar of term variables where the arity of each term variable of the algebraic mu-calculus is multiplied by the factor k. For each algebraic expression expr (or term term),let mixed(expr) (resp. mixed(term)) be those mixed expression (or term) that results fromexpr (or term) by replacing� each individual variable z 2 IndVar by the individual variables zz1; : : : ; zzk,29� each function symbol fct by the MTBDD Qfct.We get the \equivalence" of the algebraic expressions/terms and the resulting mixedexpressions/terms in the following sense. Let � : IndVar! f0; 1g be given by�(zzi) = i-th component of code(I(z)).The interpretation J for the term variables of the mixed calculus is given by J (Z) =dI(Z). Here, as for the interpretation of the function variables, we assume a suitablerepresentation of the function I(Z) : Dn ! IR by a function dI(Z) : f0; 1gn�k ! IR. Then,[[expr]]M = [[mixed(expr)]]J (�)for any algebraic expression expr. For any n-ary algebraic term term, we have[[term]]M(d1; : : : ; dn) = [[mixed(term)]]J (�; hcode(d1); : : : ; code(dn)i) :It is known that the e�ciency of the MTBDD-based approach crucially depends on thechosen variable ordering. Having obtained a MTBDD representation for f = I(fct) :Dn ! IR (resp. the associated function bf : f0; 1gn�k ! IR), well-known techniques(e.g. Rudell's sifting algorithm [Rude93]) can be applied to improve the representation.Changing the variable ordering in the MTBDD corresponds to a permutation of the ar-guments of the function bf : f0; 1gn�k ! IR. In the �nal MTBDD, the variables have to berenamed resulting in a MTBDD over (#1; : : : ; #n�k).Example 10.3.1 In Example 10.1.9 (page 266) we presented an algebraic term that de-scribes the \naive" iteration for solving linear equation systems of the form z = q+A �z.The reformulation of that algebraic term as a mixed term is obtained as follows. Forsimplicity, we assume that A is a n � n-matrix where n = 2k. We use an encoding forthe indices of the rows and columns of the matrix A by k-bit vectors and describe Aby a function f0; 1g2k ! IR. Let A be the MTBDD over (#1; : : : ; #2k) for that func-tion. Similarly, the vectors q, z0 2 IRn can be described by functions f0; 1gk ! IR andrepresented by MTBDDs q, z0 over (#1; : : : ; #k). The size of the so obtained MTBDDrepresentations of A, q and z0 depends on the way in which we represent A, q and z0by functions from bit vectors into the reals. Often the standard encoding of integers29The replacement of an individual variable z in a quanti�er requires multiple use of that quanti�er inthe mixed calculus, e.g. the summation quanti�erPz in the algebraic mu-calculus has to be replaced byPzz1 : : :Pzzk .

290 CHAPTER 10. SYMBOLIC MODEL CHECKINGi 2 f1; : : : ; ng by k-bit vectors hb1; : : : ; bki 2 f0; 1gk ordered most signi�cant to least sig-ni�cant (i.e. i = 1 +Pkl=1 bl � 2k�l) and an interleaving of the encodings for the rows andcolumns of quadratic matrices is used which leads to a representation of A by a functionf : f0; 1g2k ! IR; f(b1; c1; : : : ; bk; ck) = A(i; j)where hb1; : : : ; bki is the standard encoding of i (the index for the rows) and hc1; : : : ; ckithe standard encoding for j (the index for the columns).30 The vectors q and z0 might berepresented by functions f0; 1gk ! IR where hb1; : : : ; bki is mapped to the i-th componentof q resp. z0 (if hb1; : : : ; bki is the standard encoding of i). Using these MTBDD represen-tations of A, q and z0, the algebraic term term of Example 10.1.9 (page 266) correspondsto the mixed term lim Z [term " z0] whereterm = �i1; : : : ; ik 24 q(i1; : : : ; ik) + Xj1;:::;jk [A(i1; j1; : : : ; ik; jk) � Z(j1; : : : ; jk)] 35 :Note that other representations of A, q, z0 by functions from bit vectors to the reals leadto di�erent MTBDD representations, in which case the individual variables il, jh in theabove mixed term have to be permutated. For instance, if we represent A by the functionf 0 : f0; 1g2k ! IR,f 0(b1; : : : ; bk; c1; : : : ; ck) = A(i; j) where i = 1 + kXl=1 bl � 2k�l; j = 1 + kXl=1 cl � 2k�l(where the �rst k arguments of f 0 stand for the row while the last k arguments stand forthe column) then we have to deal with the mixed term lim Z [term0 " z0] where term0is the mixed term�i1; : : : ; ik 24 q(i1; : : : ; ik) + Xj1;:::;jk [A0(i1; : : : ; ik; j1; : : : ; jk) � Z(j1; : : : ; jk)] 35 :Here, q and z0 are as before. A0 is the MTBDD over (#1; : : : ; #2k) for the function f 0 ofabove.10.3.3 Computing the semantics of the mixed calculusWe present an algorithm to compute the semantics [[: : :]]J of the mixed expressions andterms where we use MTBDDs as data structure for the functions associated with themixed expressions and terms.31 In essential, the algorithm works similar to the algorithmof [BCM+90] to compute the BDD representations for the formulas and terms of the rela-tional mu-calculus. The individual variables and the dummy variables serve as variables(i.e. as labellings for the nonterminal nodes) in the MTBDDs.30This convention imposes a recursive structure on the matrix from which e�cient recursive algorithmsfor all standard matrix operations are derived [CFM+93].31Clearly, the correctness of our method is up to the errors that arise from the approximations for thelimit operator. An implementation of our method might su�er from rounding errors. Thus, the resultingMTBDD for a mixed expression or term can be viewed as an approximation for the function [[: : :]]J .

10.3. A \COMPILER" FOR THE ALGEBRAIC MU-CALCULUS 291In what follows, we assume that IndVar is the set of individual variables used in the mixedcalculus. We �x a total ordering < on IndVar that we extend to a total ordering (alsocalled <) on IndVar [f#1; #2; : : :g where we de�ne z < #1 < #2 < : : : for all z 2 IndVar.Then, [[expr]]J is represented by a MTBDD over hIndVar; <i while the functions [[term]]Jfor the n-ary mixed terms are represented by MTBDDs over hIndVar [f#1; : : : ; #ng; <i.Since the variables in the MTBDDs are ordered, expressions of the form term(z1; : : : ; zn)might cause problems, namely when it is not the case that z1 < : : : < zn. Given theMTBDD for term, the replacement of the dummy variable #i by the individual vari-able zi yields a MTBDD that represents the function associated with the expressionterm(z1; : : : ; zn) but the variable ordering in the resulting MTBDD is a new ordering <0with z1 <0 : : : <0 zn. On the other hand, the idea not to �x a variable ordering for theMTBDDs leads to the problem that the operators for composing two MTBDDs via anarithmetic operation (that we need to compute the MTBDDs for expressions of the formexpr1 op expr2) would be much more expensive; we would have to adjust the variable or-derings of the two MTBDDs. Similar problems occur with terms built by �-abstraction.For this reason, we �x a total ordering < on IndVar and shrink our attention to well-formedterms and expressions.De�nition 10.3.2 [Well-formed mixed expressions and term] A mixed expressionand term is called well-formed (with respect to the �xed ordering <) i�,� for each subexpression of the form term(z1; : : : ; zn),� for each subterm of the form �z1; : : : ; zn[expr],we have z1 < : : : < zn.Any mixed expression or term can be rewritten as a well-formed mixed expression orterm. For this, we replace� each subexpression term(z1; : : : ; zn) by P�1;:::;�n [term(�1; : : : ; �n) � bexpr]� each subterm �z1; : : : ; zn[expr] by ��1; : : : ; �n h Pz1;:::;zn [expr � bexpr] iwhere bexpr = ^1�i�n (�i $ zi):Here, �1; : : : ; �n are auxiliary individual variables ordered by �1 < : : : < �n. For instance,if z2 < z1 then term(z1; z2) is replaced byX�1;�2 [term(�1; �2) � bexpr]where bexpr is (z1 $ �1) ^ (z2 $ �2). The semantics of the mixed expressions/terms andthe so obtained well-formed expressions/terms are the same.32Computing the MTBDDs for the well-formed mixed expressions and terms: Inwhat follows, we �x an interpretation J for the term variables. More precisely, we assume32Note that the fresh individual variables �1; �2; : : : does not occur free in the resulting expres-sions/terms. Hence, the semantics for the resulting well-formed expressions (or n-ary terms) can beviewed as a function (IndVar � f0; 1g)! IR (or (IndVar � f0; 1g)� f0; 1gn ! IR) rather than a function(IndVar [f�1; �2; : : :g ! f0; 1g)! IR (or (IndVar [f�1; �2; : : :g ! f0; 1g)� f0; 1gn ! IR).

292 CHAPTER 10. SYMBOLIC MODEL CHECKINGMtbddJ [[q]] denotes the MTBDD that consists of a terminal vertex labelled by q.MtbddJ [[z]] denotes the BDD 0 1#1�
 �	0 1���	 @@@RMtbddJ [[expr1 op expr2]] = Apply �MtbddJ [[expr1]];MtbddJ [[expr2]]; op�MtbddJ [[term(z1; : : : ; zn)]] = MtbddJ [[term]]f#1 z1; : : : ; #n zngMtbddJ [[Pz [expr]]] = Apply � MtbddJ [[expr]]jz=0; MtbddJ [[expr]]jz=1; + �MtbddJ [[minz [expr]]] = Apply � MtbddJ [[expr]]jz=0; MtbddJ [[expr]]jz=1; opmin �MtbddJ [[maxz [expr]]] = Apply � MtbddJ [[expr]]jz=0; MtbddJ [[expr]]jz=1; opmax �MtbddJ [[Z]] = J (Z)MtbddJ [[�z1; : : : ; zn[expr]]] = MtbddJ [[expr]]fz1 #1; : : : ; zn #ngMtbddJ [[lim Z[term " term0]]] denotes the MTBDD that is returned byIterate�(imax ;Z; term; term0).MtbddJ [[iterate Z[term "k term0]]] denotes the MTBDD that is returned byIterate(k;Z; term; term0).Figure 10.9: Computing the MTBDDs for the mixed expressions and termsthat, for each n-ary term variable Z, the function J (Z) : f0; 1gn ! IR is represented bya MTBDD (also called J (Z)) over (#1; : : : ; #n). Each well-formed mixed expression expris associated with a MTBDD MtbddJ [[expr]] over hIndVar; <i, each n-ary well-formedalgebraic term term with a MTBDD MtbddJ [[term]] over hIndVar [f#1; : : : ; #ng; <i.We compute MtbddJ [[: : :]] for well-formed algebraic expressions and terms by struc-tural induction as shown in Figure 10.9 on page 292. Here, we use the operators of[Brya86, CFM+93]; see Section 12.3 (page 317). For the computation of the MTBDDfor expr1 op expr2 we have to combine the MTBDDs for expr1 and expr2 via the binaryoperator op. For this, we use the well-known Apply-operator that combines two MTB-DDs via an arbitrary binary operator (see page 317). The MTBDD for term(z1; : : : ; zn)is obtained from the MTBDD for term by renaming the dummy variables #1; : : : ; #n intoz1; : : : ; zn. This renaming respects the variable ordering < as we have z1 < : : : < zn.�-abstraction requires the converse operation where individual variables are replaced bydummy variables. For the expressions built e.g. by the quanti�erPz[expr], we have to sumup the values for expr when z ranges over all possible values of the underlying domain. In

10.3. A \COMPILER" FOR THE ALGEBRAIC MU-CALCULUS 293i := 0; Q0 := MtbddJ [[term0]];Repeati := i+ 1; Qi := MtbddJ [Z:=Qi�1][[term]];B := MtbddJ [[�z[jQi�1(z)�Qi(z)j < �]]]until i = imax or B = �z[1];Q := MtbddJ [[�z [(1�B(z)) � ? + B(z) �Qi(z)]]];Return Q.Figure 10.10: The procedure Iterate�(imax ;Z; term; term0)our case, we just have the values 0 and 1. Thus, we �rst compute the MTBDD for expr.Then, by removing the z-labelled vertices in that MTBDD, we obtain the restrictionsto the cases where z = 0 and z = 1. This yields the MTBDDs MtbddJ [[expr]]jz=0 andMtbddJ [[expr]]jz=1 for the functions (IndVar! f0; 1g)! IR,� 7! [[expr]]J (�[z := 0]) and � 7! [[expr]]J (�[z := 1]).Finally, we combine these MTBDDs via the operator Apply(: : : ;+). Similar ideasare used for the quanti�ers minz and maxz. The only di�erence is that in the laststep the MTBDDs MtbddJ [[expr]]jz=0 and MtbddJ [[expr]]jz=1 have to be combined viaApply(: : : ; opmin) and Apply(: : : ; opmax) respectively.The limit operator: To approximate the semantics of lim Z [term " term0] we useiteration on MTBDDs where we stop latest after a �xed number of iteration steps. Letn be the arity of Z (hence, n is at the same time the arity of term and term0). Letz = (z1; : : : ; zn) be an n-tuple of individual variables with z1 < : : : < zn. We �x somesome \su�ciently small" value � > 0 and some natural number imax (the maximal numberof iterations). The procedure Iterate�(imax ;Z; term; term0) (shown in Figure 10.10 onpage 293) successively computes the MTBDDs Q0;Q1; : : : whereQ0 =MtbddJ [[term0]], Qi =MtbddJ [Z:=Qi�1][[term]], i = 1; 2; : : :.Here, we suppose an extension of + and � to operators on the extended reals where? � q = q � ? = ? for all q 2 IR n f0g, 0 � ? = ? � 0 = 0 and ? + q = q +? = ? for allq 2 IR. The iteration terminates if the maximal di�erence between the function valuesof fQi and fQi�1 is less than �, i.e. if jfQi�1(b) � fQi(b)j < � for all b 2 f0; 1gn. If thiscondition is not satis�ed after imax iterations then,� for those bit vectors b where jfQi�1(b) � fQi(b)j � �: convergence of the sequence(fQi(b))i�0 is not \detected" and we assume that the limit operator on the extendedreals returns ?,� for those bit vectors b where jfQi�1(b) � fQi(b)j < �: we assume convergence of thesequence (fQi(b))i�0 and return fQimax (b) as an approximation for limfQi(b).Note that the BDD B represents the (characteristic function of the) setB = n b 2 f0; 1gn : jfQi�1(b)� fQi(b)j < �o :

294 CHAPTER 10. SYMBOLIC MODEL CHECKINGThus, the condition \B = �z[1]" is ful�lled i� B = f0; 1gn i� jfQi�1(b)� fQi(b)j < � forall b 2 f0; 1gn.The bounded iteration operator: The procedure Iterate(k;Z; term; term0) (shown inFigure 10.11 on page 294) that we use to compute the semantics of the bounded iterationoperator is almost the same as Iterate�(�); the only di�erence being that we do not careabout convergence and just halt after exactly k iteration steps.i := 0; Q0 := MtbddJ [[term0]];Repeati := i+ 1; Qi := MtbddJ [Z:=Qi�1][[term]];until i = k;Return Qk.Figure 10.11: The procedure Iterate(k;Z; term; term0)The mixed calculus as a language for MTBDDs: The algorithm of Figure 10.9(page 292) yields the theoretical foundations for a tool that takes as its input certainMTBDDs Q1; : : : ;Ql and a closed mixed term term built from these MTBDDs and thatautomatically generates the MTBDD representation of (the semantics of) that term. Inthis sense, the mixed calculus can be viewed as a language for manipulating MTBDDswhere the closed mixed terms just describe which operations should be performed onthe MTBDDs that occur in that term. Thus, the closed mixed terms can be viewed asprocedures whose parameters are the MTBDDs occurring in that term and that outputsthe MTBDD associated with that term.Applications: In Example 10.1.9 (page 266) we presented an algebraic term that de-scribes the \naive" iteration for solving linear equation systems of the form z = q+A �z.The corresponding mixed term (see Example 10.3.1, page 289) stands for a procedurethat computes the MTBDD for (an approximation of) the solution z. Similarly, the cor-responding mixed terms of the algebraic terms presented in Example 10.1.6 (page 264)and Example 10.1.10 (page 266) yield MTBDD-based methods for computing shortestpaths or eigenvectors.33 In Section 10.2, we saw that the algebraic mu-calculus subsumesa wide range of temporal and modal logics that can serve as speci�cation languages forparallel systems. Our MTBDD-based algorithm applied to the mixed terms obtained fromthe algebraic terms term' for a formula ' (or boolean terms bterm� for a state formula�) yields a symbolic model checker for these logics. Of course, we cannot expect thatthe obtained MTBDD-based methods are e�cient in any of the above mentioned possibleapplications. For example, the MTBDD approach is known to be e�cient for verifyingprobabilistic systems [HarG98] while it is not for arithmetic circuits [Zhao96]. Thus, wemight expect that the resulting symbolic model checking algorithm for PCTL is e�cientwhile the obtained MTBDD-based method for word level CTL is not.33For further discussions about the use of MTBDDs for computing shortest paths or MTBDD-basedmethods for matrix operations, see [CFM+93, BFG+93, HMP+94, FMY97].

10.4. SYMBOLIC MODEL CHECKING FOR PROBABILISTIC PROCESSES 29510.4 Symbolic model checking for probabilistic pro-cessesAt the end of the previous section, we mentioned that the algebraic mu-calculus (with theMTBDD-based method for computing the semantics) yields a symbolic model checkerfor all logics that are contained in the algebraic mu-calculus; in particular, we obtaina symbolic model checker for PCTL. In this section we have a more detailed look ofhow to use the algebraic mu-calculus (or the mixed calculus) to obtain MTBDD-basedveri�cation methods for probabilistic processes. Section 10.4.2 is concerned with PCTLmodel checking. In Section 10.4.3 we brie
y sketch how the MTBDD-based approach canbe applied for a symbolic method to decide strong or weak bisimulation equivalence forfully probabilistic processes.10.4.1 Representing probabilistic systems by MTBDDsThe basic idea behind the MTBDD-approach is the use a symbolic representation ofa probabilistic system by MTBDDs as in [HarG98] (see also [BCH+97]). In the fullyprobabilistic case, the ideas of the non-probabilistic case [BCM+90, McMil92, CGL93]where transition systems are described in terms of BDDs that represent boolean functions(i.e. functions from bit vectors into f0; 1g) can be adapted. Using an encoding of the statesby bit vectors of length k, the transition probability function P : S � S ! [0; 1] can beviewed as a function f0; 1g2k ! [0; 1] and described by a MTBDD. Of course, the sizeof the MTBDD representation of the system depends on the encoding of the states andthe chosen ordering of the variables in the MTBDD. In most cases, an interleaving of thecomponents of the bit vectors for the starting state and the end state of the transitionsyields an e�cient representation. This corresponds to the replacement of the transitionprobability function P by the function bP : f0; 1g2k ! [0; 1],bP(b1; c1; : : : ; bk; ck) = P(s; t)where hb1; : : : ; bki is the encoding of state s and hc1; : : : ; cki the encoding of state t.The resulting MTBDD representation can be improved using well-known techniques likeRudell's sifting algorithm [Rude93] or other heuristics, see e.g. [FMK91, MKR92, BMS95].Example 10.4.1 [MTBDD representation of the communication protocol] Weconsider a variant of the simple communication protocol of Example 1.2.1 (page 19).The sender sends a message to the medium, which in turn tries to deliver the messageto the receiver. With probability 1100 , the messages get lost, in which case the mediumtries again to deliver the message. With probability 1100 , the message is corrupted (butdelivered); with probability 98100 , the correct message is delivered. When the (corrector faulty) message is delivered the receiver acknowledges the receipt of the message. Forsimplicity, we assume that the acknowledgement cannot be corrupted or lost. We describethe system in a simpli�ed way where we omit all irrelevant states (e.g. the state wherethe receiver acknowledges the receipt of the correct message). We use the following fourstates:sinit : the state in which the sender passes the message to the medium,

296 CHAPTER 10. SYMBOLIC MODEL CHECKINGsinitstry slostserror
00

11
0110

11 0:980:01 0:01 1�� �

���
 �� �

�� �
?����	

'- $%�
JJJ HHjJJJHHY

Figure 10.12: The simple communication protocolstry : the state in which the medium tries to deliver the message,slost : the state reached when the message is lost,serror : the state reached when the message is corruptedand the encoding code(sinit) = 00, code(stry) = 11, code(slost) = 01, code(serror) = 10.Then, the associated function bP : f0; 1g4 ! [0; 1] is given by:(b1; c1; b2; c2) 7! 8>>><>>>: 1 : if b1c1b2c2 2 f0101; 0111; 1000g1100 : if b1c1b2c2 2 f1011; 1110g98100 : if b1c1b2c2 = 10100 : otherwise.The system and the encodings are shown in Figure 10.12 (page 296); the MTBDD repre-sentation in Figure 10.13 (page 296). The thick lines stand for the \right" edges, the thin#1 #2#2 #3#3#4 #4 #4 #4
n nn nnn n n n

���������9 ������=? ���	 ����������� %�&-& - 01 0:98 0:01
XXXXXXXXXz ZZZZZZ~QQQQsAAAAAAU

JJJĴ @@@R%� %�
���	

Figure 10.13: The MTBDD representation of the simple communication protocollines for the \left" edges.Similarly, we can deal with action-labelled fully probabilistic systems. Let (S;P;Act)be a �nite action-labelled fully probabilistic system. We use an encoding of the actions

10.4. SYMBOLIC MODEL CHECKING FOR PROBABILISTIC PROCESSES 297in f0; 1gh (where h = dlog jAct je) and states in f0; 1gk and replace P by a functionbP : f0; 1g2k+h! [0; 1] that we represent by a MTBDD.Dealing with a concurrent probabilistic system S = (S; Steps), the situation is morecomplicate since the outgoing transitions of a state s are given by Steps(s) which is a setof distributions on the state space S. One possibility to get a MTBDD-representationof S is to �x an enumeration �s1; �s2; : : : ; �sms of the outgoing transitions of s. Then, weextend the i-th transition of s by its \identi�cation number" i and deal with a transitionprobability function S � Id#� S ! [0; 1], (s; i; t) 7! �si (t)where Id# stands for the set of identi�cation numbers (e.g. Id# = f1; : : : ; mmaxg wheremmax = maxs2S jSteps(s)j) and �si is the i-th distribution in Steps(s) according to the�xed enumeration of Steps(s). (Here, we put �si (t) = 0 for all t 2 S if i > jSteps(s)j.)Then, using an encoding for the states and identi�cation numbers by bit vectors, the abovefunction S�Id#�S ! [0; 1] can be viewed as a function from bit vectors into the reals andrepresented by a MTBDD. As far as the author knows, whether or not such a MTBDD-representation of a concurrent probabilistic system is e�cient for veri�cation purposesis not yet investigated.34 However, it seems to be much simpler to require a concurrentprobabilistic system whose transitions can be described by a function P : S � S ! [0; 1](or P : S�Act �S ! [0; 1] in the action-labelled case) in a more natural way. This is thecase for strati�ed systems (cf. Notation 3.2.4, page 40) or reactive systems (cf. Notation3.3.11, page 52).35 In that case, we can use the same ideas as for non-probabilistic or fullyprobabilistic systems and deal with an encoding of the states (and actions) by bit vectorswhich turns the above transition probability function P into a function from bit vectorsinto the reals and allows for a natural symbolic representation by a MTBDD.10.4.2 Symbolic model checking for PCTLIn Section 10.2.3 (page 279 �) we saw that any PCTL formula � can be transformed intoan \equivalent" boolean term bterm�. For this transformation, we used 1-ary functionsymbols Sata (that represent the sets Sat(a) = fs 2 S : a 2 L(s)g) and a binary functionsymbol P (that represents the transition probability matrix P). To obtain a symbolicmodel checking algorithm for PCTL, we translate bterm� into the mixed calculus andapply the algorithm to compute the BDD representation for mixed(bterm�). For this, weneed the MTBDD representation P for the transition probability matrix P as describedabove. Moreover, for each atomic proposition a, we need a BDD representation Satafor the (characteristic functions of) the set Sat(a) = fs 2 S : a 2 L(s)g. Dealing withstrati�ed systems, we also need a BDD Sprob that represents the set Sprob of probabilisticstates. Then, the mixed term mixed(bterm�) is obtained from bterm� by replacing thefunction symbols Sata, Sprob and P by the corresponding (MT)BDDs Sata, Sprob and P;the individual variables s, t (that we used in the algebraic terms to range over the states)34The author doubts whether it is. The operators on these MTBDDs that we would have to performseem to be quite complicate because of the auxiliary (meaningless) components for the identi�cationnumbers.35Recall that in Section 3.2, page 40, we argued that strati�ed systems have the same expressivenessas concurrent probabilistic systems.

298 CHAPTER 10. SYMBOLIC MODEL CHECKINGby k-tuples (s1; : : : ; sk), (t1; : : : ; tk) of individual variables (where e.g. si stands for the i-thcomponent of the encoding of state s). For example, if the MTBDD representation P isbased on a description of P by the function bP that interleaves the bits for the starting andend state of the transitions then any subexpression P(s; t) of bterm� has to be replaced byP(s1; t1; : : : ; sk; tk). We obtain a closed mixed term mixed(bterm�) where the associatedBDD { that we get by applying the algorithm for computing the semantics of the mixedcalculus { represents the characteristic function of Sat(�) = fs 2 S : s j= �g.36Example 10.4.2 We consider the system in Example 10.4.1 (page 295). We use twoatomic propositions a1, a2 and the labelling functionL(sinit) = ;, L(stry) = fa1; a2g, L(slost) = fa2g, L(serror) = fa1g.We regard the PCTL formula � = Prob>0:989898(') where ' = :error U del and� error = a1 ^ :a2 (i.e. Sat(error) = fserrorg),� del = :a1 ^ :a2 (i.e. Sat(del) = fsinitg).Intuitively, � states that the message will eventually be delivered with some probability> 0:989898 when interpreted over the state stry . We describe how our method works toget the BDD for the PCTL formula �. For this, we �rst construct the MTBDD for thepath formula '. The algebraic term term' is (more precisely, can be reformulated to)lfp Z " �s " max (Satdel(s); (1� Saterror (s)) � Xt [P(s; t) � Z(t)]!) # #Hence, we get the mixed term lfp Z [�s1; s2 [expr]] where expr ismax 8<: Satdel (s1; s2); (1� Saterror (s1; s2)) � 0@ Xt1;t2 [P(s1; t1; s2; t2) � Z(t1; t2)] 1A 9=; :Then, our algorithm applied to that mixed term uses the procedure Iterate�(�) (seeFigure 10.10, page 293) which successively computes the MTBDDs Q0;Q1;Q2; : : : for themixed terms term0 = �s1; s2[0], term1; term2; : : : where termi+1 is given by�s1; s2 24 max 8<:Satdel(s1; s2);C(s1; s2) � 0@Xt1;t2 [P(s1; t1; s2; t2) �Qi(t1; t2)]1A 9=; 35 :The BDD Satdel represents the sets Sat(del) = fsdelg (which corresponds to be booleanfunction (b1; b2) 7! :b1 ^ :b2); C is a BDD for fs 2 S : s 6j= errorg = fsinit ; stry ; slostg(which corresponds to the boolean function (b1; b2) 7! :b1 _ b2). Satdel and C are shownin Figure 10.14 (page 299). The MTBDDsQ0;Q1; : : : for the mixed terms term0; term1; : : :represent the functions0BBB@ 0000 1CCCA ; 0BBB@ 1000 1CCCA ; 0BBB@ 1000:98 1CCCA ; 0BBB@ 10:9800:98 1CCCA ; 0BBB@ 10:9800:9898 1CCCA ; 0BBB@ 10:989800:989898 1CCCA ; : : :36This symbolic model checking procedure uses an iterative method (that approximates the least �xedpoint of a certain operator) for the handling of unbounded until U . This is unlike the PCTL modelchecking algorithms of Hansson & Jonsson [HaJo94] or Bianco & de Alfaro [BidAl95] that work withlinear equation systems or linear optimization problems respectively.

10.4. SYMBOLIC MODEL CHECKING FOR PROBABILISTIC PROCESSES 299#1#2 �
�	�
�	1 00 1?
@@@@R-����	0 1 #1#2 �
�	�
�	0 10 1?

����	 -@@@@R1 0
Figure 10.14: The BDDs C and Satdel#1#2 #2�
�	�
�	 �
�	0 10 1 1 0����	����	 @@@@R

@@@@R@@@@R ����	1 00:98Figure 10.15: The MTBDD Q3 for the mixed term term3where we use the vector notation (f(0; 0); f(0; 1); f(1; 0); f(1; 1)) (written as a column)to denote a function f : f0; 1g2 ! IR. Note that� fQi+1(1; 0) = 0 as fB(1; 0) = 0 and fSatdel (1; 0) = 0,� fQi+1(0; 0) = 1 as fSatdel (0; 0) = 1,� fQi+1(0; 1) = fQi(1; 1) as fB(0; 1) = 1, fSatdel (0; 1) = 0 andfP(0; c1; 1; c2) = (1 : if c1c2 = 110 : otherwise� fQi+1(1; 1) = 98100 � fQi(0; 0) + 1100 � fQi(0; 1) + 1100 � fQi(1; 0)as fB(1; 1) = 1, fSatdel (1; 1) = 0 andfP(1; c1; 1; c2) = 8><>: 98100 : if c1c2 = 001100 : if c1c2 2 f01; 10g0 : if c1c2 = 11.For instance, the MTBDD Q3 is shown in Figure 10.15 (page 299). Our algorithm returnssome MTBDD Qi as an approximation for the function s 7! ps(') which is given bypslost (') = pstry (') = 9899 , pserror (') = 0 and psinit (') = 1.For the PCTL formula � = Prob>0:989898('), ouralgorithm computes the MTBDD Q for ' (as ex-plained above) and then evaluates the mixed term�s1; s2[Q(s) > 0:989898]which yields the BDD shown on the right.
#1 #2�
�	 �
�	0 11 0? @@@@R
@@@@R����	 01

300 CHAPTER 10. SYMBOLIC MODEL CHECKING10.4.3 Deciding bisimulation equivalenceIn the non-probabilistic case, the set of bisimulation equivalence of a labelled transitionsystem can be characterized as the greatest �xed point of a monotonic set-valued operator[Miln89]. If S is the state space then the set of bisimulation equivalence classes is thegreatest �xed point of F : 2S�S ! 2S�S where F (Z) is the set of pairs (s; s0) 2 Z suchthat, for all a 2 Act :(1) s a�!t implies s0 a�!t0 for some t0 2 S with (t; t0) 2 Z(2) s0 a�!t0 implies s a�!t for some t 2 S with (t; t0) 2 Z.On the basis of Tarski's �xed point theorem, this observation leads to an iterative methodfor computing the bisimulation equivalence relation �:� = gfp(F) = \i�0 F i(S � S):Clearly, each of the relations F i(S � S) is an equivalence. For Z to be an equivalence onS, the set F (Z) consists of all pairs (s; s0) 2 Z such that, for all a 2 Act and t 2 S:s a�!t0 for some t0 2 S with (t; t0) 2 Z i� s0 a�!t0 for some t0 2 S with (t; t0) 2 Z.Burch et al [BCM+90] (see also [EFT93]) take up this characterization of � and describe� by the following term of the relational mu-calculusbterm = gfp Z [�s; s0[8a 8t [bexpr]]]where bexpr is 9t0 [Z(t; t0) ^ R(s; a; t0)] $ 9t0 [Z(t; t0) ^ R(s0; a; t0)] :37 Thus,the BDD-based method of [BCM+90] to evaluate the terms of the relational mu-calculusyields a symbolic method for computing bisimulation equivalence classes.We now explain how this idea can be adapted for the probabilistic case. Recall thede�nition of bisimulation equivalence for probabilistic systems.38 We consider a �niteaction-labelled fully probabilistic or reactive system S = (S;Act ;P) and use a ternaryfunction symbol P to represent P. As in the non-probabilistic case, bisimulation equiv-alence can be described as the greatest �xed point of an operator on 2S�S. We considerthe operator F� : 2S�S ! 2S�S where F�(Z) is the set of all pairs (s; s0) 2 Z such that,for all a 2 Act and t 2 S: Xt02S(t;t0)2Z P(s; a; t0) = Xt02S(t;t0)2Z P(s0; a; t0):First, we observe that { in contrast to the non-probabilistic case { this operator is notmonotonic. For instance, consider the system shown in Figure 10.16 (page 301). Let Z bethe smallest equivalence relation on S that contains (s; s0) and that identi�es the statesv1, v2, v0 and Z 0 = Z [f(v0; u0)g. Then, we have Z � Z 0 while F�(Z) 6� F�(Z 0). Forinstance, (s; s0) 2 F�(Z) n F�(Z 0). To see why (s; s0) =2 F�(Z 0) consider the state t = v0and the setT = ft0 2 S : (t; t0) 2 Z 0g = ft0 2 S : (v0; t0) 2 Z 0g = fv1; v2; v; u0g:37Here, R is a ternary predicate (function) symbol that represents the underlying transition relation�! � S �Act � S.38See Section 3.4.1, De�nition 3.4.1 (page 54) and De�nition 3.4.2 (page 54).

10.4. SYMBOLIC MODEL CHECKING FOR PROBABILISTIC PROCESSES 301s
v1 v2 u

s0
v0 u0

�
 �	�
 �	 �
 �	 �
 �	
�
 �	�
 �	 �
 �	a, 14 a, 14 a, 12 a, 12 a, 12������	 @@@@@@R?

� JJJJJĴ?Figure 10.16:Then, P(s; a; T) = 12 < 1 = P(s0; a; T): Nevertheless, � = Ti�0 F i�(S � S) is thegreatest �xed point of F� and the iteration Z0 = S � S, Zi+1 = F�(Zi), i = 0; 1; 2; : : :,\converges" to � (i.e. Zi = � for some i).39 Thus, � is the set associated with theboolean term40 gfp Z [�s; s0 [8a 8 t [bexpr]]] where bexpr is Xt0 [Z(t; t0) � P(s; a; t0)] ! = Xt0 [Z(t; t0) � P(s0; a; t0)] ! :In particular, the corresponding mixed term yields the BDD representation of �. Similarideas can be used to compute the weak bisimulation equivalence classes of an action-labelled fully probabilistic system (cf. Chapter 7). For this, we can use the fact� = gfp(F�) = \i�0 F i�(S � S)where the operator F� : 2S�S ! 2S�S is de�ned as follows. F�(Z) is the set of all pairs(s; s0) 2 Z such that, for all a 2 Act and t 2 S:Prob(s; � �ba� �; [t]Z) = Prob(s0; � �ba� �; [t]Z)where [t]Z = ft0 2 S : (t; t0) 2 Zg. Using similar ideas as in Example 10.1.11 (page 267),we obtain algebraic terms termZprob that represent the functionS � Act � S ! [0; 1], (s; a; t) 7! Prob(s; � �ba� �; [t]Z).Then, the semantics of the boolean termlfp Z h �s; s0 h 8a 8t h termZprob(s; a; t) = termZprob(s0; a; t) i i iis �. Our algorithm applied to the corresponding mixed term successively generatesthe BDDs Bi for the relations F i�(S � S), i = 0; 1; 2; : : :. For the computation of Bi+1,the algorithm calculates the MTBDD Qi for mixed(termZprob) where the term variableZ is interpreted by (the characteristic function of) F i(S � S) which is represented bythe BDD Bi. The MTBDDs Qi are computed by an iterative method (the procedureIterate�(�) of Figure 10.10, page 293). Thus, this method relies on repeated iterationsto approximate the real-valued functions (s; a; t) 7! Prob(s; � �ba� �; [t]i).41 Alternatively,39This is because F� restricted to an operator on equivalence relations on S is monotonic.40Note that this term gfp Z [: : :] is not formally divergence free since the term variable Z is not formallycontinuous in �s; s0[8a 8t[bexpr]] as there are free occurrences of Z within a subexpression of the formexpr1 op./ expr2. However, because of the above observation, the meaning of gfp Z[: : :] = lim Z[: : : "�s; t[1]] is the characteristic function of �.41[t]i denotes the equivalence class of t with respect to F i(S � S)).

302 CHAPTER 10. SYMBOLIC MODEL CHECKINGwe can use the algebraic mu-calculus to describe (a variant of) the algorithm proposedin Section 7.2 (page 164 �). The resulting MTBDD-based method just uses iterations onboolean-valued functions to compute least �xed points of monotonic set-based operators(rather than iterations on real-valued functions).42 For this, we use a variant of the resultspresented in Chapter 7 where weak and branching bisimulation are shown to be the sameand where an alternative characterization of branching bisimulation is used as basis foran algorithm to compute the branching (or weak) bisimulation equivalence classes. Wede�ne a monotonic operator G on the equivalence relations on S as follows. Let Z be anequivalence relation on S. Then,G(Z) = \a;C f(s; s0) : s and s0 are contained in the same block of Re�ne(S=Z; a; C)gwhere (a; C) ranges over all pairs (a; C) 2 Act � S=Z and where the operator Re�ne(�)is de�ned as in Notation 7.2.13 (page 168). The initial relation Zinit is those equivalencerelation on S that identi�es all divergent states (states that cannot reach a state where avisible action can be performed) and all non-divergent states, i.e.Zinit = Div � Div [(S nDiv)� (S nDiv)where Div is the set of divergent states (see De�nition 7.2.14, page 168). Then,Zinit � G(Zinit) � G(G(Zinit)) � : : : and � = Gi(Zinit) for some i.Thus, the BDD representation for � can be obtained by evaluating the mixed termcorresponding to the following boolean term.lim Z [�s; s0 [GZ(s; s0) " Init]]Init and GZ are boolean terms that represent the sets Zinit and G(Z). For the de�nition ofInit and GZ we use the notations (i.e. expressions of the form term(�1; : : : ; �n)) explainedon page 267. Moreover, we use expressions like \a 6= �" (where a is an individual variableand � 2 Act the symbol for the internal action) to denote the boolean term :E� (a) whereE� is an 1-ary function symbol that represents the singleton set f�g. For the de�nitionof Init we use the following fact. S nDiv is the least set Y � S that containsVis = fs 2 S : P(s; �) > 0 for some � 2 Act n f�g g(the set of states where a visible action can be performed) and, whenever t 2 Y , a 2 Actand P(s; a; t) > 0 then s 2 Y . We de�ne Init byInit = �s; s0 [Vis�(s) $ Vis�(s0)]where Vis = �s[9a 9t [(a 6= �) ^ (P(s; a; t) > 0)]] andVis� = lfp Y [�s [Vis(s) _ 9a 9t [Y (t) ^ (P(s; a; t) > 0)]]:The de�nition ofGZ relies on the following observation.43 Let Z be an equivalence relationon S. We de�ne PZ(s; a; t) = P(s; a; [t]Z) and SZ = fs 2 S : P(s; �; [s]Z) < 1g:44 Let42We might expect that the latter return the correct results (sets) and are much faster than the former(which return approximations rather than the exact values).43The correctness of this observation can be easily derived from the results of Section 7.2 (page 164 �).44[t]Z is the equivalence class of t with respect to Z, i.e. [t]Z = ft0 : (t; t0) 2 Zg.

10.4. SYMBOLIC MODEL CHECKING FOR PROBABILISTIC PROCESSES 303SplitZ be the set of pairs (s; s0) 2 Z where s, s0 2 SZ and, for all a 2 Act and t 2 S: ifa 6= � or (s; t) =2 Z then PZ(s; a; t)1�PZ(s; �; s) = PZ(s0; a; t)1�PZ(s0; �; s0) :AZ denotes the relation consisting of those pairs (s; t) 2 Z where either (s; t) 2 SplitZ orthere exists a �nite path � = s0 �! s1 �! : : : �! sk such that k � 1, s0 = s, si 2 S n SZ,i = 0; : : : ; k� 1 and (sk; t) 2 SplitZ. Alternatively, AZ can be described as the least �xedpoint of the operator H : 2S�S ! 2S�S,H(X) = SplitZ [f (s; t) : s =2 SZ ^ 9u 2 S[(P(s; �; u) > 0) ^ (u; t) 2 X] g:BZ is the set of pairs (s; t) 2 AZ such that (s; t0) 2 AZ implies (t; t0) 2 SplitZ . It is easyto see that (s; t) 2 BZ i� t 2 SZ and s, t belong to the same block of Re�ne(S=Z; a; C)for any (a; C) 2 Act � S=Z. Thus, if ResZ is the set of all states s 2 S where there is not 2 S with (s; t) 2 BZ , thenG(Z) = f (s; s0) 2 Z : s; s0 2 ResZ _ 9t [(s; t); (s0; t) 2 BZ] g :From this, we derive the de�nition of the algebraic term GZ. We de�neGZ = �s; s0 [Z(s; s0) ^ ((ResZ(s) ^ ResZ(s0)) _ 9t [BZ(s; t) _ BZ(s0; t)])]where we use the following auxiliary algebraic (or boolean) terms.PZ = �s; a; t [Pu [Z(t; u) � P(s; a; u)]],P 0Z = �s; a; t [PZ(s; a; t) % (1� PZ(s; �; s))],SZ = �s [PZ(s; �; s) < 1],SplitZ = �s; s0 [Z(s; s0) ^ SZ(s) ^ SZ(s0) ^8a 8t [((a 6= �) _ :Z(s; t)) ! (P 0Z(s; a; t) = P 0Z(s0; a; t))]],AZ = lfp X [�s; t [SplitZ(s; t) _ (:SZ(s) ^ 9u [(P(s; �; u) > 0) ^X(u; t)]]],BZ = �s; t [AZ(s; t) ^ 8t0 [AZ(s; t0)! SplitZ(t; t0)]],ResZ = �s [:9t [BZ(s; t)]].

304 CHAPTER 10. SYMBOLIC MODEL CHECKING

Chapter 11Concluding remarks
In summary, when the author started to work on probabilistic systems in the end of 1995,a lot of excellent research had already been done in this �eld. In this thesis, she tried to�ll a few gaps but there are still a variety of interesting open questions. Among thosethat are closely related to the topics of this thesis we mention just a few.Only a few research has been done so far in the development of algorithmic methods forestablishing an implementation relation between two systems; in particular, the literature(still) lacks for algorithms that can check a weak equivalence for concurrent probabilisticsystems (e.g. weak or branching bisimulation �a la Segala & Lynch [SeLy94]). This is mostimportant for the mechanised design and the system analysis since the weak relations arethose that are needed to compare a \high-level" system (the speci�cation) and a \low-level" system (the implementation) and that play a crucial role to reduce the state spaceby abstraction. Recent work by Philippou, Sokolsky & Lee [PSS98] and by Stoelinga,Vaandrager and the author [BSV98] are �rst attempts in this direction. [PSS98] presentan algorithm for deciding weak bisimulation equivalence for strati�ed systems which usesan alternative characterization of weak bisimulation equivalence by means of the mini-mal/maximal probabilities of certain events under all adversaries. Stoelinga & Vaandrager[StVa98] propose to adapt the concept of normed simulations [GriVa98] for the probabilis-tic setting thus yielding a quite simple characterization of branching simulations. It seemsto be the case that this characterization can serve as the basis of an algorithm for checkingwhether two concurrent probabilistic systems are branching (bi-)similar [BSV98].An open problem that concerns the design of probabilistic systems is the question whethersatis�ability of PCTL (or the full logic PCTL�) is decidable with respect to any of thesatisfaction relations. Possibly, a decision procedure for satis�ability might serve as abasis for an automatic synthesis of probabilistic processes ful�lling a given speci�cationin the form of a satis�able PCTL formula (as it is the case for non-probabilistic systems[EmCl82, MaWo84, AtEm89, PnRo89]).Even though algorithmic veri�cation for establishing qualitative or quantitive propertiesfor concurrent systems are known, for realistic applications, the completeness for doubleexponential time for LTL model checking in the concurrent probabilistic case (shownby Courcoubetis & Yannakakis [CoYa95]) seems to be fatal. In [BKN98], we propose amethod for computing lower and upper bounds for the values pmaxs (') and pmins ('). Thismethod is based on a Greedy algorithm and runs in single exponential time and needs305

306 CHAPTER 11. CONCLUDING REMARKSpolynomial space. In the worst case, the obtained bounds might be far away from theprecise values; e.g. it is possible to obtain 0 as lower and 1 as upper bound. The qualityof this method has still to be worked out on the basis of experimental results. It wouldbe desirable to have e�cient methods (PTASs) that approximate the values pmaxs (') andpmins (').Most research that has been done so far in the �eld of methods that attack the stateexplosion problem for probabilistic systems concerns the MTBDD approach [CFM+93,HMP+94, BCH+97, HarG98]. It would be interesting whether the partial order reductiontechniques [Pele93, Valm94, Gode94] can be modi�ed for (concurrent) probabilistic sys-tems. Recent work by Biere et al [BCC+98] shows that, for non-probabilistic systems,symbolic LTL model checking is also possible without BDDs, using a reduction to thesatis�ability problem for propositional logic. It would be very interesting whether similarideas (e.g. using arithmetic equations rather than propositional formulas) are applicablefor probabilistic systems.Another interesting point is the investigation of probabilistic systems with an in�nite statespace. First attempts in this direction are the investigation of probabilistic lossy channelsystems (PLCSs); see [IyNa97] where an appoximative method for verifying quantitativeproperties is proposed and [BaEn98] where it is shown that qualitative LTL model check-ing for PLCSs can be reduced to a reachability problem in the underlying non-probabilisticLCS (and is solvable with the methods of [AbJo93]).

Chapter 12Appendix
In this chapter we recall some de�nitions and methods of the literature. Section 12.1summarizes the necessary background that we need for the denotational semantics inChapter 5. Section 12.2 brie
y explains our notations concerning ordered balanced trees,Section 12.3 recalls the de�nition of MTBDDs. The notations introduced in one of theSections 12.1, 12.2 or 12.3 are not used without a references to the relevant parts of thischapter.12.1 Mathematical preliminaries for the denotationalmodelsIn Chapter 5 we use the standard procedure to give denotational semantics in the metricand partial order approach and the probabilistic powerdomain of evaluations. Here, weneed some basic notions of domain theory, the theory of metric spaces and categoricalmethods for solving recursive domain equations. These are brie
y summarized in Sections12.1.1, 12.1.2 and 12.1.3. In Section 12.1.4, we brie
y recall the notion of an \evaluation"on a topological space as introduced by Jones & Plotkin [JoPl89, Jone90].12.1.1 Basic notions of domain theoryWe brie
y recall some basic notions of domain theory and explain our notations. Furtherdetails can be found e.g. in [GHK+80, AbJu94, SLG94].Preorders and partial orders: A preorder on a set D is a binary relation on D whichis re
exive and transitive. A poset is a pair (D;v) consisting of a set D and a partialorder v on D (i.e. v is an antisymmetric preorder on D). We often write D instead of(D;v). If nothing else is said then the underlying partial order of a poset D is denotedby vD or shortly v. A pointed poset is a poset D which has a bottom element (denotedby ?D or shortly ?), i.e. ? v x for all x 2 D. If D is a poset and x 2 D then we putx # = fy 2 D : y v xg and x " = fy 2 D : x v yg. Let X be a subset of a poset D. Weput X # = Sx2X x # and X " = Sx2X x ". X is called leftclosed or downwardclosed i�X is nonempty and X # = X. Similarly, X is called rightclosed or upwardclosed i� X is307

308 CHAPTER 12. APPENDIXnonempty and X " = X. An element x0 2 D is called an upper bound of X i� x v x0for all x 2 X. x0 is called the least upper bound of X i� x0 is an upper bound of X suchthat x0 v y for each upper bound y of X. The least upper bound of X (if it exists) isdenoted by FX or lub(X). X is called directed i� every pair of elements in X has anupper bound.Dcpo's: A pointed poset in which each directed subset X has a least upper bound iscalled a directed-complete partial order (shortly dcpo).1 A !-chain in a dcpo D is anin�nite monotone sequence in D, i.e. a sequence (xn)n�0 in D such that x0 v x1 v : : :.For (xn)n�0 to be a !-chain, we write Fn�0 xn or brie
y Fxn to denote the least upperbound of fxn : n � 0g.d-continuity and strictness: Let D, D0 be dcpo's and f : D ! D0 a function. f iscalled monotone i� x vD y implies f(x) vD0 f(y). f is called d-continuous i�, for eachdirected subset X of D, f (FX) = F f(X). (In particular, if f is d-continuous then f ismonotone.) f is called strict i� f(?D) = ?D0 .Tarski's �xed point theorem:2 Whenever D is a dcpo and f : D! D a d-continuousfunction then f has a least �xed point lfp(f). Moreover, lfp(f) = F fn(?).Scott-Topology: A subset A of a dcpo D is called lub-closed i� for every directed subsetX of A we have FX 2 A. We always suppose a dcpo D to be equipped with the Scott-topology whose closed sets are the downward-closed and lub-closed subsets of D. For Ato be a nonempty subset of D, Acl denotes the Scott-closure of A, i.e. the smallest Scott-closed subset containing A. We de�ne ;cl = f?g. Then, for A to be �nite and nonempty,Acl = A #.Hoare powerdomain: If D is a dcpo then PowHoare(D) is the dcpo of nonempty andScott-closed subsets of D ordered by inclusion.Continuous domains: Let x, y be elements of a dcpo D. We say y approximates xi� for all directed subsets X of D, x v FX implies y v z for some z 2 X. Approx (x)denotes the set of elements y 2 D such that y approximates x. A basis of a dcpo D is asubset B of D such that for each x 2 D the set B \Approx (x) contains a directed subsetwith least upper bound x. A continuous domain is a dcpo which has a basis.Function spaces: If X is a set and D a dcpo then the function space X ! D (of allfunctions f : X ! D) is supposed to be equipped with the partial order f1 v f2 i�f1(x) vD f2(x) for all x 2 D. Note that X ! D is again a dcpo whose bottom element isthe function X ! D, x 7! ?D and where, for each directed set � of functions f : X ! D,the least upper bound F� is given by: (F�) (x) = Fff(x) : f 2 �g. In particular, if(fn) is a !-chain in X ! D then (F fn) (x) = F fn(x).The function space X ! [a; b]: Clearly, any compact interval [a; b] of real numbers(where a < b) equipped with the natural order � is a dcpo. We use the symbols \sup" or\inf" to denote least upper bounds (suprema) or greatest lower bounds (in�ma) in [a; b]which exist for all nonempty subsets of [a; b] or sequences in [a; b]. We consider the function1Note that, in contrast to the notions used in [AbJu94] and several other authors, we require a dcpoto have a bottom element.2Several authors use di�erent names for this theorem. For the history of this theorem and the questionby whom it should be named (Tarski, Kleene or Knaster) see [LNS82].

12.1. PRELIMINARIES FOR THE DENOTATIONAL MODELS 309space X ! [a; b] (where X is an arbitrary nonempty set) equipped with the induced order,also denoted by �, as explained before, i.e. f � f 0 i� f(x) � f 0(x) for all x 2 [a; b]. If� = ffi : i 2 Ig is a nonempty family of functions f : X ! [a; b] then supf2� f (orsupi2I fi or brie
y sup fi) denotes the function X ! [a; b], x 7! supf2� f(x). Similarly,inff2� f (or infi2I fi or brie
y inf fi) denotes the function X ! [a; b], x 7! inff2� f(x).We say that a function F : (X ! [a; b]) ! (X ! [a; b]) preserves suprema i�, for allnonempty sets � of functions f : X ! [a; b],F supf2� f ! = supf2� F (f):Similarly, F preserves in�ma i�, for all nonempty sets � of functions f : X ! [a; b],F (inff2� f) = inff2� F (f).Proposition 12.1.1 Let F : (X ! [a; b])! (X ! [a; b]) be a monotone operator. Then,F has a greatest �xed point gfp(F) and a least �xed point lfp(F). gfp(F) and lfp(F) aregiven by gfp(F) = supf2�F� f; lfp(F) = inff2�F� fwhere �F� = ff : X ! [a; b] : f � F (f)g, �F� = ff : X ! [a; b] : f � F (f)g. If Fpreserves in�ma then gfp(F) = infn�0 F n(fb)where fb(x) = b for all x 2 X. Similarly, if F preserves suprema then lfp(F) =supn�0 F n(fa) where fa(x) = a for all x 2 X.Proof: easy veri�cation.Remark 12.1.2 For higher-order operators with more than one (function) arguments,e.g. operators whose arguments are pairs hf; gi where f : X ! [a; b] and g : Y ! [c; d]are functions, monotonicity is not a su�cient condition for the existence of least/greatest�xed points.3 Nevertheless, if the operator preserves in�ma (resp. suprema) then greatest(resp. least) �xed points exists and an analogue to the second part of Proposition 12.1.1holds. Formally, let k � 2, X1; : : : ; Xk nonempty sets and a1; : : : ; ak, b1; : : : ; bk realnumbers such that ai < bi. Let D the set of k-tuples hf1; : : : ; fki where fi : Xi ! [ai; bi]is a function. The partial order � on D is given byhf1; : : : ; fki � hg1; : : : ; gki i� fi � gi; i = 1; : : : ; k:Let F : D ! D be an operator that preserves suprema, i.e. whenever �i are nonemptyfamilies of functions Xi ! [ai; bi] and f+i = supf2�i f thensup fF (f1; : : : ; fk) : fi 2 �i; i = 1; : : : ; kg = F (f+1 ; : : : ; f+k):Then, lfp(F) exists and equals supn�0 F n(f1; : : : ; fk) where fi denotes the function fi :Xi ! [ai; bi], fi(x) = ai for all x 2 Xi. Similarly, if F preserves in�ma then gfp(F) existsand can be obtained by iteration.3This is because suprema or in�ma of arbitrary sets of tuples of function might not exist.

310 CHAPTER 12. APPENDIX12.1.2 Metric spacesBasic notions concerning metric spaces can be found in any standard book about topology,see e.g. [Dugu66, Suth77, Enge89]. We brie
y recall the de�nitions that we are used inthat thesis and explain our notations.Metric and ultrametric spaces: A metric on a set M is a function d :M �M ! [0; 1]such that, for all x, y, z 2M ,d(x; y) = d(y; x), d(x; y) = 0 i� x = y, d(x; z) � d(x; y) + d(y; z).A metric d is called an ultrametric i�, for all x, y, z 2M , d(x; z) � maxfd(x; y); d(y; z)g.An (ultra-)metric space is a pair (M; d) consisting of a set M and an (ultra-)metric d onM . We often write M rather than (M; d) and refer to d as the distance on M . We alwayssuppose that the underlying distance on a metric space M { which we always denote bydM or shortly d { satis�es d � 1. In what follows, let M , M 0 be metric spaces.Non-expansive and contracting functions and embeddings: Let f : M ! M 0be a function. f is called non-expansive i� dM 0(f(x); f(y)) � dM(x; y) for all x, y 2M . f is called contracting i� there exists a real number C with 0 < C < 1 such thatdM 0(f(x); f(y)) � C � dM(x; y) for all x, y 2 M . In that case, C is called a contractioncoe�cient of f . f is called an embedding i� dM 0(f(x); f(y)) = dM(x; y) for all x, y 2M .Topology of open balls: The topology on M is given by taking the open balls B(x; �),x 2 M , � > 0, as its basic opens. Here, the open ball B(x; �) with center x and radius �is de�ned by B(x; �) = fy 2 M : d(x; y) < �g: B(x; �) = fy 2 M : d(x; y) � �g is calledthe closed ball with center x and radius �. Balls(M) denotes the set of all open balls,Balls�(M) the set of open balls with radius � �, i.e. open balls of the form B(x; r) wherer � �. By a �-set, we mean an open set U �M such that B(x; �) � U for all x 2 U .Cauchy sequences, limits and density: A Cauchy sequence in M is an in�nite se-quence (xn)n�0 in M such that for each � > 0 there exists N � 0 with d(xn; xm) � �for all n, m � N . If (xn) is a sequence in M and x 2 M then x is called the limit of(xn) (denoted by limn!1 xn or shortly limxn) i� for each � > 0 there exists N � 0 withd(xn; x) � � for all n � N . As in standard analysis, if limxn exists then we say (xn) isconverging or (xn) converges to x. A subset X of M is called dense in M i�, for eachx 2 X, there is a converging sequence (xn)n�0 in X such that x = limxn.Completeness: M is called complete i� each Cauchy sequence in M has a limit. Acompletion of a metric space M is a pair (M 0; e) consisting of a complete metric space M 0and an embedding e : M ! M 0 such that e(M) is dense in M 0. If e is understood fromthe context (or not of interest) then we brie
y say that M 0 is a completion of M .Banach's �xed point theorem: Each contracting function f :M !M on a completemetric space M has a unique �xed point �x (f). Moreover, for each x 2 M , (fn(x)) is aCauchy sequence with �x (f) = lim fn(x).Function spaces: If X is a set and M complete then the function space X ! Mequipped with the distance d(f1; f2) = supx2M dM(f1(x); f2(x))

12.1. PRELIMINARIES FOR THE DENOTATIONAL MODELS 311is also a complete metric space. For each Cauchy sequence (fn) in X ! M , the limitlimfn : X !M is given by (limfn) (x) = limfn(x).The powerdomain Pow comp(M): A subset X of M is called compact i� each in�nitesequence in X contains a convergent subsequence whose limit belongs to X. Pow comp(M)denotes the collection of compact subsets of M . If M is complete then Pow comp(M)equipped with the Hausdor� metricd(X; Y) = max (supx2X infy2Y d(x; y); supy2Y infx2X d(x; y))is a complete metric space (see [Kura56]).12.1.3 Categorical methods for solving domain equationsWe brie
y explain the methods of Rutten & Turi [RuTu93] and Abramsky & Jung[AbJu94] for solving recursive domain equations for metric spaces or dcpo's. We referthe interested reader to [SmPl82, MajC88, AmRu89, MajC89, MaZe91, EdSm92, Barr93]for more informations about how to solve recursive domain equations. For the de�nition ofcategories and functors (and other related notions) see e.g. [McLan71, AHS90, BaWe90].Coalgebras and �xed points of functors: Let Cat be a category and F : Cat! Cat afunctor. A coalgebra of F is a pair (X; e) consisting of an object X of Cat and a morphisme : X ! F(X) in Cat. A coalgebra (X; e) of F is called �nal i� it is a �nal object inthe category of all coalgebras, i.e. i� for each coalgebra (X 0; e0) of F there exists a uniquemorphism f : X 0 ! X in Cat with F(f) � e0 = e � f . A �xed point of F is a coalgebra(X; e) of F such that e is an isomorphism in Cat. A �xed point (X; e) of F is called�nal i� for each �xed point (X 0; e0) of F there exists a unique morphism f : X 0 ! Xin Cat with F(f) � e0 = e � f . Final coalgebras of F are always �nal �xed points (seee.g. [RuTu93]). A �xed point (X; e) of F is called initial i� for each �xed point (X 0; e0)of F there exists a unique morphism f : X ! X 0 in Cat with F(f) � e = e0 � f . Wesay (X; e) is the unique �xed point of F i� (X; e) is a �xed of F and for each �xed point(X 0; e0) of F there exists a unique isomorphism f : X ! X 0 in Cat with F(f) � e = e0 � f .If the underlying (iso-)morphism e of a coalgebra or �xed point is clear from the contextor not of interest then we shortly write X instead of (X; e).Categories used in that thesis:SET denotes category of sets and functions,CUM the category of complete ultrametric spaces and non-expansive functions,CONT? the category of continuous domains and strict, d-continuous functions.Categorical methods for solving recursive domain equations: A functor F :CONT? ! CONT? is called locally d-continuous if, for all continuous domains D, D0,the function (D �!strict & dcont D0) ! (F(D) �!strict & dcont F(D0)), f 7! F(f), is d-continuous. Here, D �!strict & dcont D0 denotes the set of strict and d-continuous functionsfrom D to D0 (i.e. the set of CONT?-morphism from D to D0). Clearly, the compositionof locally d-continuous functors CONT?! CONT? is locally d-continuous. As shown in[AbJu94], each locally d-continuous functor F : CONT? ! CONT? has an initial �xedpoint.

312 CHAPTER 12. APPENDIXLet F : CUM ! CUM be a functor. For M , M 0 to be complete ultrametric spaces,M �!nexp M 0 denotes the set of non-expansive functions M ! M 0, i.e. the set ofCUM-morphism from M to M 0. F is called locally contracting i� there exists a realnumber C with 0 � C < 1 such that dF(M 0)(F(f1);F(f2)) � C � dM 0(f1; f2) for allcomplete ultrametric spaces M , M 0 and all non-expansive functions fi : M ! M 0,i = 1; 2, i.e. i� the function (M �!nexp M 0) ! (F(M) �!nexp F(M 0)), f 7! F(f), iscontracting with contracting constant C. Similarly, F is called locally non-expansive i�dF(M 0)(F(f1);F(f2)) � dM 0(f1; f2) for all complete ultrametric spaces M , M 0 and all non-expansive functions fi : M ! M 0, i = 1; 2. Clearly, if Fi : CUM ! CUM are locallynon-expansive functors, i = 1; 2; 3, such that at least one of them is locally contractingthen the composition F1 � F2 � F3 is locally contracting. As shown in [RuTu93], eachlocally contracting functor F : CUM! CUM has a unique �xed point.4Functors used in that thesis:� Powerdomain functors: The functors Pow�n : SET! SET, PowHoare : CONT? !CONT? and Pow comp : CUM ! CUM are de�ned as follows. If X is a set thenPow�n(X) denotes the set of �nite subsets of X. If f : X ! Y is a function then wede�ne Pow�n(f) : Pow�n(X) ! Pow�n(Y) by Pow�n(f)(U) = f(U). The de�ni-tions of the Hoare powerdomain PowHoare(D) for a dcpo D and and the powerdomainPow comp(M) of compact subsets of an ultrametric space M are given on page 308and page 311 respectively. If D, D0 are continuous domains and f : D ! D0 isstrict and d-continuous then PowHoare(f) : PowHoare(D) ! PowHoare(D0) is given byPowHoare(f)(A) = f(A)cl . If M , M 0 are complete ultrametric spaces and f :M !M 0is a non-expansive function then Pow comp(f) : Pow comp(M) ! Pow comp(M 0) is givenby Pow comp(f)(X) = f(X).� The functors F�A: If A is a set then FA : SET! SET is de�ned as follows: FA(X) =A�X and, for f : X ! Y to be a function, FA(f)(a; x) = (a; f(x)) for all a 2 A andx 2 X. We extend FA to endofunctors of CUM and CONT? (called F cumA and F contArespectively) as follows.{ F cumA (M) = A�M where the ultrametric on A�M is given by:d((a; x); (b; y)) = (1 : if a 6= b12 � dM(x; y) : otherwise (i.e. if a = b).For f :M !M 0 to be a morphism in CUM, we de�ne F cumA (f) = FA(f).{ F contA (D) = f?g]A�D where] denotes disjoint union and where the partial orderon f?g] A � D is given by: ? v (a; x) for all (a; x) 2 A � D and (a; x) v (b; y)i� a = b and x vD y. For f : D ! D0 to be a morphism in CONT?, we de�neF contA (f)(?) = ? and F contA (f)(a; x) = (a; f(x)) for all (a; x) 2 A�D.� The distribution functor: Distr can be viewed as an endofunctor of SET where, forf : X ! Y to be a function, the function Distr(f) : Distr(X)! Distr(Y) is given byDistr(f)(�)(y) = �[f�1(y)] (cf. Section 2.2, page 31).4To be precise, [RuTu93] deals with the category CMS of complete metric spaces and non-expansivefunctions instead of the subcategory CUM. However, it is easy to see that the �xed point theorem of[RuTu93] carries over to the category CUM.

12.1. PRELIMINARIES FOR THE DENOTATIONAL MODELS 313It is easy to see that the functors Pow � and F�A are well-de�ned and that PowHoare andF contA are locally d-continuous, Pow comp is locally non-expansive while F cumA is locallycontracting.12.1.4 EvaluationsWe recall the de�nition of evaluations on topological spaces as introduced by Jones &Plotkin [JoPl89, Jone90].Evaluations (cf. [JoPl89, Jone90]): For X to be a topological space, Opens(X) de-notes the set of open sets in X. A function E : Opens(X)! [0; 1] is called an evaluation5i� the following three conditions are satis�ed:1. If (Ui)i2I is a directed family of open sets Ui in X (i.e. (Ui)i2I is a family in Opens(X)such that for all i, j 2 I there exists k 2 I with Ui � Uk and Uj � Uk) thenE [i2I Ui ! = supi2I E(Ui):2. E(U \ U 0) + E(U [U 0) = E(U) + E(U 0)3. E(X) = 1The probabilistic powerdomain of evaluations Eval(X) of a topological space X is the setof evaluations on X. Clearly, for each evaluation E 2 Eval(X), E(;) = 0, and, wheneverU , U 0 2 Opens(X) with U � U 0 then E(U) � E(U 0). We extend evaluations to closedsubsets of X where we put E(A) = 1� E(X n A) for each closed subset A of X.The function Eval(f): If X, X 0 are topological spaces and f : X ! X 0 is a continuousfunction then Eval(f) : Eval(X)! Eval(X 0) is de�ned by Eval(f)(E)(U) = E(f�1(U)).Thus, Eval can be considered as a functor TOP! SET where TOP denotes the categoryof topological spaces and continuous functions.The evaluation E� for a distribution �: If � 2 Distr(X) thenE� : Opens(X)! [0; 1], E�(U) = �[U].is an evaluation on X. Whether the function Distr(X)! Eval(X), � 7! E�, is injective(and hence can be considered as an embedding) depends on the underlying topology onX. Consider the topology f;; Xg on a set X which contains at least two points; it iseasy to see that this function is not injective. In our applications { where X is equippedwith an ultrametric or a directed-complete partial order { Distr(X) can be considered asa subspace of Eval(X) (cf. Theorem 5.1.12, page 95, and Theorem 5.1.16, page 97).Remark 12.1.3 Let evalX : Distr(X)! Eval(X) be the function evalX(�) = E�. It iseasy to see that evalY �Distr(f) = Eval(f) � evalX for every function f : X ! Y . I.e. foreach distribution � 2 Distr(X),EDistr(f)(�) = Eval(f)(E�):5An evaluation in our sense is a probabilistic continuous evaluation in the terminology of Jones &Plotkin [JoPl89].

314 CHAPTER 12. APPENDIXHence, eval is a natural transformation Distr ! Eval where Distr is considered as afunctor SET ! TOP (where Distr(X) is supposed to be equipped with the discretetopology).Composition of evaluations (cf. [Heck95]): If X and Y are topological spaces andEX 2 Eval(X), EY 2 Eval(Y) then EX �EY denotes the unique evaluation on the productspace X � Y such that (EX � EY)(U � V) = EX(U) � EY (V) for all U 2 Opens(X) andV 2 Opens(Y). Note that, if � 2 Distr(X), � 2 Distr(Y) then E� � E� = E��� (wherethe de�nition of � � � was given on page 30).The probabilistic powerdomain of evaluations on dcpo's: Recall that we supposea dcpo D to be equipped with the Scott-topology, i.e. Opens(D) consists of all subsets Uof D where U is upward-closed and D nU is lub-closed. If D is a dcpo then Eval(D) is adcpo where the partial order v on Eval(D) is given byE1 v E2 i� E1(U) � E2(U) for all U 2 Opens(D)(cf. [JoPl89]). The bottom element ?Eval(D) of Eval(D) is E�1?D (where ?D is the bottomelement of D), i.e. it is given by ?Eval(D)(U) = 0 if U 6= D and ?Eval(D)(D) = 1. If (Ei)i2Iis a directed family of evaluations then the least upper bound E = FEi in Eval(D) isgiven by E(U) = supi2I Ei(U). It is shown by Heckmann [Heck95] that, for every dcpoD, the composition operator � : Eval(D)�Eval(D)! Eval(D�D), (E1; E2) 7! E1 �E2,is d-continuous.The evaluation functor Eval : CONT?! CONT?: IfD, D0 are dcpo's and f : D ! D0is a strict, d-continuous function then Eval(f) is strict and d-continuous. From the resultsof Jones [Jone90], it can be derived that Eval(D) is continuous if D is continuous. Hence,Eval can be considered as a functor CONT? ! CONT?.Lemma 12.1.4 The functor Eval : CONT?! CONT? is locally d-continuous.Proof: easy veri�cation.12.2 Ordered balanced treesFor the implementation of the algorithms for deciding bisimulation and simulation equiva-lence (Chapters 6 and 7), we propose the ordered balanced trees (binary search trees witha certain balance criteria, such as AVL, BB[�] or Red-Black trees) for the computation ofcertain equivalence classes. The de�nition of (the several types of) ordered balanced treescan be found in any standard book about data structures; see e.g. [Knut73, CLR96]. Wejust explain our notations.Let I be a nonempty and �nite set and pi, i 2 I, real numbers. By an ordered balancedtree for pi, i 2 I, we mean a binary balanced tree (e.g. an AVL-tree [AVL62] or BB[�]-tree[NiRe73]) which arises by successively inserting the elements pi, i 2 I, (in any order)and performing the necessary rebalance steps. Each node v is labelled by a key-valuev:key 2 fpi : i 2 Ig such that vl:key < v:key < vr:key for all nodes vl (vr) in the left(right) subtree of v.6 The construction of an ordered balanced tree for pi, i 2 I, takes6Note that we do not allow di�erent nodes to be labelled by the same key-value.

12.3. MULTITERMINAL BINARY DECISION DIAGRAMS 315O(jIj log(r+1)) time and O(jIj) space where r is the cardinality of fpi : i 2 Ig. We oftenuse additional labels for the nodes, e.g. v:indices = fi 2 I : pi = v:keyg. We describethe additional labels by their �nal value (i.e. the value in the �nal tree). For example, letI = f1; : : : ; 10g andp1 = p4 = 5, p2 = p7 = p8 = 7, p3 = 4, p5 = 3, p6 = 2, p9 = p10 = 0.The �nal tree depends on the type of ordered trees (AVL-, BB[�] or whatever) and onthe order in which the elements pi are inserted. For instance, it is possible to obtain thefollowing �nal tree.
v3 v1 v4

v0 v2 v5�
���
���
��
�
���
���
��
���	 @@@R���	 @@@R @@@R v0:key = 4 v0:indices = f3gv1:key = 2 v1:indices = f6gv2:key = 5 v2:indices = f1; 4gv3:key = 0 v3:indices = f9; 10gv4:key = 3 v4:indices = f5gv5:key = 7 v5:indices = f2; 7; 8gIf we deal with a function f : X ! f1; : : : ; 10g where X = fx1; x2; x3; x4g and f(x1) =f(x2) = 5, f(x3) = 6, f(x4) = 7 and the additional labelsv:elements = fx 2 X : f(x) 2 v:indicesgthen vi:elements = ;, i = 0; 1; 3; 4, v4:elements = fx1; x2g and v5:elements = fx4g.12.3 Multiterminal binary decision diagramsChapter 10 deals with MTBDD-based veri�cation methods. In this section, we brie
yrecall the de�nition of multi-terminal binary decision diagrams (MTBDDs), also calledalgebraic decision diagrams (ADDs). For further details and possible applications seee.g. [CFM+93, BFG+93, HMP+94, CFZ96, SaFu96, FMY97].MTBDDs were introduced by Clarke et al [CFM+93] as an e�cient data structure formatrices. MTBDDs are an extension of Bryant's ordered binary decison diagrams (OB-DDs or BDDs for short) [Brya86]. While BDDs are a data structure for boolean functionsf : f0; 1gn ! f0; 1g, MTBDDs represent functions from bit vectors into a certain domain< (i.e. functions of the type f : f0; 1gn ! <). In most applications, the underlyingdomain < is the set IR of real numbers.MTBDDs: Let Var be a �nite set of variables, < a total order on Var and < a nonemptyset. A <-valued MTBDD over hVar ; <i is a rooted acyclic directed graph with vertexset V containing two types of vertices, nonterminal and terminal. Each nonterminalvertex v is labelled by a variable var(v) 2 Var and has two sons left(v), right(v) 2 V .Each terminal vertex v is labelled by an element value(v) 2 <. For the labelling of thenonterminal vertices by variables we require that, on any path from the root to a terminalvertex, the variables respect the given ordering <, i.e., for all nonterminal vertices v,� var(v) < var(left(v)) if left(v) is nonterminal,� var(v) < var(right(v)) if right(v) is nonterminal.

316 CHAPTER 12. APPENDIXA BDD is a f0; 1g-valued MTBDD, i.e. a MTBDD where all terminal vertices are labelledby 0 or 1.7 If Var = fx1; : : : ; xng and x1 < x2 < : : : < xn then we also speak aboutMTBDDs over (x1; : : : ; xn) rather than MTBDDs over hVar ; <i.Representing real-valued functions by MTBDDs: Each <-valued MTBDD Q overhVar ; <i represents a function fVarQ : (Var ! f0; 1g) ! <. Given an interpretation� : Var ! f0; 1g for the variables by the boolen values 0 and 1, the function value fVarQ (�)is the label of the terminal vertex that we obtain by traversing the MTBDD starting in theroot and, whenever we reach a nonterminal vertex v, then we go to left(v) if �(var(v)) = 0,otherwise we go to right(v). When we abstract from the names of the variables then anyMTBDD with n (or less) variables represents a function from bit vectors of length n intothe underlying domain <. Formally, for each <-valued MTBDD Q over (x1; : : : ; xn), wede�ne the function f (x1;:::;xn)Q : f0; 1gn! <by f (x1;:::;xn)Q (b1; : : : ; bn) = f fx1;:::;xngQ ([x1 := b1; : : : ; xn := bn])where [x1 := b1; : : : ; xn := bn] denotes those interpretation � : fx1; : : : ; xng ! f0; 1gwhere �(xi) = bi, i = 1; : : : ; n.8 Note that the function f (x1;:::;xn)Q depends on the variables(x1; : : : ; xn) over which Q is considered. For instance, the MTBDD Q shown in Figure12.1 (page 316) can be viewed as a MTBDD over (x; y; z) and as a MTBDD over (w; x; y).Q viewed as a MTBDD over (x; y; z) induces the function
0 13 1

x y�
 �	 �
 �	0 10 1���	 ���	
@@@@R @@@RFigure 12.1: The MTBDD Qf (x;y;z)Q (b1; b2; b3) = b1 � (1=3 + 2=3 � b2) = 8><>: 0 : if b1 = 013 : if (b1; b2) = (1; 0)1 : if (b1; b2) = (1; 1)while Q viewed as a MTBDD over (w; x; y) yields the functionf (w;x;y)Q (b1; b2; b3) = b2 � (1=3 + 2=3 � b3) = 8><>: 0 : if b2 = 013 : if (b2; b3) = (1; 0)1 : if (b2; b3) = (1; 1).7Note that a MTBDD Q over hVar ; <i is also a MTBDD over hVar 0; <0i for any superset Var 0 of Varand total order <0 on Var 0 such that x1 < x2 i� x1 <0 x2 for all x1, x2 2 Var .8I.e. to obtain the value f (x1;:::;xn)Q (b1; : : : ; bn), we traverse Q starting in the root. If we reach anonterminal vertex v labelled by xi then we go to left(v) (resp. right(v)) if bi = 0 (resp. bi = 1). If wereach a terminal vertex v then we put fQ(b) = value(v).

12.3. MULTITERMINAL BINARY DECISION DIAGRAMS 317If the variables (x1; : : : ; xn) over which a MTBDD Q is considered are clear from thecontext then we shortly write fQ rather than f (x1;:::;xn)Q . Vice versa, each function f frombit vectors of length n into a domain < can be represented by a MTBDD. Given a functionf : f0; 1gn ! <, the decison tree can be viewed as a MTBDD that represents f . For real-valued functions (i.e. < � IR), the decision tree is obtained from the Shannon expansionf(b1; : : : ; bn) = (1� b1) � f(0; b2; : : : ; bn) + b1 � f(1; b2; : : : ; bn): Canonical (in some sense\minimized") MTBDD-representations can be obtained using the Reduce operator byBryant [Brya86].In Section 10.3 we need the following operators on MTBDDs which are taken from [Brya86,CFM+93]. Let Q, Q1, Q2 be MTBDDs over (x1; : : : ; xn).Combining two MTBDDs via binary operators: If op is a binary operator on< (e.g. summation + or multiplication � for < = IR, disjunction _ or conjunction ^for < = f0; 1g) then Apply(Q1;Q2; op) returns the unique reduced MTBDD Q over(x1; : : : ; xn) where fQ = fQ1 op fQ2 :Variable renaming: Let y1; : : : ; yk be pairwise distinct variables and 1 � i1 < : : : <ik � n such that yh =2 fx1; : : : ; xng n fxi1 ; : : : ; xikg, h = 1; : : : ; k. Let x0i = xi if i 2f1; : : : ; ng n fi1; : : : ; ikg and x0ih = yh, h = 1; : : : ; k. Then,Qfxi1 y1; : : : ; xik ykgdenotes those MTBDD over (x01; : : : ; x0n) that arises from Q by renaming simultaneouslythe variables xih by yh, h = 1; : : : ; k. (I.e. for each nonterminal vertex v in Q withvar(v) = xih we set var(v) to yh.)9Restriction: If i 2 f1; : : : ; ng and b 2 f0; 1g then Qjxi=b denotes those MTBDD overthe variables (x1; : : : ; xi�1; xi+1; : : : ; xn) that represents the function f0; 1gn�1! f0; 1g,(b1; : : : ; bi; bi+1; : : : ; bn) 7! fQ(b1; : : : ; bi�1; b; bi+1; : : : ; bn):Qjxi=b is obtained from Q by removing all xi-labelled vertices and \replacing" them bytheir left or right son depending on whether b = 0 or b = 1. For instance, if b = 0 andvar(v) = xi then any edge w! v in Q is replaced by the edge w! left(v).

9Note that Q and Qfxi1 y1; : : : ; xik ykg represent the same function (when viewed as MTBDDsover (x1; : : : ; xn) and (x01; : : : ; x0n) respectively).

318 CHAPTER 12. APPENDIX

Bibliography[AbLa88] M. Abadi, L. Lamport: The Existence of Re�nement Mappings, Proc.LICS'88, pp 165-175, 1988.[AbJo93] P. Abdulla, B. Jonsson: Verifying Programs with Unreliable Channels,Proc. LICS'93. The full version with the same title has appeared in Infor-mation and Computation, Vol. 127, No. 2, pp 91-101, 1996.[Abra91] S. Abramsky: A Domain Equation for Bisimulation, Information andComputation, Vol. 92, pp 161-218, 1991.[AbJu94] S. Abramsky, A. Jung: Domain Theory, In S. Abramsky, D.M. Gabbayand T.S.E. Maibaum (ed.), Handbook of Logic in Computer Science, Vol. 3,Clarendon Press, pp 1-168, 1994.[AHS90] J. Ad�amek, H. Herrlich, G. Strecker: Abstract and Concrete Categories:The Joy of Cats, John Wiley & Sons, 1990.[AVL62] G. Adel'son-Velshii, Y. Landis: An Algorithm for the Organization ofInformation, Soviet. Math. Dokl., Vol. 3, pp 1259-1262, 1962.[AHU74] A. Aho, J. Hopcroft, J. Ullman: The Design and Analysis of of ComputerAlgorithms, Addison-Wesley Publishing Company, 1974.[dAlf97a] L. de Alfaro: Formal Veri�cation of Probabilistic Systems, Ph.D.Thesis,Stanford University, 1997.[dAlf97b] L. de Alfaro: Temporal Logics for the Speci�cation of Performance and Re-liability, Proc. STACS'97, Lecture Notes in Computer Science, Vol. 1200,pp 165-176, 1997.[AlSch84] B. Alpern, F. Schneider: De�ning Liveness, Information Processing Let-ters, Vol. 21, 1985.[ACD90] R. Alur, C. Courcoubetis, D. Dill: Model Checking for Real-Time Systems,Proc. LICS'90, pp 414-425, 1990.[ACD91a] R. Alur, C. Courcoubetis, D. Dill: Verifying Automata Speci�cations ofProbabilistic Real-Time Systems, Proc. REX Workshop'91, Lecture Notesin Computer Science, Vol. 600, pp 27-44, 1991.[ACD91b] R. Alur, C. Courcoubetis, D. Dill: Model-Checking for Probabilistic Real-Time Systems, Proc. ICALP'91, Lecture Notes in Computer Science,Vol. 510, pp 115-127, 1991.[dAHK98] P. d'Argenio, H. Hermanns, J. Katoen: On Generative Parallel Composi-tion, Proc. PROBMIV'98, Techn. Report CSR-98-4, University Birming-ham, pp 105-122, 1998. 319

320 BIBLIOGRAPHY[dAKB98] P. d'Argenio, J. Katoen, E. Brinksma: An Algebraic approach to the Speci-�cation of Stochastic Systems (extended abstract), Proc. PROCOMET'98,Chapman & Hall, 1998.[AmRu89] P. America, J. Rutten: Solving Recursive Domain Equations in a Categoryof Complete Metric Spaces, Journal of Computer and System Sciences,Vol. 39, No. 3, pp 343-375, 1989.[AtEm89] P. Attie, E.A. Emerson: Synthesis of Concurrent Systems with Many Sim-ilar Sequential Processes, Proc. POPL'89, pp 191-201, 1989.[ASB+95] A. Aziz, V. Singhal, F. Balarin, R. Brayton, A. Sangiovanni-Vincentelli: Itusually works: The Temporal Logic of Stochastic Systems, Proc. CAV'95,Lecture Notes in Computer Science, Vol. 939, pp 155-165, 1995.[BBS92] J. Baeten, J. Bergstra, S. Smolka: Axiomatizing Probabilistic Processes:ACP with Generative Probabilities, Proc. CONCUR'92, Lecture Notes inComputer Science, Vol. 630, pp 472-485, 1992. The full version with thesame title has appeared in Information and Computation, Vol. 122, pp234-255, 1995.[BFG+93] I. Bahar, E. Frohm, C. Gaona, G. Hachtel, E. Macii, A. Padro, F. Somenzi:Algebraic Decision Diagrams and their Applications, Proc. ICCAD'93, pp188-191, 1993. The full version with the same title has appeared in FormalMethods in Systems Design, Vol. 10, No. 2/3, pp 171-206, 1997.[Bai96] C. Baier: Polynomial Time Algorithms for Testing Probabilistic Bisimu-lation and Simulation, Proc. CAV'96, Lecture Notes in Computer Science,Vol. 1102, pp 38-49, 1996. A revised version with the title \Deciding Bisim-ilarity and Similarity" is submitted for publication.[Bai97] C. Baier: Trees and Semantics, Theoretical Computer Science, Vol. 179,pp 217-250, 1997.[BaCl98] C. Baier, E. Clarke: The Algebraic Mu-Calculus and MTBDDs, Proc.WoLLIC'98, pp 27-38, 1998.[BCH+97] C. Baier, E. Clarke, V. Hartonas-Garmhausen, M. Kwiatkowska, M. Ryan:Symbolic Model Checking for Probabilistic Processes, Proc. ICALP'97,Lecture Notes in Computer Science, Vol. 1256, pp 430-440, 1997.[BCH98] C. Baier, E. Clarke, V. Hartonas-Garmhausen: On the Semantic Founda-tions of Probabilistic VERUS , Proc. PROBMIV'98, Techn. Report CSR-98-4, University Birmingham, pp 7-32, 1998.[BaEn98] C. Baier, B. Engelen: Establishing Qualitative Properties for ProbabilisticLossy Channel Systems: an Algorithmic Approach, submitted for publica-tion.[BaHe97] C. Baier, H. Hermanns: Weak Bisimulation for Fully Probabilistic Pro-cesses, Proc. CAV'97, Lecture Notes in Computer Science, Vol. 1254, pp119-130, 1997.[BaKw97] C. Baier, M. Kwiatkowska: Domain Equations for Probabilistic Processes,Proc. EXPRESS'97, Electronic Notes in Theoretical Computer Science,Vol. 7 1997. The full version is available as Techn. Report, CSR-97-7,University Birmingham.

BIBLIOGRAPHY 321[BaKw98] C. Baier, M. Kwiatkowska: Model Checking for a Probabilistic Branch-ing Time Logic with Fairness, Distributed Computing, Vol. 11, No. 3,1998. A preliminary version with the title \Automatic Veri�cation of Live-ness Properties of Randomized Systems" has appeared in Proc. PODC'97,ACM Press, 1997.[BaKw98a] C. Baier, M. Kwiatkowska: On the Veri�cation of Qualitative Properties ofProbabilistic Processes under Fairness Constraints, Information ProcessingLetters, Vol. 66, No. 2, pp 71-79, 1998.[BKN98] C. Baier, M. Kwiatkowska, G. Norman: Computing Lower and UpperBounds for LTL Formulae over Sequential and Concurrent Markov Chains,Proc. PROBMIV'98, Techn. Report CSR-98-4, University Birmingham, pp91-104, 1998.[BMC94] C. Baier, M. Majster-Cederbaum: Denotational Semantics in the Cpo andMetric Approach, Theoretical Computer Science, Vol. 135, pp 171-220,1994.[BMC97] C. Baier, M. Majster-Cederbaum: How to Interpret and Establish Con-sistency Results for Semantics of Concurrent Programming Languages,Fundamenta Informaticae, Vol. 29, No. 3, pp 225-256, 1997.[BSV98] C. Baier, M. Stoelinga, F. Vaandrager: private discussion on the decidabil-ity of probabilistic branching bisimulation and simulation, October 1998.Draft in preparation.[dBaMe88] J. de Bakker, J. Meyer: Metric semantics for concurrency, Report CS-R8803, Centre for Mathematics and Computer Science, Amsterdam, 1988.[dBdRR88] J. de Bakker, W. de Roever, G. Rozenberg (eds.): Linear Time, BranchingTime and Partial Order in Logics and Models for Concurrency, Proc. REXWorkshop'88, Lecture Notes in Computer Science, Vol. 354, 1988.[dBdV96] J. de Bakker, E. de Vink: Control Flow Semantics, MIT Press, 1996.[dBaZu82] J. de Bakker, J. Zucker: Processes and the Denotational Semantics ofConcurrency, Information and Control, Vol. 54, No. 1/2, pp 70-120, 1982.[Barr93] M. Barr: Terminal coalgebras in well-founded set theory, Theoretical Com-puter Science, Vol. 114, pp 299-315, 1993.[BaWe90] M. Barr, C. Wells: Category Theory for Computing Science, Prentice-HallInternational Series in Computer Science, Prentice Hall, 1990.[BeKl84] J. Bergstra, J. Klop: Process Algebra for Synchronous Communication,Information and Computation, Vol. 60, pp 109-137, 1984.[BMS95] J. Bern, C. Meinel, A. Slobodova: Global Rebuilding of OBDDs AvoidingMemory Requirement Maxima, Proc. CAV'95, Lecture Notes in ComputerScience, Vol. 939, pp 4-15, 1995.[BeGor98] M. Bernardo, R. Gorrieri: A Tutorial on EMPA: a Theory of Concur-rent Processes with Nondeterminism, Priorities, Probabilities and Time.Theoretical Computer Science, Vol. 202, pp 1-54, 1998.[BeGon92] G. Berry, G. Gonthier: The ESTEREL Synchronous Programming Lan-guage: Design, Semantics, Implementation, Science of Computer Program-ming, Vol. 19, 1992.

322 BIBLIOGRAPHY[Bert87] D. Bertsekas: Dynamic Programming, Prentice Hall, 1987.[BCC+98] A. Biere, A. Cimatti, E. Clarke, Y. Zhu: Symbolic Model Checking withoutBDDs, submitted for publication.[BidAl95] A. Bianco, L. de Alfaro: Model Checking of Probabilistic and Nondeter-ministic Systems, Proc. Foundations of Software Technology and Theoret-ical Computer Science, Lecture Notes in Computer Science, Vol. 1026, pp499-513, 1995.[BlMe89] B. Bloom, A. Meyer: A Remark on Bisimulation between ProbabilisticProcesses, Proc. Symposium on Logical Foundations of Computer Science,Lecture Notes in Computer Science, Vol. 363, pp 26-40, 1989.[BDE+97] R. Blute, J. Desharnais, A. Edalat, P. Panangaden: Bisimulation for La-belled Markov Processes, Proc. LICS'97, pp 149-159, 1997.[BoSm87] T. Bolognesi, S. Smolka: Fundamental Results for the Veri�cation of Ob-servational Equivalence: a Survey, Proc. Protocol Speci�cation, Testingand Veri�cation, Elsevier Science Publishers, IFIP, pp 165-179, 1987.[BHR84] S. Brookes, C.A.R. Hoare, A. Roscoe: A Theory of Communicating Se-quential Processes, Journal of the ACM, Vol. 31 (3), pp 560-599, 1984.[BCG88] M. Brown, E. Clarke, O. Grumberg: Characterizing Finite Kripke Struc-tures in Propositional Temporal Logic, Theoretical Computer Science,Vol. 59, pp 115-131, 1988.[Brya86] R. Bryant: Graph-Based Algorithms for Boolean Function Manipulation,IEEE Transactions on Computers, Vol. C-35, No. 8, pp 677-691, 1986.[BrCh95] R. Bryant, Y. Chen: Veri�cation of Arithmetic Functions with Binary Mo-ment Diagrams, Proc. 32nd ACM/IEEE Design Automation Conference,pp 535-541, 1995.[BCM+90] J. Burch, E. Clarke, K. McMillan, D. Dill, L. Hwang: Symbolic ModelChecking: 1020 States and Beyond, Proc. LICS'90, pp 428-439, 1990. Thefull version with the same title has appeared in Information and Compu-tation, Vol. 98 (2), pp 142-170, 1992.[Camp96] S. Campos: A Quantitative Approach to the Formal Veri�cation of Real-Time Systems, Ph.D.Thesis, Carnegie Mellon University, 1996.[CCM+95] S. Campos, E.M. Clarke, W. Marrero, M. Minea: Verus: a Tool for Quan-titative Analysis of Finite-State Real-Time Systems, Proc. Workshop onLanguages, Compilers and Tools for Real-Time Systems, 1995.[CGT+96] G. Chehaivbar, H. Garavel, N. Tawbi, F. Zulian: Speci�cation and Ver-i�cation of the Powerscale Bus Arbitration Protocol: An Industrial Ex-periment with LOTOS, Formal Description Techniques IX, pp 435-450,Chapmann & Hall, 1996.[CCH+96] Y. Chen, E. Clarke, P. Ho, Y. Hoskote, T. Kam, M. Khaira, J.O'Leary,X. Zhao: Veri�cation of all Circuits in a Floating-Point Unit using WordLevel Model Checking, Proc. Formal Methods in Computer Aided Designs,1996.[CHM90] J. Cheriyan, T. Hagerup, K. Mehlhorn: Can a Maximum Flow be Com-puted in O(nm) Time?, Proc. ICALP'90, Lecture Notes in Computer Sci-ence, Vol. 443, pp 235-248, 1990.

BIBLIOGRAPHY 323[Chri90a] I. Christo�: Testing Equivalences for Probabilistic Processes, Ph. D. The-sis, Department of Computer Science, Uppsala University, 1990.[Chri90b] I. Christo�: Testing Equivalences and Fully Abstract Models for Proba-bilistic Processes, Proc. CONCUR'90, Lecture Notes in Computer Science,Vol. 458, pp 126-140, 1990.[Chri93] L. Christo�: Speci�cation and Veri�cation Methods for Probabilistic Pro-cesses, Ph. D. Thesis, Department of Computer Science, Uppsala Univer-sity, 1993.[ChCh91] L. Christo�, I. Christo�: E�cient Algorithms for Veri�cation of Equiva-lences for Probabilistic Processes, Proc. CAV'91, Lecture Notes in Com-puter Science, Vol. 575, pp 310-321, 1991.[ChCh92] L. Christo�, I. Christo�: Reasoning about Safety and Liveness Proper-ties for Probabilistic Processes, Proc. 12th Conference on Foundations ofSoftware Technology and Theoretical Computer Science, Lecture Notes inComputer Science, Vol. 652, pp 342-355, 1992.[ClEm81] E. Clarke, E.A. Emerson: Design and Synthesis of Synchronization Skele-tons from Branching Time Temporal Logic, Proc. Workshop on Logics ofPrograms, Lecture Notes in Computer Science, Vol. 131, pp 52-71, 1981.[CES83] E.M. Clarke, E.A. Emerson, A.P. Sistla: Automatic Veri�cation of FiniteState Concurrent Systems Using Temporal Logic Speci�cations: A PraticalApproach, Proc. POPL'83, 1983. The full version with the same title hasappeared in ACM Trans. Programming Languages and Systems, Vol. 1 (2),1986.[CFM+93] E. Clarke, M. Fujita, P. McGeer, J. Yang, X. Zhao: Multi-Terminal Bi-nary Decision Diagrams: An E�cient Data Structure for Matrix Repre-sentation, In Proc. IWLS'93: International Workshop on Logic Synthesis,Tahoe City, 1993.[CFZ96] E. Clarke, M. Fujita, X. Zhao: Multi-Terminal Binary Decision Diagramsand Hybrid Decision Diagrams, In Representations of Discrete Functions,T. Sasao and M. Fujita (eds.), Kluwer Academic Publishers, pp 93-108,1996.[CGL93] E. Clarke, O. Grumberg, D. Long: Ver�cation Tools for Finite-State Con-current Programs, Proc. REX Workshop'93, Lecture Notes in ComputerScience, Vol. 803, pp 124-175, 1993.[CGH94] E. Clarke, O. Grumberg, K. Hamaguchi: Another Look at LTL ModelChecking, Proc. CAV'94, Lecture Notes in Computer Science, Vol. 818, pp415-427, 1994.[CKZ96] E. Clarke, M. Khaira, X. Zhao: Word Level Symbolic Model Checking { aNew Approach for Verifying Arithmetic Circuits, Proc. 33rd ACM/IEEEDesign Automation Conference, IEEE Computer Society Press, 1996.[CPS90] R. Cleaveland, J. Parrow, B. Ste�en: A Semantic Based Veri�cation Toolfor Finite State Systems, Proc. Protocol Speci�cation, Testing and Veri�-cation IX, Elsevier Science Publishers, IFIP, pp 287-302, 1990.[CSZ92] R. Cleaveland, S. Smolka, A. Zwarico: Testing Preorders for Probabilis-tic Processes, Proc. ICALP 1992, Lecture Notes in Computer Science,Vol. 623, pp 708-719, 1992.

324 BIBLIOGRAPHY[CoWi87] D. Coppersmith, S. Winograd: Matrix Multiplication via Arithmetic Pro-gressions, Proc. 19th ACM Symposium on Theory of Computing, pp 1-6,1987.[CLR96] T. Cormen, C. Leiserson, R. Rivest: Introduction to Algorithms, McGrawHill, 1996.[CoYa88] C. Courcoubetis, M. Yannakakis: Verifying Temporal Properties of Finite-State Probabilistic Programs, Proc. 29th Annual Symp. on Foundations ofComputer Science, pp 338-345, 1988.[CoYa90] C. Courcoubetis, M. Yannakakis: Markov Decision Processes and RegularEvents, Proc. ICALP'90, Lecture Notes in Computer Science, Vol. 443, pp336-349, 1990.[CoYa95] C. Courcoubetis, M. Yannakakis: The Complexity of Probabilistic Veri�-cation, Journal of the ACM, Vol. 42, No. 4, pp 857-907, 1995.[Dam94] M. Dam: CTL� and ECTL� as Fragments of the Modal Mu-Calculus,Theoretical Computer Science, Vol. 126, pp 77-96, 1994.[Derm70] C. Derman: Finite-State Markovian Decision Processes, Academic Press,New York, 1970.[DEP98] J. Desharnais, A. Edalat, P. Panangaden: A Logical Characterization ofBisimulation for Labeled Markov Processes, Proc. LICS'98, 1998.[Dini70] E. Dinic: Algorithm for Solution of a Problem of Maximal Flow in aNetwork with Power Estimation, Soviet. Math. Dokl., Vol. 11, pp 1277-1280, 1970.[Dugu66] J. Dugundji: Topology, Allyn and Bacon, inc., 1966.[EdSm92] A. Edalat, M. Smyth: Compact Metric Information Systems, Proc. REXWorkshop'92, Lecture Notes in Computer Science, Vol. 666, pp 154-173,1992.[Emer85] E.A. Emerson: Automata, Tableaux and Temporal Logics, in \Logic ofPrograms", Lecture Notes in Computer Science, Vol. 193, pp 79-87, 1985.[Emer90] E.A. Emerson: Temporal and Modal Logic, Volume B of Handbook of The-oretical Computer Science, Elsevier Science Publishers (North-Holland),pp 995-1072, 1990.[Emer92] E.A. Emerson: Real-Time and the Mu-Calculus, Proc. REX Workshop'92,Lecture Notes in Computer Science, Vol. 666, pp 176-194, 1992.[EmCl82] E.A. Emerson, E.M. Clarke: Using Branching Time Logic to SynthesizeSynchronization Skeletons, Sci. Comput. Programming, Vol. 2, pp 241-266,1982.[EmHa85] E.A. Emerson, J. Halpern: Decision Procedures and Expressiveness inthe Temporal Logic of Branching Time, Journal of Computer and SystemScience, Vol. 30, pp 1-24, 1985.[EmHa86] E.A. Emerson, J. Halpern: \Sometimes" and \Not Never" Revisited:on Branching versus Linear Time Temporal Logic, Journal of the ACM,Vol. 33, No. 1, pp 151-178, 1986.

BIBLIOGRAPHY 325[EmJu88] E.A. Emerson, C. Jutla: The Complexity of Tree Automata and Logics ofPrograms, Proc. FOCS'88, pp 328-337, 1988.[EmJu91] E.A. Emerson, C. Jutla: Tree Automata, Mu-Calculus and Determinacy,Proc. FOCS'91, pp 368-377, 1991.[EJS93] E.A. Emerson, C. Jutla, A. Sistla: On Model-Checking for Fragmentsof the Mu-Calculus, Proc. CAV'93, Lecture Notes in Computer Science,Vol. 697, pp 385-396, 1993.[EmLei85] E.A. Emerson, C. Lei: Modalities for Model Checking: Branching TimeStrikes Back, Proc. POPL'85, pp 84-96, 1985.[EmLei86] E.A. Emerson, C. Lei: E�cient Model Checking for Fragments of thePropositional Mu-Calculus, Proc. LICS'86, pp 267-278, 1986.[EFT93] R. Enders, T. Filkorn, D. Taubner: Generating BDDs for Symbolic Modelchecking in CCS, Distributed Computing, Vol. 6, pp 155-164, 1993.[Enge89] R. Engelking: General Topology, Sigma Series in Rure Mathematics,Vol. 6, Heldermann Verlag Berlin, 1989.[Espa94] J. Esparza: Model Checking Using Net Unfoldings, Science of ComputerProgramming, Vol. 23, pp 151-195, 1994.[Even79] S. Even: Graph Algorithms, Computer Science Press, 1979.[FHZ93] M. Fang, C. Ho-Stuart, H. Zedan: Speci�cation of Real-Time ProbabilisticBehaviour, Proc. Protocol, Speci�cation, Testing and Veri�cation, IFIP,Elsevier Science Publishers, pp 143-157, 1993.[Feld83] Y. Feldmann: A Decidable Propositional Dynamic Logic, Proc. 15th ACMSymp. on Theory of Computing, pp 298-309, 1983.[FeHa84] Y. Feldmann, D. Harel: A Propositional Dynamic Logic, Journal of Com-puter and System Science, Vol. 28, pp 193-215, 1984.[Fell68] W. Feller: An Introduction to Probability Theory and its Applications,Wiley, Ney York, 1968.[Fern89] J.C. Fernandez: An Implementation of an E�cient Algorithm for Bisimula-tion Equivalence, Science of Computer Programming, Vol. 13, pp 219-236,1989.[FoFu62] L. Ford, D. Fulkerson: Flows in Networks, Princeton University Press,1962.[Fran88] N. Francez: Fairness, Springer-Verlag, New York, 1988.[FMK91] M. Fujita, Y. Matsunaga, T. Kakadu: On Variable Ordering of BinaryDecision Diagrams for the Application of Multi-Valued Logic Synthesis,Proc. EDAC'91, pp 50-53, 1991.[FMY97] M. Fujita, P. McGeer, J. Yang: Multi-Terminal Binary Decision Diagrams:An E�cient Data Structure for Matrix Representation, Formal Methodsin System Design, Vol. 10, No. 2/3, pp 149-170, 1997.[GPV+95] R. Gerth, D. Peled, M. Vardi, P. Wolper: Simple On-The-Fly Veri�cationof Linear Time Logic, Proc. Symposium on Protocol Speci�cation, Testingand Veri�cation, pp 3-18, 1995.

326 BIBLIOGRAPHY[GJS90] A. Giacalone, C. Jou, S. Smolka: Algebraic Reasoning for ProbabilisticConcurrent Systems, Proc. IFIP TC2 Working Conference on Program-ming Concepts and Methods, 1990.[GHK+80] G. Gierz, H. Hofmann, K. Keimel, J. Lawson, M. Mislove, D. Scott: ACompendium of Continuous Lattices, Springer-Verlag, 1980.[GiHi94] S. Gilmore, J. Hillston: The PEPA Workbench: A Tool to Support a Pro-cess Algebra-Based Approach to Performance Modelling, Proc. 7th Conf.on Modelling Techniques and Tools for Computer Performance Evaluation,Wien, 1994.[vGSST90] R. van Glabbeek, S. Smolka, B. Ste�en, C. Tofts: Reactive, Generative,and Strati�ed Models for Probabilistic Processes, Proc. LICS'90, pp 130-141, 1990. A revised version with the same title by the authors R. vanGlabbeek, S. Smolka, B. Ste�en has appeared in Information and Compu-tation, Vol. 121, pp 59-80, 1995.[vGlWe89] R. van Glabbeek, W. Weijland: Branching Time and Abstraction in Bisim-ulation Semantics, Information Processing, Vol. 89, pp 613-618, 1989. Thefull version with the same title has appeared in Journal of the ACM,Vol. 43(3), pp 555-600,1996.[Gode94] P. Godefroid: Partial-Order Methods for the Veri�cation of ConcurrentSystems: An Approach to the State Explosion Problem, Ph. D. Thesis,University of Li�ege, 1994; published in Lecture Notes in Computer Science,Vol. 1032 (1996).[GPS96] P. Godefroid, D. Peled, M. Staskauskas: Using Partial Order Methods inthe Formal Validation of Industrial Concurrent Programs, Proc. ISSTA'96,pp 261-269, 1996.[GHR93] N. G�otz, U. Herzog, M. Rettelbach: Multiprocessor and Distributed Sys-tem Design: The Integration of Functional Speci�cation and PerformanceAnalysis using Stochastic Process Algebras, Proc. Performance Evaluationof Computer and Communication Systems, Lecture Notes in ComputerScience, Vol. 729, pages 121-146, 1993.[Goul88] R. Gould: Graph Theory, The Benjamin/Cummings Publishing Company,1988.[GLN+97] C. Gregorio-Rodriguez, L. Llana-Diaz, M. N�u~nez,P. Paloa-Gostanza: Testing Semantics for a Probabilistic-Timed ProcessAlgebra, Proc. ARTS'97, Lecture Notes in Computer Science, Vol. 1231,pp 353-349, 1997.[GrWe86] G. Grimmett, D. Welsh: Probability: an Introduction, Oxford UniversityPress, 1986.[GoRo83] W. Golson, W.C. Rounds: Connection between two Theories of Concur-rency: Metric Spaces and Synchronisation Trees, Information and Control,Vol. 57, pp 102-124, 1983.[GriVa98] D. Gri�oen, F. Vaandrager: Normed Simulations, Proc. CAV'98, LectureNotes in Computer Science, Vol. 1427, pp 332-344, 1998.[GroVa90] J. Groote, F. Vaandrager: An E�cient Algorithm for Branching Bisimula-tion and Stuttering Equivalence, Proc. ICALP'90, Lecture Notes in Com-puter Science, Vol. 443, pp 626-638, 1990.

BIBLIOGRAPHY 327[GSB94] R. Gupta, S. Smolka, S. Bhaskar: On Randomization in Sequential andDistributed Algorithms, ACM Computing Surveys, Vol. 26, pp 1-86, 1994.[HMP+94] G. Hachtel, E. Macii, A. Padro, F. Somenzi: Probabilistic Analysis ofLarge Finite State Machines, Proc. ACM/IEEE DAC'94, pp 270-275, 1994.The full version with the title \Markovian Analysis of Large Finite StateMachines" has appeared in IEEE Transactions on CAD/ICAS, Vol. 15,No. 12, pp 1479-1493, 1996.[Halm50] P. Halmos: Measure Theory, Springer-Verlag, 1950.[Hans91] H. Hansson: Time and Probability in Formal Design of Distributed Sys-tems, Ph.D.Thesis, Uppsala University, 1991; published in Real-TimeSafety Ciritical Systems, Vol. 1, Elsevier, 1994.[HaJo89] H. Hansson, B. Jonsson: A Framework for Reasoning about Time andReliability, Proc. IEEE Real-Time Systems Symposium, IEEE ComputerSociety Press, pp 102-111, 1989.[HaJo90] H. Hansson, B. Jonsson: A Calculus for Communicating Systems withTime and Probabilities, Proc. IEEE Real-Time Systems Symposium, IEEEComputer Society Press, pp 278-287, 1990.[HaJo94] H. Hansson, B. Jonsson: A Logic for Reasoning about Time and Proba-bility, Formal Aspects of Computing, Vol. 6, pp 512-535, 1994.[HaSh84] S. Hart, M. Sharir: Probabilistic Temporal Logic for Finite and BoundedModels, Proc. 16th ACM Symposium on Theory of Computing, pp 1-13,1984. The full version with the title \Probabilistic Propositional TemporalLogic" has appeared in Information and Control, Vol. 70, pp 97-155, 1986.[HSP83] S. Hart, M. Sharir, A. Pnueli: Termination of Probabilistic ConcurrentPrograms, ACM Transactions on Programming Languages, Vol. 5, pp 356-380, 1983.[Hart98] J. Hartog: Comparative Semantics for a Process Language with Probabilis-tic Choice and Non-Determinism, Techn. Report IR-445, Vrije UniversiteitAmsterdam, 1998.[HadVi98] J. Hartog, E. de Vink: Mixing up Nondeterminism and Probability: aPreliminary Report, submitted for publication.[HarG98] V. Hartonas-Garmhausen: Probabilistic Symbolic Model Checking withEngineering Models and Applications, Ph.D.Thesis, Carnegie Mellon Uni-versity, 1998.[HMS97] J. He, A. McIver, K. Seidel: Probabilistic Models for the Guarded Com-mand Language, Science of Computer Programming, Vol. 28, No. 2/3, pp171-192, 1997.[Henn88] M. Hennessy: Algebraic Theory of Processes, MIT Press, Boston, Mass.,1988.[HeMi85] M. Hennessy, R. Milner: Algebraic Laws for Nondeterminism and Concur-rency, Journal of the ACM, Vol. 32, pp 137-161, 1985.[HHK95] M. Henzinger, T. Henzinger, P. Kopke: Computing Simulations on Finiteand In�nite Graphs, Proc. FOCS'95, pp 453-462, 1995.

328 BIBLIOGRAPHY[HHW97] T. Henzinger, P. Ho, H. Wang-Toi: HYTECH: a Model Checker for HybridSystems, Proc. CAV'97, Lecture Notes in Computer Science, Vol. 1254, pp460-463, 1997.[Herm98] H. Hermanns: Interactive Markov Chains, Ph.D.Thesis, Universit�atErlangen-N�urnberg, 1998.[HHM98] H. Hermanns, U. Herzog, V. Mertsiotakis: Stochastic Process Algebras:between LOTOS and Markov Chains, Comp. Netw. and ISDN Syst.,Vol. 9/10, pp 901-924, 1998.[Herz90] U. Herzog: Formal Description, Time and Performance Analysis { aFramework, in \Entwurf und Betrieb verteilter Systeme", Informatik Fach-berichte 264, Springer, 1990.[Hill94] J. Hillston: A Compositional Approach to Performanec Modelling,Ph.D.Thesis, University Edinburgh, 1994; published in Cambridge Uni-versity Press (1996).[Hoar85] C.A.R. Hoare: Communicating Sequential Processes, Prentice Hall, 1985.[HuKw97] M. Huth, M. Kwiatkowska: Quantitative Analysis and Model Checking,Proc. LICS'97, IEEE Computer Society Press, 1997.[HuKw98] M. Huth, M. Kwiatkowska: Comparing CTL and PCTL on LabelledMarkov Chains, Proc. PROCOMET'98, Chapman & Hall, 1998.[HuTi92] T. Huynh, L. Tian: On some Equivalence Relations for Probabilistic Pro-cesses, Fundamenta Informaticae, Vol. 17, pp 211-234, 1992.[Heck95] R. Heckmann: Spaces of Valuations, Technical Report A 09/95, FB 14Informatik, Universit�at des Saarlandes.[HoPe94] G. Holzmann, D. Peled: An Improvement in Formal Veri�cation, Proc. 7thInternational Conference on Formal Description Techniques, pp 177-194,1994.[IyNa96] P. Iyer, M. Narasimha: \Almost Always" and \De�nitely Sometime" arenot enough: Probabilistic Quanti�ers and Probabilistic Model-Checking,Techn. Report, TR-96-16, North Carolina State University, 1996.[IyNa97] P. Iyer, M. Narasimha: Probabilistic Lossy Channel Systems, Proc. TAP-SOFT'97, Lecture Notes in Computer Science, Vol. 1214, pp 667-681, 1997.[Jone90] C. Jones: Probabilistic Non-Determinism, Ph.D.Thesis, University of Ed-inburgh, 1990.[JoPl89] C. Jones, G.D. Plotkin: A Probabilistic Powerdomain on Evaluations,Proc. LICS'89, pp 186-195, 1989.[Jons91] B. Jonsson: Simulations between Speci�cations of Distributed Systems,Proc. CONCUR'91, Lecture Notes in Computer Science, Vol. 527, pp 346-360, 1991.[JHP89] B. Jonsson, C. Hussain Khan, J. Parrow: Implementing a Model Check-ing Algorithm by Adapting Existing Automated Tools, Proc. AutomaticVeri�cation Methods for Finite State Systems, Lecture Notes in ComputerScience, Vol. 407, pp 179-188, 1989.

BIBLIOGRAPHY 329[JHY94] B. Jonsson, C. Ho-Stuart, W. Yi: Testing and Re�nement for Nondeter-ministic and Probabilistic Processes, Proc. FTRTFT'94, Lecture Notes inComputer Science, Vol. 863, pp 418-430, 1994.[JoLa91] B. Jonsson, K.G. Larsen: Speci�cation and Re�nement of ProbabilisticProcesses, Proc. LICS'91, pp 266-277, 1991.[JoYi95] B. Jonsson, W. Yi: Compositional Testing Preorders for Probabilistic Pro-cesses, Proc. LICS'95, pp 431-443, 1995.[JoSm90] C. Jou, S. Smolka: Equivalences, Congruences and Complete Axiomati-zations for Probabilistic Processes, Proc. CONCUR'90, Lecture Notes inComputer Science, Vol. 458, pp 367-383, 1990.[KaSm83] P. Kannelakis, S. Smolka: CCS Expressions, Finite State Processes andThree Problems of Equivalence, Proc. 2nd ACM Symposium on the Prin-ciples of Distributed Computing, pp 228-240, 1983. The full version withthe same title has appeared in Information and Computation, Vol. 86, pp43-68, 1990.[Karp91] R. Karp: An Introduction to Randomized Algorithms, Discrete AppliedMathematics, Vol. 34, pp 191-201, 1991.[Kato96] J. Katoen: Quantitative and Qualitative Extensions of Event Structures,Ph.D.Thesis, Universiteit Twente, 1996.[KLL94] J. Katoen, R. Langerak, D. Latella: Modelling Systems by ProbabilisticProcess Algebras: an Event Structure Approach, in Formal DescriptionTechniques VI, Vol. C 22 of IFIP Transactions, North-Holland, pp 253-268, 1994.[Kell76] R. Keller: Formal Veri�cation of Parallel Programs, Communications ofthe ACM, Vol. 7(19), pp 561-572, 1976.[Koze79] D. Kozen: Semantics for Probabilistic Programs, Proc. 20th IEEE Sym-posium on Foundations of Computer Science, 1979. The full version withthe same title has appeared in Journal of Computer and System Science,Vol. 22, pp 328-350, 1981.[Koze83] D. Kozen: Results on the Propositional Mu-Calculus, Theoretical Com-puter Science, Vol. 27, No. 3, pp 333-354, 1983.[Koze85] D. Kozen: A Probabilistic PDL, Journal of Computer and System Sci-ences, Vol. 30, 1985.[Knut73] D. Knuth: Sorting and Searching, Vol. 3 of \The Art of Computer Pro-gramming", Addison-Wesley, 1973.[Kura56] K. Kuratowski: Sur une m�ethode de m�etrisation compl�ete des certainsespaces d'ensembles compacts, Fundamentae Mathematicae 43, pp 114-138, 1956.[KwNo96] M. Kwiatkowska, G. Norman: Probabilistic Metric Semantics for a simpleLanguage with Recursion, Proc. MFCS'96, Lecture Notes in ComputerScience, Vol. 1113, pp 419-430, 1996.[KwNo98a] M. Kwiatkowska, G. Norman: A Testing Equivalence for Reactive Prob-abilistic Processes, Proc. EXPRESS'98, Electronic Notes in TheoreticalComputer Science, Vol. 16, 1998.

330 BIBLIOGRAPHY[KwNo98b] M. Kwiatkowska, G. Norman: A Fully Abstract Metric-Space DenotationalSemantics for Reactive Probabilistic Processes, Proc. COMPROX'98, Elec-tronic Notes in Theoretical Computer Science, Vol. 13, 1998.[Kwia89] M. Kwiatkowska: Survey of Fairness Notions, Information and SoftwareTechnology, Vol. 31, No. 7, pp 371-386, 1989.[LPV94] Y. Lai, M. Pedram, B. Vrudhula: Edge-Valued Binary Decision Diagramsfor Integer Linear Programming, Spectral Transformation, and FunctionDecomposition, IEEE Transactions on CAD, Vol. 13, No. 8, pp 959-975,1994.[Lamp77] L. Lamport: Proving the Correctness of Multiprocess Programs, IEEETransactions on Software Engineering, Vol. 3, pp 125-143, 1977.[Lamp80] L. Lamport: Sometimes is Sometimes \Not Never" { on the TemporalLogic of Programs, Proc. POPL'80, pp 174-185, 1980.[Lamp94] L. Lamport: The Temporal Logic of Actions, ACM Transactions on Pro-gramming Languages and Systems, Vol. 16, No. 3, pp 872-923, 1994.[LPY97] K. Larsen, P. Pettersson, W. Yi: UPPAAL: Status & Developments,Proc. CAV'97, Lecture Notes in Computer Science, Vol. 1254, pp 456-459,1997.[LaSk89] K. Larsen, A. Skou: Bisimulation through Probabilistic Testing, Proc.POPL'89, 1989. The full version with the same title has appeared in In-formation and Computation, Vol. 94, pp 1-28, 1991.[LaSk92] K. Larsen, A. Skou: Compositional Veri�cation of Probabilistic Processes,Proc. CONCUR'92, Lecture Notes in Computer Science, Vol. 630, pp 456-471, 1992.[LNS82] J. Lassez, V. Nguyen, E. Sonenberg: Fixed Point Theorems and Semantics:a Folf Tale, Information Processing Letters, Vol. 14, No. 3, pp 112-116,1982.[LSP81] D. Lehmann, A. Pnueli, J. Stavi: Impartiality, Justice and Fairness: TheEthics of Concurrent Termination, Proc. ICALP'81, Lecture Notes in Com-puter Science, Vol. 115, Springer, 1981.[LeRa81] D. Lehmann, M. Rabin: On the Advantage of Free Choice: a Symmet-ric and Fully Distributed Solution to the Dining Philosophers Problem,Proc. POPL'81, pp 133-138, 1981.[LeSh82] D. Lehmann, S. Shelah: Reasoning with Time and Chance, Informationand Control, Vol. 53, pp 165-198, 1982.[LiPn85] O. Lichtenstein, A. Pnueli: Checking that Finite State Concurrent Pro-grams Satisfy Their Linear Speci�cation, Proc. POPL'85, pp 97-107, 1985.[LPZ85] O. Lichtenstein, A. Pnueli, L. Zuck: The Glory of the Past, in \Logicsof Programs", Lecture Notes in Computer Science, Vol. 193, pp 196-218,1985.[Lowe93a] G. Lowe: A Probabilistic Model of Timed CSP, Ph.D.Thesis, Oxford Uni-versity, 1991.

BIBLIOGRAPHY 331[Lowe93b] G. Lowe: Representing Nondeterminism and Probabilistic Behaviour inReactive Processes, Techn. Report PRG-TR-11-93, Oxford University,1993.[Lowe95] G. Lowe: Probabilistic and Prioritized Models of Timed CSP, TheoreticalComputer Science, Vol. 138, pp 315-352, 1995.[Lync95] N. Lynch: Distributed Algorithms, Morgan Kaufmann Publishers, inc.,1995.[LSS94] N. Lynch, I. Saias, R. Segala: Proving Time Bounds for Randomized Dis-tributed Algorithms, Proc. PODC'94, pp 314-323, 1994.[LyVa91] N. Lynch, F. Vaandrager: Forward and Backward Simulations for Timing-Based Systems, Proc. REX Workshop'91, Lecture Notes in Computer Sci-ence, Vol. 600, pp 397-446, 1991.[MajC88] M. Majster-Cederbaum: On the Uniqueness of Fixed Points of Endofunc-tors in a Category of Complete Metric Spaces, Information ProcessingLetters, Vol. 29, pp 277-281, 1988.[MajC89] M. Majster-Cederbaum: The Contraction Property is Su�cient to Guar-antee the Uniqueness of Fixed Points of Endofunctors in a Category ofComplete Metric Spaces, Information Processing Letters, Vol. 33, pp 15-19, 1988.[MaZe91] M. Majster-Cederbaum, F. Zetzsche: Towards a Foundation for Semanticsin Complete Metric Spaces, Information and Computation, Vol. 90, No. 2,pp 217-243, 1991.[MPM78] V. Malhotra, M. Pramodh Kumar, S. Maheshwari: An O(jV 3j) Algorithmfor Finding Maximum Flows in Networks, Computer Science Program,Indian Institute of Technology, Kanpur 208016, 1978.[MaPn90] Z. Manna, A. Pnueli: A Hierarchy of Temporal Properties,Proc. PODC'90, pp 377-408, 1990.[MaPn92] Z. Manna, A. Pnueli: The Temporal Logic of Reactive and ConcurrentSystems: Speci�cation, Springer-Verlag, 1992.[MaPn95] Z. Manna, A. Pnueli: Temporal Veri�cation of Reactive Systems: Safety,Springer-Verlag, 1995.[MaWo84] Z. Manna, P. Wolper: Synthesis of Communication Processes from Tem-poral Logic Speci�cations, ACM Trans. Programming Languages and Sys-tems, Vol. 6 (1), pp 68-93, 1984.[McLan71] S. MacLane: Categories for the Working Mathematician, Graduate Textsin Mathematics, Springer, 1971.[MBC84] M. Ajmone Marsan, G. Balbo, G. Conte: A Class of Generalized StocahsticPetric Nets for the Performance Evaluation of Multiprocessor Systems,ACM Transactions on Computer Systems, Vol. 2, No. 2, pp 93-122, 1984.[McMil92] K. McMillan: Symbolic Model Checking, Ph.D.Thesis, Carnegie MellonUniversity, Pittsburgh, 1992; published in Kluwer Academic Publishers(1993).

332 BIBLIOGRAPHY[McMil92a] K. McMillan: Using Unfoldings to Avoid the State Explosion Problem inthe Veri�cation of Asynchronous Circuits, Proc. CAV'92, Lecture Notes inComputer Science, Vol. 663, pp 164-177, 1992.[McIv98] A. McIver: Reasoning about E�ciency within a Probabilistic Mu-Calculus,Proc. PROBMIV'98, Techn. Report CSR-98-4, University Birmingham, pp45-58, 1998.[MKR92] M. Mercer, R. Kapur, D. Ross: Functional Approaches to Generating Or-derings for E�cient Symbolic Representation, Proc. ACM/IEEE DAC'92,pp 614-619, 1992.[Moll82] K. Molloy: Performance Analysis Using Stochastic Petri Nets, IEEETrans. on Computers, Vol. C-31 (9), pp 913-917, 1982.[MoMcI97] C. Morgan, A. McIver: A Probabilistic Temporal Calculus based on Ex-pectations, Proc. Formal Methods Paci�c'97; also available as TechnicalReport TR-13-97, University of Oxford, 1997.[MMS+94] C. Morgan, A. McIver, K. Seidel, J. Sanders: Re�nement-Oriented Prob-ability for CSP, Techn. Report TR-12-94, Oxford University, to appear inFormal Aspects of Computing.[MMS96] C. Morgan, A. McIver, K. Seidel: Probabilistic Predicate Transformers,ACM Transactions on Programming Languages and Systems, Vol. 8, No. 3,pp 325-353, 1996.[MoRa95] R. Motwani, P. Raghavan: Randomized Algorithms, Cambridge UniversityPress, 1995.[Miln80] R. Milner: A Calculus of Communicating Systems, Lecture Notes in Com-puter Science, Vol. 92, 1980.[Miln83] R. Milner: Calculi for Synchrony and Asynchrony, Theoretical ComputerScience, Vol. 25, pp 269-310, 1983.[Miln89] R. Milner: Communication and Concurrency, Prentice Hall, 1989.[NiRe73] I. Nievergelt, E. Reinhold: Binary Search Trees of Bounded Balance,SICOMP 2, pp 33-43, 1973.[dNHe83] R. de Nicola, M. Hennessy: Testing Equivalences for Processes, TheoreticalComputer Science, Vol. 34, pp 83-133, 1983.[dNVa90] R. de Nicola, F. Vaandrager: Three Logics for Branching Bisimulation,Proc. LICS'90, pp 118-129, 1990.[NRS+90] X. Nicollin, J. Richier, J. Sifakis, J. Voiron: ATP: an Algebra of TimedProcesses, Proc. IFIP TC2 Working Conference on Programming Conceptsand Methods, Sea of Gallilea, 1990.[Niva79] M. Nivat: In�nite Words, In�nite Trees, In�nite Computations, Founda-tions of Computer Science III, Mathematical Centre Tracts 109, pages3-52, 1979.[Niwi88] D. Niwinski: Fixed Points Vs. In�nite Generation, Proc. LICS'88, 1988.[Norm97] G. Norman: Metric Semantics for Reactive Probabilistic Processes, Ph.D.Thesis, University Birmingham, 1997.

BIBLIOGRAPHY 333[N�udF95] M. N�u~nez, D. de Frutos: Testing Semantics for Probabilistic LOTOS , inFormal Description Techniques VIII, pp 365-380, Chapman & Hall, 1995.[NdFL95] M. N�u~nez, D. de Frutos, L. Llana: Acceptance Trees for Probabilistic Pro-cesses, Proc. CONCUR'95, Lecture Notes in Computer Science, Vol. 962,pp 249-263, 1995.[OwGr76] S. Owicki, D. Gries: An Axiomatic Proof Technique for Parallel ProgramsI, Acta Informatica, Vol. 6, pp 319-340, 1976.[OwLa82] S. Owicki, L. Lamport: Proving Liveness Properties of Concurrent Pro-grams, ACM Transactions on Programming Languages and Systems,Vol. 4(3), pp 455-495, 1982.[PaTa87] R. Paige, R. Tarjan: Three Partition Re�nement Algorithms, SIAM Jour-nal of Computing, Vol. 16, No. 6, pp 973-989, 1987.[Park74] D. Park: Finiteness is Mu-ine�able, Theory of Computation Report No. 3,The University of Warwick, 1974. Published in Theoretical Computer Sci-ence, Vol. 3(2), pp 173-181, 1976.[Park81] D. Park: Concurrency and Automata on In�nite Sequences, Proc. 5thGI Conference, Lecture Notes in Computer Science, Vol. 104, pp 167-183,1981.[Pele93] D. Peled: All from One, One from All: On Model Checking Using Rep-resentatives, Proc. CAV'93, Lecture Notes in Computer Science, Vol. 697,pp 409-423, 1993.[PPH96] D. Peled, V. Pratt, G. Holzmann (eds): Proc. DIMACSWorkshop on Par-tial Order Methods in Veri�cation (POMIV'96), Americal MathematicalSociety, Series in Discrete Mathematics and Theoretical Computer Science,Bd. 29, 1996.[PSS98] A. Philippou, O. Sokolsky, I. Lee: Weak Bisimulation for ProbabilisticSystems, submitted for publication.[Plot81] G. Plotkin: A Structural Approach to Operational Semantics, Techn. Re-port DAIMI FN-19, Computer Science Department, Aarhus University,1981.[Pnue77] A. Pnueli: The Temporal Logic of Programs, Proc. FOCS'77, pp 46-57,1977.[Pnue83] A. Pnueli: On the Extremely Fair Treatment of Probabilistic Algorithms,Proc. 15th ACM Symposium on Theory of Computing, 1983.[PnRo89] A. Pnueli, R. Rosner: On the Synthesis of a Reactive Module,Proc. POPL'89, pp 191-201, 1989.[PnZu86a] A. Pnueli, L. Zuck: Veri�cation of Multiprocess Probabilistic Protocols,Distributed Computing, Vol. 1, No. 1, pp 53-72, 1986.[PnZu86b] A. Pnueli, L. Zuck: Probabilistic Veri�cation by Tableaux, Proc. LICS'86,pp 322-331, 1986.[PnZu93] A. Pnueli, L. Zuck: Probabilistic Veri�cation, Information and Computa-tion, Vol. 103, pp 1-29, 1993.

334 BIBLIOGRAPHY[PoSe95] A. Pogosyants, R. Segala: Formal Veri�cation of Timed Properties of Ran-domized Distributed Algorithms, Proc. PODC'95, 1995.[Prat76] V. Pratt: Semantical Considerations of Floyd-Hoare Logic, Proc.FOCS'76, pp 109-121, 1976.[Prat81] V. Pratt: A Decidable Mu-Calculus, Proc. FOCS'81, pp 421-427, 1981.[Pria96] C. Priami: Stochastic �-calculus with general distributions, Proc. 4thInt. Workshop on Process Algebra and Performance Modelling, pp 41-57.C.L.U.T. Press, 1996.[PuSu89] S. Purushothaman, P. Subrahmanyam: Reasoning about Probabilistic Be-haviour in Concurrent Systems, IEEE Transaction on Software Engineer-ing, SE-13 (6), 1989.[Pute94] M. Puterman: Markov Decision Processes, John Wiley and Sons, 1994.[QuSi82] J. Queille, J. Sifakis: Speci�cation and Veri�cation of Concurrent Systemsin CESAR, Proc. 5th International Symposium on Programming, LectureNotes in Computer Science, Vol. 137, pp 337-351, 1982.[QuSi83] J. Queille, J. Sifakis: Fairness and Related Properties in Transition Sys-tems { a Temporal Logic to deal with Fairness, Acta Informatica, Vol. 19,pp 195-220, 1983.[Rabi63] M. Rabin: Probabilistic Automata, Information and Control, Vol. 6, 1963.[Rabi76a] M. Rabin: N -Process Mutual Exclusion with Bounded Waiting by 4 logNShared Variables, Journal of Computer and System Science, Vol. 25, pp66-75, 1976.[Rabi76b] M. Rabin: Probabilistic Algorithms, in \Algorithms and Complexity: Re-cent Results and New Directions" (J. Traub, ed.), Academic Press, NewYork, pp 21-40, 1976.[Rabi80] M. Rabin: Probabilistic Algorithms for Testing Primality, J. Number The-ory, Vol. 12, pp 128-138,1980.[Ross83] S. Ross: Introduction to Stochastic Dynamic Programming, AcademicPress, New York, 1983.[Rude93] R. Rudell: Dynamic Variable Ordering for Ordered Binary Decision Dia-grams, Proc. IEEE ICCAD'93, pp 42-47, 1993.[Rudi66] W. Rudin: Real Complex Analysis, McGraw-Hill, 1966.[RuTu93] J.J.M.M. Rutten, D. Turi: On the Foundations of Final Semantics: Non-Standard Sets, Metric Spaces and Partial Orders, Proc. REXWorkshop'92,Lecture Notes in Computer Science, Vol. 666, pp 477-530, 1993.[Safr88] S. Safra: On the Complexity of !-Automata, Proc. FOCS'88, pp 319-327,1988.[SaFu96] T. Sasao, M. Fujita: Representations of Discrete Functions, Kluwer Aca-demic Publishers, 1996.[Schr87] A. Schrijver: Theory of Linear and Integer Programming, J. Wiley & Sons,1987.

BIBLIOGRAPHY 335[Seid92] K. Seidel: Probabilistic Communicating Processes, Ph.D.Thesis, OxfordUniversity, 1992.[Seid95] K. Seidel: Probabilistic Communicating Processes, Theoretical ComputerScience, Vol. 152, pp 219-249, 1995.[Seidl96] H. Seidl: A Modal Mu-Calculus for Durational Transition Systems, Proc.LICS'96, pp 128-137, 1996.[Sega95a] R. Segala: Modeling and Veri�cation of Randomized Distributed Real-Time Systems, Ph.D.Thesis, Massachusetts Institute of Technology, 1995.[Sega95b] R. Segala: A Compositional Trace-Based Semantics for Probabilistic Au-tomata, Proc. CONCUR'95, Lecture Notes in Computer Science, Vol. 962,pp 234-248, 1995.[Sega96] R. Segala: Testing Probabilistic Automata, Proc. CONCUR'96, LectureNotes in Computer Science, Vol. 1119, pp 299-314, 1996.[SeLy94] R. Segala, N. Lynch: Probabilistic Simulations for Probabilistic Processes,Proc. CONCUR'94, Lecture Notes in Computer Science, Vol. 836, pp 481-496, 1994. The full version with the same title has appeared in NordicJournal of Computing, Vol. 2 (2), pp 250-273, 1995.[SiCl86] A. Sistla, E. Clarke: Complexity of Propositional Temporal Logics, Journalof the ACM, Vol. 32(3), pp 733-749, 1986.[SVW85] A. Sistla, M. Vardi, P. Wolper: The Completion Problem for B�uchi Au-tomata with Applications to Temporal Logic, Proc. ICALP'85, LectureNotes in Computer Science, Vol. 194, pp 465-474, 1985.[SCV92] R. Sisto, L. Ciminiera, A. Valenzo: Probabilistic Characterization of Alge-braic Protocol Speci�cations, Proc. 12th International Conference on Dis-tributed Computing Systems, pp 260-268, IEEE Comp. Soc. Press, 1992.[SmSt90] S. Smolka, B. Ste�en: Priority as Extremal Probability, Proc. CON-CUR'90, Lecture Notes in Computer Science, Vol. 458, pp 456-466, 1990.The full version with the same title has appeared in Formal Aspects ofComputing, Vol. 8, pp 585-606, 1996.[SmPl82] M. Smyth, G. Plotkin: The Category-Theoretic Solution of RecursiveEquations, SIAM J. Comput., Vol. 11, pp 761-783, 1982.[StWa91] C. Stirling, D. Walker: Local Model Checking in the Modal Mu-Calculus,Theoretical Computer Science, Vol. 89, pp 161-177, 1991.[StVa98] M. Stoelinga, F. Vaandrager: Root Contention in IEEE 1394, submittedfor publication.[StEm84] R. Street, E.A. Emerson: An Automata Theoretic Decision Procedure forPropositional Mu-Calculus, Proc. ICALP'84, Lecture Notes in ComputerScience, Vol. 172, pp 465-472, 1984.[SLG94] V. Stoltenberg-Hansen, I. Lindstr�om, E. Gri�or: Mathematical Theory ofDomains, Cambridge University Press, 1994.[Stoy77] J. Stoy: Denotational Semantics: The Scott-Strachey Approach to Pro-gramming Language Theory. MIT Press, Cambridge, 1977.

336 BIBLIOGRAPHY[Suth77] W. Sutherland: Introduction to Metric and Topological Spaces, OxfordUniversity Press, 1977.[Thom90] W. Thomas: Automata on In�nite Objects, Handbook of Theoretical Com-puter Science, Vol. B, Elsevier Science Publishers, Amsterdam, pp 135-191,1990.[Thom96] W. Thomas: Languages, Automata, and Logic, Techn. Report 9607, Chris-tian Albrechts Universit�at Kiel, 1996.[Toft90] C. Tofts: A Synchronous Calculus of Relative Frequency, Proc. CON-CUR'90, Lecture Notes in Computer Science, Vol. 458, pp 467-480, 1990.[Toft94] C. Tofts: Processes with Probabilities, Priority and Time, Formal Aspectsof Computing, Vol. 6, No. 5, 1994.[Valm94] A. Valmari: State of the Art Report: Stubborn Sets, Petri Net Newsletters,Vol. 46, pp 6-14, 1994.[Vard85] M. Vardi: Automatic Veri�cation of Probabilistic Concurrent Finite-StatePrograms, Proc. FOCS'85, pp 327-338, 1985.[Vard96] M. Vardi: An Automata-Theoretic Approach to Linear Temporal Logic,in \Logics for Concurrency { Structure versus Automata" (F. Moller, G.Birtwistle, eds.), Lecture Notes in Computer Science, Vol. 1043, pp 238-265, 1996.[VaWo86] M. Vardi, P. Wolper: An Automata-Theoretic Approach to AutomaticProgram Veri�cation, Proc. LICS'86, pp 332-344, 1986.[VaWo94] M. Vardi, P. Wolper: Reasoning about In�nite Computations, Informationand Computation, Vol. 115 (1), pp 1-37, 1994.[Varg62] R. Varga: Matrix Iterative Analysis, Prentice-Hall, Inc., Englewood Cli�s,New Jersey, 1962.[dVin98] E. de Vink: On a Functor for Probabilistic Bisimulation and Preservationof Weak Pullbacks, Techn. Report, Vrije Universiteit Amsterdam, 1998.[dViRu97] E. de Vink, J. Rutten: Bisimulation for Probabilistic Transition Systems:A Coalgebraic Approach, Proc. ICALP'97, Lecture Notes in ComputerScience, Vol. 1256, pp 460-470, 1997.[Wins84] G. Winskel: Synchronisation Trees, Theoretical Computer Science, Vol. 34,pp 33-82, 1984.[WVS83] P. Wolper, M. Vardi, A. Sistla: Reasoning about In�nite ComputationPaths, Proc. FOCS'83, pp 185-194, 1983.[WSS94] S. Wu, S. Smolka, E. Stark: Composition and Behaviours of ProbabilisticI/O-Automata, Proc. CONCUR'94, Lecture Notes in Computer Science,Vol. 836, 1994. The full version with the same title has appeared in Theo-retical Computer Science, Vol. 176, pp 1-38, 1997.[YCDS94] S. Yuen, R. Cleaveland, Z. Dayar, S. Smolka: Fully Abstract Characteriza-tions of Testing Preorders for probabilistic Processes, Proc. CONCUR'94,Lecture Notes in Computer Science, Vol. 836, pp 497-512, 1994.[Yi91] W. Yi: A Calculus of Real Time Systems, Ph. D. Thesis, Chalmers Uni-versity, 1991.

BIBLIOGRAPHY 337[Yi94] W. Yi: Algebraic Reasoning for Real-Time Probabilistic Processes withUncertain Information, Proc. FTRTFT'94, Lecture Notes in ComputerScience, Vol. 863, pp 680-693, 1994.[YiLa92] W. Yi, K. Larsen: Testing Probabilistic and Nondeterministic Processes,Proc. Protocol, Speci�cation, Testing, Veri�cation XII, pp 47-61, 1992.[YoGr73] D. Young, R. Gregory: A Survey of Numerical Mathematics, Vol. II,Addison-Wesley Publishing Company Reading, Massachussetts, 1973.[Zhao96] X. Zhao: Veri�cation of Arithmethic Circuits, Ph.D.Thesis, Carnegie Mel-lon University, 1996.

