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Chapter 1

Introduction

Parallel systems (such as operating systems, telecommunication systems, aircraft con-
trolling systems, banking systems, etc.) arise in many industrial applications. For ap-
plications where errors might be expensive and lead to dangerous or even catastrophal
situations a precise analysis of the possible system behaviours is an important task. The
quality of a parallel system depends on several properties, typically classified into safety
properties which state that “nothing bad happens” (e.g. mutual exclusion, deadlock free-
dom or the computation of sufficiently exact numerical values) and liveness or progress
properties which assert that “something good will eventually happen” (e.g. termination,
starvation freedom) [OwLa82]. In realistic applications, not only the functionality of a
parallel system is important, also quantitative aspects (such as time or probabilities) play
a crucial role. For instance, in practice, it is useless to establish a property like “each
request will eventually be answered” as there is no bound on how much time will pass
between a request and the response. Typically, one aims at a property like “each request
will eventually be answered within the next 5 seconds”. Whether or not a property of
this type can be established not only depends on the design of the system but also on
the reliability of the interface with the environment or the resources that the system uses.
For instance, if the response is transmitted via an uncertain medium that might loose
messages a property as above can never hold. However, the cases where a physical error
happens might be rare. If the failure rates are known (or can be estimated by experimen-
tal results), it makes sense to reason about the frequencies for certain events, i.e. to deal
with quantitative properties like “there is a 95% chance that the request will be answered
within the next 5 seconds”.

Traditionally, the modelling of parallel systems focusses on the functional behaviour but
abstracts from quantitative aspects like time, performance or informations about the fre-
quency of certain system behaviours. In this thesis, we shrink our attention to probabilis-
tic phenomena and consider methods for specifying and validating probabilistic systems,
i.e. parallel systems where probabilities are used e.g. to model uncertainties or randomized
behaviour.

11



CHAPTER 1. INTRODUCTION

1.1 Verification methods

We first give a brief summary over the general techniques for analyzing parallel sys-
tems. These techniques are commonly used for reasoning about the functional behaviour.
Suitable adaptions of these methods can be used to treat various types of quantitative
behaviour; in particular, they can be applied to analyze probabilistic systems.

A widespread technique for analyzing the properties of a program is testing which means to
observe the program during the execution with certain well-chosen inputs and to compare
the reaction with the desired behaviour. Since testing covers only a (small) subset of the
possible instances of system behaviours it can only detect the presence of errors but not the
absence of errors. In this thesis, we consider the complementary technique: wverification
which aims at a formal proof for the correctness of a program.! This is typically achieved
either by deductive methods or by model checking. The deductive methods are based on
a manual composition of a program and a correctness proof using axioms and inference
rules for an appropriate specification formalism. In general, these methods require user
intervention to a large degree and are very time consuming. Model checking means an
algorithmic verification method that takes (an abstract description of) a program and its
specification as its input and returns the answer “yes” or “no” depending on whether or
not the program meets the specification [CIEm81, QuSi82, CES83|. Thus, the methods
based on model checking automate the task of validating programs; and hence, they
are user independent to a large extent. While the deductive methods are applicable to
systems of arbitrary size (even infinite systems), the model checking approach is (in most
cases) limited to finite-state systems.? Nevertheless, a large class of parallel processes that
appear in realistic applications can be described — with the help of several abstraction
techniques — by a system with a finite state space.?

Specification formalisms: Any verification method requires a precise description of the
desirable system behaviour by a formal specification. Two general frameworks to specify
the required properties can be identified:

e the specification by a model that tells how the system should behave,
e the formalization of the desirable properties by formulas of some logic.

The first framework is based on a homogenous technique where the program and speci-
fication are described in the same formalism and compared via an tmplementation rela-
tion, i.e. a binary relation on the objects of that formalism (the “models”). The logical
framework focusses on a heterogenous technique where different formalisms are used to
represent the program and the specification. The program is described by a model (as in
the homogenous approach) while the specification is a formula of some program logic.

Branching time versus linear time:* Both the homogenous and the heterogenous

'While testing is performed by exercising the (real) implementation the verification methods work
with an abstraction (a model) of the program. Hence, the verification methods can only assure that the
abstract model fulfills the required properties; thus, they can only be as good as the abstraction is.

2This observation is clear from the fact that a wide range of verification problems for systems of arbi-
trary size is undecidable (consider e.g. the halting problem); and hence, cannot be solved automatically.

3The benefits of the model checking approach have been documented from the reports on implemented
tools, see e.g. [CPS90, McMil92, HoPe94, CCM ™95, Camp96, HHW97, LPY97, HarG98].

*A detailed discussion about the branching time and linear time view can be found in [Lamp80,



1.1. VERIFICATION METHODS

framework reason about the “behaviours” of parallel systems. In the linear time view,
the behaviour is determined by the possible executions ignoring the possible branches
in the intermediate states. The branching time view takes the branching structure (the
possible steps) of the intermediate states into account and observes a process by means
of a “push-button-experiment” .’

1.1.1 Transition systems

Models describe an abstraction of a system by representing the states and the pos-
sible transitions between them. One of the standard models are transition systems
[Kell76, Plot81] that describe the system behaviour by a directed graph. The nodes rep-
resent the states; edges stand for the possible state changes (transitions). The branches
(edges) in a state (node) represent the possible steps in that state.> The executions (se-
quences of states) are given by the paths through this graph. In the literature, several
types of transition systems are proposed. For instance, the states can be labelled by as-
sertions (e.g. propositional or first order logical formulas that state something about the
values of the program and control variables), the transitions can be equipped with action
names or boolean guards. In transition systems, asynchronous parallelism is modelled by
interleaving and fairness. The use of interleaving can be motivated by the observation that
the effect of the parallel execution al|b of two “independent” actions a and b (each of them
on its own processor) is the same as if a and b are executed in any order on one processor.
Hence, from the interleaving point of view, we have the “equality” al|b = a;b + b;a.” In

a b
b a

Figure 1.1: a||b = a;b + bja

other words, interleaving reduces parallelism to the non-deterministic choice that decides
which subprocess performs the next step. One might think of this choice to be resolved by
the “environment” (e.g. another program that runs in parallel or a user) whose decisions
are (in some appropriate sense) fair with any subprocess. This kind of fairness is often
called process fairness. Intuitively, process fairness rules out the pathological possibility
that some subprocess is permanently denied to perform the next step. In the literature,
various types of fairness are considered.® All fairness notions have in common that they

EmHag86, dBdRR88].
SFor this, the possible steps in a state are viewed as buttons. The observer selects one of these buttons,
the system executes the corresponding step and the “push-button-experiment” restarts in the new state.
6In the classical approach, the branches stand for non-deterministic alternatives. When dealing with
probabilistic phenomena, the branches can also stand for the alternatives of a probabilistic choice.
"Here, ; denotes sequential composition and + non-deterministic choice.
8For a survey of fairness notions see e.g. [LSP81, QuSi83, Fran88, Kwiag9).
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make restrictions concerning the non-deterministic choices in the infinite executions (in-
finite paths in the transition system). They cannot affect the safety properties but might
be essential for establishing liveness properties.

1.1.2 Specifying parallel systems with process calculi

Homogenous techniques are mostly used in the context with composition operators pro-
vided by some process calculus (also often called process algebra). Process calculi are
specification languages that describe the reactive behaviour of parallel systems. The
main ingedrients of such process calculi are operators for modelling parallel composition
||, non-deterministic choice +, sequential composition ; and recursion.” The main dis-
tinction mark for the process calculi proposed in the literature is the type of parallelism.
Some are asynchronous calculi, such as Milner’s CCS [Miln80|, Hoare’s CSP [Hoar85| or
Bergstra & Klop’s ACP [BeKl84], where the components work time-independently and
communicate via certain channels. Others, such as Milner’s SCCS [Miln83] or ESTEREL
[BeGon92|, are based on synchronous parallelism where the steps of the parallel compo-
sition are composed by “one-time-steps” of its subprocesses. The “one-time-steps” can
either by single atomic steps (as in the case of SCCS) or sequences of atomic steps (as in
the case of ESTEREL).

Implementation relations: Typically, process algebras are supplied with an opera-
tional semantics based on transition systems!? together with an implementation relation,
a binary relation on transition systems that formalizes what is meant for a program to
correctly implement another one. The implementation relation makes it possible to com-
pare a program (the implementation) with its specification. For this, the implementation
P and the specification Q are described by terms of the process algebra and P is said to
be correct with respect to the specification Q iff P=<;,,,,Q for the chosen implementation
relation <,,,;.'' Process algebras equipped with a congruence (i.e. an implementation re-
lation <., that is preserved by the composition operators of the calculus) play a crucial
role for the design and analysis of parallel systems. Congruences are useful for the design
by stepwise refinement since they allow the replacement of the modules Pq,...,P, of a
“higher-level” process P by “lower-level” modules Qy, ..., Q, (provided that Q;=;,,P;,
i =1,...,n). Moreover, congruences can serve as basis for modular verification, i.e. the
separate verification of the program modules from which the correctness of the composed
process is derived using just the correctness of the modules but not any other knowledge
about the modules. Typically, such implementation relations are either equivalences or
preorders.!?

9To reason about quantitative properties (e.g. time or probabilities), such calculi can be extended
e.g. by operators that specify timeouts or delays or a probabilistic choice operator [GJS90, HaJo90,
NRS*90, Hans91, Yi91]. Further references to probabilistic process calculi are given in Section 1.2, page
22.

100ften, the terms of a process algebra are identified with the associated transition systems. In par-
ticular, the composition operators of the process algebra can also be viewed as operators for composing
transition systems.

1 Thus, verification amounts showing that P=;,,,;Q.

12Recall that a preorder is a reflexive and transitive relation. Both reflexity and transitivity seem to
be natural conditions that a relation which formalizes what is meant by “a process implements another
one” should have.
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e The equivalences can be interpreted in such a way that equivalent programs exhibit
the same “behaviour” with respect to an appropriate notion of behaviour.

e In most cases, the use of preorders is motivated by the assumption that the speci-
fication just tells which “behaviours” are allowed (but does not prescribe the exact
behaviour)!® but they can also serve as basis to compare the quantitive behaviour of
two systems, e.g. if they yield notions of “faster than” or “more reliable”.

Among the implementation relation that have proved most useful are bisimulation [Miln80,
Park81, Miln89] and simulation [Miln89, AbLa88, Jons91, LyVa91] relations, trace equiva-
lence [Hoar85|, failure equivalence [BHR84| and testing preorders [ANHe83]. Bisimulation
and simulation are based on the branching time view and establish a step-by-step corre-
spondence between two systems. As a classical representative for the linear time relations,
trace equivalence establishs a correspondence between the executions, but abstracts from
the possible branches in the intermediate states. The basic idea behind the testing pre-
orders is to define the process behaviour by means of its ability to pass tests. The tests
are special programs (described in terms of the underlying process calculus) that are ex-
ecuted in parallel with the given process. Especially the equivalences that are preserved
by the composition operators of the underlying process calculus (i.e. congruences) are
of great importance for the analysis since they can be used to reduce the state space
by abstraction. For this, equivalent states are identified and replaced by a single state.
The resulting quotient space might be much smaller'* and may even be finite for infinite
systems.

Strong and weak relations: Weak implementation relations are those that abstract
from internal computations while the strong implementation relations do not. Being
sensitive with respect to internal steps, in general, strong relations can only be established
for systems on the same level of abstraction (e.g. two implementations) while the weak
relations are appropriate to compare systems on different levels of abstraction (e.g. an
implementation and its specification).

Denotational semantics: Because of its declarative nature, the above mentioned oper-
ational semantics (which assigns to each term of the process calculus a transition system)
is often the one that a designer has in mind. While the operational semantics focusses
on the stepwise behaviour the main concepts of denotational semantics are composition-
ality and the use of fived point equations for modelling recursion.!® In many cases, the
use of fixed point theory requires methods of several mathematical disciplines (e.g. topol-
ogy, domain theory, category theory) and lead to a semantics that is hard to understand
for a non-mathematician. However, the denotational approach provides a much more
elegant technique to define the meanings of recursive (or repetitive) programs. Often,
denotational semantics are used to obtain a characterization of the implementation re-
lation associated with the operational semantics by means of a full abstraction result.
Full abstraction means that the denotational semantics of a program contains exactly the
information that is relevant for the chosen implementation relation (but abstracts from
all other details about the program). Full abstraction results can serve as basis for ver-

13In this case, the use of preorders can be viewed as a proof technique for establishing safety properties.

14See e.g. [CGT196] for an expressive example.

15The fixed point equations reflect our intuition that a recursive procedure and their body have the
same behaviour.
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ification methods'® or just help for a better understanding of the operational semantics
and the implementation relation. Moreover, being compositional, denotational semantics
allow for proofs by structural induction which is often a useful concept to establish a link
between several specification formalisms (e.g. some kind of logic or operational models).'"

1.1.3 The temporal logical approach

In the logical framework where the specification is a formula (or the conjunction of for-
mulas) and the system is described by a model (e.g. a transition system) verification
amouts showing that the formula ¢ evaluates to true when interpreted over the system.
In the literature, several logics are proposed to reason about parallel systems, such as
dynamic [Prat76], temporal [Pnue77] or modal [HeMi85, Koze85] logic. In this thesis,
we concentrate on the use of propositional temporal logic with future temporal modalities
like “eventually” & or “always” 0. We briefly sketch the basic ideas where we mainly
concentrate on those aspects that are relevant for the results of this thesis. Further details
can be found e.g. in [Emer90, MaPn92, CGL93, Lamp94, MaPn95].

Linear time logic LTL: In the linear time approach, formulas describe properties of
executions. Linear time formulas are built from atomic propositions (that make assertions
about the states, e.g. about the current values of the program or control variables), the
usual boolean combinators V, A, — and temporal operators. For instance, if crity, crit,
are atomic propositions stating that certain subprocesse P; and P, are in their critical
section then O(—crit; A —crity) stands for the safety property stating mutual exclusion.
To reason about quantitative aspects, e.g. time, special modalities like “sometimes within
the next k steps” O=* can be used, see e.g. [HaJo89, ACD90].!® For example, the formula
O(request — <& =5response) might be interpreted as the liveness property stating that any
request will answered within the next 5 time units. Linear time formulas are interpreted
over the executions (i.e. the paths in a transition system). For a process, a linear time
formula is viewed to be fulfilled if it holds even in a worst case (but realistic) scenario,
i.e. if it holds for all “possible” executions. In general, not all executions are viewed to
be possible, but only those that obey certain fairness conditions.

Branching time logic C'TL: Branching time logics allow quantification over the possible
futures which leads to formulas stating e.g. the existence or non-existence of an execution
with a certain property.!® Computation tree logic CTL introduced by Clarke & Emerson
[CIEm81] is the classical representative for branching time logics. C'TL distinguishes be-
tween state and path formulas. The state formulas subsume the propositional connectives

161t should be pointed out that the denotational approach can also be of importance for other practical
applications. Especially in the field of sequential programs (but also for other types of programs), the
procedural nature of denotational semantics can serve as a basis for a compiler. See e.g. [BCH98|.

17For example, in this thesis, we apply the denotational framework for showing that two implementation
relations coincide for a certain kind of processes.

18The interpretation of a “step” depends on the underlying system. A step might be one unit of
time or — if the system under consideration arises from the asynchronous parallel composition of several
subsystems — one can think of a step as the time taken by the slowest component to perform an atomic
action.

19Here, we assume the traditional (non-probabilistic) approach. In a probabilistic scenario, branching
time formulas might also reason about the probability of certain events. See Section 1.2.3.
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and basic temporal operators of the form “a path quantifier followed by a single temporal
modality” where the path quantifiers are V or 3 that range over all paths (executions)
and the temporal modalities are as in linear time logic.?® The logic CTL* [EmHag86] ex-
tends C'TL by allowing arbitrary linear time formulas to serve as path formulas; thus, it
subsumes LTL and CTL.

Model checking: For finite systems, model checking algorithms are developed for both
linear and branching time logic. While C'T'L model checking can be done in polynomial
time (even in time linear in the size of the system and in the length of the formula [CES83])
model checking for LTL and CTL* is PSPACE-complete [SiCl86] and can be done in time
exponential in the length of the formula and linear in the size of the system [LiPn85].%!
On the basis of decision procedures for the satisfiability problem of (linear or branching
time) temporal logic, the task for synthezising parallel systems from a given temporal
logical specification can be automated, see e.g. [EmCI82, MaWo84, AtEm89, PnRo89].

1.1.4 State explosion problem

The size (number of states in the transition system) of a parallel system P = Py|| ... ||P,
grows exponentially in the number n of subprocesses. This explains why any algorith-
mic verification method that works with an explicit representation of transition sys-
tems (e.g. by adjacency lists) fails for systems with very much components. In the
last decade, several methods have been developed to attack the “state explosion prob-
lem”. Some are based on a symbolic representation of the system using binary de-
cison diagrams [BCM190, McMil92], others are based on the concept of partial or-
der reduction [Pele93, Valm94, Gode94]. The basis idea behind the BDD-based ap-
proach goes back to Ken McMillan who proposed to handle very large systems by rep-
resenting their transition relation implicitly by an ordered BDD [Brya86]. The BDD-
approach has proved to be very successful for various types of verification problems for
parallel systems, including the verification against branching and linear time temporal
logical specifications and establishing a branching time relation between two systems
[BCM190, McMil92, EFT93, CGL93, CGH94|. Partial order reduction is based on the
observation that the interleaved execution of independent actions allows one to inves-
tigate only a representative fragment of the state space. It is applicable for proving
linear time temporal properties and for the process algebraic approach.?? Both tech-
niques have been implemented in tools and successfully applied to very large systems, see
e.g. [McMil92, HoPe94, Camp96, GPS96].

1.2 Probabilistic systems

In the literature, a variety of extensions of the above mentioned verification methods are
proposed that are appropriate to reason about quantitative aspects, e.g. for verifying real-

20To handle fairness the semantics of CTL has to be modified by taking ¥V and 3 as quantifiers that
range over the fair executions [EmLei85].

21Gee [VaWo86, CGH94, GPVT95] for other LTL model checking algorithms.

22More details about the partial order approach can be found in several papers in the proceedings
[PPHI6].
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time conditions, for performance analysis or for computing the probabilities for certain
system behaviours. In this thesis, we concentrate on probabilistic phenomena and consider
parallel systems with probabilities for the state transitions (in the sequel called probabilis-
tic systems or probabilistic processes).? There are several situations where probabilistic
aspects have to be taken into account. The ones that we have in mind when speaking
about a probabilistic system are the following two:

e To get a realistic model of a parallel system that reacts on the stimuli of the environ-
ment, one has to take into consideration the interfaces with the environment. These
are often based on physical processes that are probabilistic in nature.

e The system (or one or more of its subsystems) might be based on a randomized
algorithm, i.e. uses the concept of randomization (“tossing a fair coin”).

In the former case, probabilities are used to model uncertainties (e.g. the failure rate of
an unreliable medium that transmits messages). In the second case, the probabilities
are determined by the frequencies of the possible outcomes of a probabilistic choice.
The benefits of randomization are clear from the literature.?® Randomization has been
shown to be a elegant technique that might lead to simpler and more efficient algorithms
than their non-randomized counterparts. Moreover, as observed by Lehmann & Rabin
[LeRa81], in the field of parallel algorithms, the use of randomization makes it possible
to solve problems that are not solvable with deterministic algorithms.

Probabilistic choice: The characteristic feature of probabilistic systems is that they
work with the concept of probabilistic choice. This refers to any activity that chooses
between several alternative behaviours where the frequencies of the possible outcomes of
that choice are given by probabilities (i.e. values in the unit interval [0, 1] that sum up
to 1). The interpretation of this probabilistic choice depends on the concrete process.
As mentioned above, the probabilities might be obtained from failure rates of certain
unreliable resources or might stem from a “truly randomized” action like “tossing a fair
coin”. In any case, probabilistic choice can be specified by a term of the form

random(py : P1,...,p - P;) often written as [p1|P1 @ ... ® [pi|P

that we interpret as the process that chooses randomly to behave as one of the processes P;.
Here, py,...,p € [0, 1] such that p; +...+p, = 1. Assuming internal probabilistic choice
(which is resolved independent on the environment), the value p; denotes the probability
that the process P; is selected. This stands in contrast to external probabilistic choice

which assumes that the environment determines which of the processes Pi,...,P; are
enabled. For this, let us assume that Py, ..., Py are available while Py, ..., P, are not.
Then, the external probabilistic choice selects one of the processes Py, ..., Py according
to the conditional probabilities zﬁ’ 1=1,... k.

1.2.1 Modelling probabilistic behaviour

Most of the models that are used for the representation of probabilistic systems are
extensions of transition systems but there are also other models such as “true concurrency”

Z3In this chapter, we use the notions “system” and “process” as synonyms.
24See e.g. the papers by Rabin [Rabi76a, Rabi76b, Rabi80], the survey papers [Karp91, GSB94] or the
books [MoRa95, Lync95].
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models (e.g. event structures with probabilities [KLL94, Kato96]). In this thesis, we
concentrate on the use of probabilistic transition systems. To reason about probabilities,
several extensions of transition systems have been proposed.?” They all have in common,
that they endow the transitions with probabilities in an appropriate way. The resulting
models can be classified with respect to their treatment of non-determinism.

Fully probabilistic models: Several authors consider models based on Markov chains
(MCs) where the concept of non-determinsm is replaced by probabilistic choice, e.g. “gen-
erative transition systems” [vGSST90], “sequential Markov chains” [LeSh82, HaSh84,
Vard85, CoYa88, CoYa95] or “fully probabilistic automata” [SeLy94, Sega95a]. In these
models, each state s is associated with a probabilistic choice; that is, the transitions are
labelled by probabilities (values in the unit interval), such that, for each state s, the
probabilities for the outgoing transitions sum up to 1.2

Example 1.2.1 [Simple communication protocol: the sender| We consider a sim-
ple communication protocol similar to that in [HaJo94]. The system consists of two
enitities: a sender that works with an unreliable medium which might loose messages
and a receiver. The sender, having produced a message, transmits the message to the
medium, which in turn tries to deliver the message to the receiver. With probability
1/100, the messages gets lost and the medium retries to deliver the message. With prob-
ability 99/100, the message is delivered correctly, in which case the sender waits for the
acknowledgement by the receiver and then returns to the initial state. For simplicity, we
assume that the acknowledgement cannot be corrupted or lost. We describe the behaviour
of the sender by the following Markov chain.

We use the following four states:
® S;.:: the state in which the sender produces a
message and passes the message to the medium 1

® 5,4 the state in which the medium tries to de-
liver the message

e 5,,5: the state reached when the message is lost

® 5,4 the state reached when the message is de-

livered correctly and in which the system waits '

for the acknowledgement by the receiver.

For instance, the transition S,.; — Siniz stands for the case where the sender gets the
acknowledgement of the receipt of the message; sge; — Sios¢ for the case where the medium
looses the messages. m

Probabilistic models with non-determinism: On the other hand, there is a vari-
ety of models based on Markov decision processes (MDPs) which allow for both prob-
abilistic and non-deterministic branching. For the MDP-based models, there are dif-
ferent ways of associating probabilities to the transitions. One possibility is to dis-

25The “probabilistic automaton” & la Rabin [Rabi63] (that were introduced as language acceptors) can
be viewed as a precursor of this approach.

260f course, there might also be terminal states without any outgoing transitions. Moreover, many
authors allow for “substochastic states” where the probabilities of the outgoing transitions sum up to a
value p €]0,1[. In this case, the remaining value 1 — p can be interpreted as the probability for deadlock.
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tinguish between probabilistic and non-probabilistic states.?” Representatives of such

models are “concurrent Markov chains” [Vard85, CoYa88, CoYa95| and “alternating sys-
tems” [HaJo90, Hans91].2® Another possibility is to allow each state to behave non-
deterministically where each of the non-deterministic alternatives is associated with a
probabilistic choice. Examples for such systems are the models (just called “probabilistic
programs”) considered in [HSP83, Pnue83, PnZu86a, PnZu86b, PnZu93], the “proba-
bilistic automaton” of [SeLy94, Sega95a|, “probabilistic non-deterministic systems” of
[BidAl195, dAlf97a, dA1f97b| and “real-time probabilistic programs” of [ACD91a].

Example 1.2.2 [Simple communication protocol: Sender || Receiver] We con-
sider a variant of the simple communication protocol of Example 1.2.1 (page 19) where
we specify the behaviour of the parallel composition of the sender and the receiver by
a probabilistic system with non-determinism.?® For simplicity, we assume that both the
sender and the receiver work with mailing boxes that cannot hold more than one message
at any time. Thus, if the sender has produced a message m then the next message cannot
be produced before m is delivered correctly; similarly, the medium cannot be activiated
as long as there is an unread message in the mailing box of the receiver (i.e. as long as
the acknowledgement for the last message is not yet arrived).

We use the following four states:

® 5. the state in which the sender produces
a message and passes the message to the
medium

® 5,4. the state in which the medium tries to
deliver the message

e s5,;: the state reached when the message is
delivered correctly

® s,:. the state in which the receiver “con-
sumes” the message (i.e. reads and works up
the message and acknowledges the receipt).

The state s, is reached in the case where the sender has already produced the next
message while there is still an unread message in the mailing box of the receiver. Thus,
the only possible step in s, is the one where the receiver “consumes” the message and
acknowledges the receipt. In state s,;, the sender and the receiver can work in parallel (si-
multaneously): the sender may produce the next message while the receiver may consume
the last message. The parallelism in state s, is described by interleaving, i.e. the non-
deterministic choice that decides which process performs the next step: either the sender
produces the next message or the receiver consumes the last message. The interleaving

2TProbabilistic states are those where a probabilistic choice is resolved while non-probabilistic states
behave purely non-probabilistic, possibly non-deterministic.

28The idea of separating the probabilistic branches from non-probabilistic activities is also realized
in the “stratified transition systems” of [vGSST90]. These are introduced as operational model for a
language with probabilistic choice but lacks for non-deterministic choice. Thus, in the stratified systems
of [vGSST90], non-determinism is not present. However, non-determinism could be easily added to the
language and the model.

29We use the model where any state is associated with a set of non-deterministic alternatives and where
each of these alternatives is represented by a probabilistic choice.
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Figure 1.2: The “diamond” obtained by interleaving

of the actions produce and consume in state s,; leads to the classical “diamond” shown
in Figure 1.2 stating that the effect of the parallel execution of produce and consume is
the same as if produce and consume are executed in any order: in either case, we reach
the state sg.;. W

Of course, the classification MC-based versus MDP-based models is too coarse to capture
all models proposed in the literature. Several authors introduced models that can be
classified between MCs and MDPs such as ‘“reactive systems” [LaSk89, vGSST90] or
“probabilistic I/O automaton” [WSS94].

Internal vs external probabilistic choice: The formal definition of these models
does not depend on whether internal or external probabilistic choice is assumed. The
difference between internal and external probabilistic choice becomes visible in the context
of composition operators of a process calculus. Especially the restriction operator (that
specifies the processes or actions that are enabled in a certain state) is affected from the
chosen type of probabilistic choice.

Specifying probabilistic systems: Which of these models should be used depends on
the concrete application. Roughly speaking, the models based on MCs are suitable to
formalize the behaviour of sequential randomized algorithms or processes of probabilistic
calculi with synchronous parallel composition or probabilistic shuffle operators while the
models based on MDPs can be used to describe the behaviour of distributed randomized
algorithms or processes of an asynchronuous probabilistic calculus.

The need of non-determinism: When modelling distributed randomized algorithms
or asynchronous probabilistic systems by MDP-based models, non-determinism is used
to model interleaving (cf. Example 1.2.2, page 20). As observed by several other au-
thors, e.g. [JHY94, JoYi95, Sega95al, there are also other situations where the concept
of non-determinism might be helpful. The non-determinism might be useful to represent
underspecification which can be (totally or partly) resolved in further refinement steps
(cf. [JoYi95]). This situation is well-known in the design of (sequential or distributed)
algorithms. For example, in a high-level design one might use a statement like

“choose some index ¢ € {1,...,n} and put = := afi]”

(e.g. in a high-level description of Quicksort the Pivot element might be chosen by a
statement like that) while in the implementation one works e.g. with the assignment z :=
a[l] (or a randomized assignment x := random(a[l],...,a[n])). Another example is that



CHAPTER 1. INTRODUCTION

“non-determinism can be used to specify the allowed probabilities of failure of a medium
where a refinement step is used to decrease the set of allowed failure rates [JoLa91]”
(where we quote from [JoYi95]). Second, also observed in [JoYi95], non-determinism can
be used to represent incomplete information on the parameters of system behaviour such
as Milner’s weather conditions [Miln89].

Example 1.2.3 [Roulette player| Figure 1.3 (page 22) shows the “one-day-behaviour”
of an addicted roulette player. For simplicity, we assume that he is arbitrary rich and
always chooses the simple risk “red” or “black” and that there is no limit on the allowed
stake.3® When entering the casino, the roulette player starts playing with the stake 18$.
Whenever he looses the last game, he doubles the stake for the next game. On the other
hand, if he has won the last game, he decides non-deterministically to continue playing (in
which case he restarts with the stake 18$) or to leave the casino with one last game where he
risks all his money. Here, the non-deterministic choice is used to describe the incomplete
information about the “environment”. The choice in state s,,, between staying in or
leaving the casino might be dependent on the well-being of the roulette player or on the

mood of his wife or on other unknown factors. m
Shappy

>

stake := }$ /Swon\ stake := all

(simt> stake := 1§ (S play ) s

stake := 2xstake

Figure 1.3: The “one-day-behaviour” of the roulette player

1.2.2 The process calculus approach for probabilistic systems

In the literature, a variety of probabilistic process calculi are proposed. They either re-
place the non-deterministic choice operator by a probabilistic choice operator or allow
for both non-deterministic and probabilistic choice. See e.g. [GJS90, JoSm90, vGSST90,
Toft90, LaSk92, Toft94] for synchronous and [HaJo90, Hans91, YiLa92, Yi94, Lowe93b,
Seid95, BaKw97, Norm97] for asynchronous process calculi and [BBS92, SCV92, NudF95,
GLN'197, dAHK98] for calculi with probabilistic shuffle operators.>® Some of these cal-
culi can be used to reason about priorities [SmSt90, Toft94, Lowe95]. Typically, such
process calculi are supplied with an operational semantics based on (some kind of) prob-
abilistic transition systems. In absence of non-determinism, the calculi with synchronous
parallelism or a probabilistic shuffle operator can be described by a fully probabilistic
(MC-based) system [GJS90, vGSST90, BBS92, LaSk92]; but also other operational se-
mantics (e.g. based on the reactive or stratified view) are possible [vGSST90, Toft94].

30Moreover, we neglect the possible outcome “Zero” (where the bank gets all stakes) and suppose that
the probability for winning a game is 1/2.

31The probabilistic shuffle operators describe the interleaved execution of two processes with respect
to a fixed scheduler that decides randomly which process performs the next step where the underlying
random choice depends on the local states of the processes.
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The operational semantics of probabilistic calculi that allow for non-deterministic choice
and/or deal with asynchronous parallelism can be defined by means of MDP-based mod-
els (probabilistic transition systems with non-determinism), see e.g. [HaJo90, Hans91,
YiLa92, Yi94, BaKw97].

Implementation relations for probabilistic processes: Several implementation re-
lations for probabilistic processes are proposed, such as trace, failure and ready equiva-
lence [JoSm90], bisimulation [LaSk89, HaJo90, Hans91, SeLy94, BaHe97]3?, simulation-
like preorders [JoLa91, Yi94, SeLy94, Sega95a| and various types of testing preorders
[Chri90a, Chri90b, CSZ92, YiLa92, Chri93, YCDS94, JHY94, JoYi95, NudF95, Sega96,
Norm97, KwNo98a, KwNo98b].

Verification methods: Even though many implementation relations for probabilis-
tic systems have been introduced, corresponding verification methods (i.e. methods for
showing that one process implements another one with respect to an appropriate imple-
mentation relation) are relatively rare. For fully probabilistic systems (the MC-based
models), both axiomatic [GJS90, JoSm90, LaSk92, BBS92] and algorithmic [Chri90a,
ChCh91, HuTi92, Chri93, BaHe97] methods have been developed. All the above men-
tioned algorithmic methods run in polynomaial time. Especially in the case of trace and
failure equivalence [HuTi92], this fact is of interest since decidability of the corresponding
relations for non-probabilistic systems is PSPACE-complete [KaSm83]. In the case of
(strong or weak) bisimulation or simulation, the time complexities are polynomial in the
non-probabilistic [KaSm83, PaTa87, BoSm87, GroVa90, HHK95| as well as the proba-
bilistic [HuTi92, BaHe97] case. For the models with non-determinism (the MDP-based
models), verification methods for the branching time relations (bisimulation and simu-
lation) are proposed so far (see [HaJo90, Hans91, Yi94, Toft94] for axiomatizations and
[Bai96, PSS98] for algorithmic verification methods) while — as far as the author knows
— the literature lacks for methods for other implementation relations (such as testing
equivalence a la [JoYi95] or any weak linear time relation).

Denotational semantics: The work by Kozen [Koze79] on denotational semantics for
sequential programs with random assignment and while-loops can be seen as a precursor
of the denotational approach. Jones & Plotkin [JoP189, Jone90] introduce the probabilis-
tic powerdomain of evaluations to provide a denotational semantics for a programming
language with while-loops and a probabilistic concurrency operator. Roughly speak-
ing, for semantical purposes, evaluations are used to decorate sets of behaviours with
probabilities rather than single behaviours. The concept of evaluations is often used in
denotational semantics for randomized programs; e.g. for probabilistic predicate trans-
formers [Jone90, MMS96, HMS97| but also in the field of probabilistic process algebras.
Evaluations are used in [MMS*94] to give a failure/divergence semantics for CSP with
probabilistic choice and in [BaKw97| to obtain denotational semantics for a probabilistic
extension of C'CS that are shown to be fully abstract with respect to bisimulation and
simulation. Other denotational characterizations for probabilistic variants of CSP (that
do not use evaluations) are proposed by Lowe [Lowe93a, Lowe93b, Lowe95] and Seidel
[Seid95]. Denotational models and related full abstraction results for certain types of
testing preorders are presented by Christoff [Chri90a, Chri90b], Jonsson & Yi [JoYi95]

32Gee also [dViRu97, BDET97, DEP98] where bisimulation equivalence for “continuous” probabilistic
systems are introduced.
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and Kwiatkoswka & Norman [KwNo096, Norm97, KwNo98a, KwNo98b|. [Hart98] presents
several denotational semantics for a C'CS-like language with probabilistic choice and dis-
cusses the use of internal or external probabilistic and non-deterministic choice. The
above mentioned semantics for the asynchronous calculi are all based on the interleaving
view. A denotational “true concurrency” semantics for a variant of LOTOS with time
and probabilities by means of event structures is given by Katoen [Kato96].

1.2.3 Probabilistic temporal logic

Several authors proposed extensions of program logics to reason about qualitative or
quantitative temporal properties of probabilistic systems. In this introduction, we only
explain the main ideas behind the temporal logical framework.?® Qualitative properties
assert that a certain event ¢ holds with probability 0 or 1 while quantitive properties
guarantee that the probability for a certain event ¢ meets given lower or upper bounds.3*
In most applications, the quantitive properties deal with an upper bound ¢ for some small
e and assert that the probability for a “bad event” is sufficiently small (i.e. < € or <€) or
use a lower bound 1 — ¢ and state that a certain safety or liveness condition is satisfied
with some sufficiently large probability (i.e. with a probability in the interval |1 — €, 1] or
[1 —¢,1]).%® In the temporal logical framework, the event ¢ describes a property for the
executions and is specified by a path formula built from standard temporal operators like
<, O and O=F (see Section 1.1.3, page 16).

Linear time logics: The linear time framework (see e.g. [Vard85, VaWo86, PnZu86a,
PnZu86b, CoYa88, PnZu93, CoYa95]), uses classical “non-probabilistic” linear time tem-
poral logics (where formulas are path formulas) with an interpretation over the states of
a probabilistic systems. The truth value of a formula ¢ in a state s is a value ps(¢) in the
interval [0,1] which can be viewed as the probability that ¢ holds for an execution starting
in s. Satisfaction of a quantitative linear time specification (consisting of a formula ¢ and
a lower or upper bound for the “acceptable” probabilities) means that the truth value
ps(p) meets the given bound.?

Branching time logics: In contrast to these Fuzzy logic like interpretations of linear
time formulas (with truth values in the unit interval), the branching time framework
deals with state formulas that might hold for a state or not (i.e. that are equipped with
an interpretation over the states of a probabilistic system by the usual truth values 0
or 1). [LeSh82, HaSh84, ACD91b] propose branching time logics for specifying qualita-
tive temporal properties by using state formula that assert that a certain event holds
with probability 1. Branching time logics that allow to express quantitative properties

33For other program logics for specifying probabilistic systems see e.g. [Feld83, FeHa84, Koze85] for
dynamic and [LaSk89, LaSk92, ChCh92, Chri93, HuKw97, MoMcI97, McIv98, HuKw98] for modal logics.

34In fully probabilistic systems, there is a natural probability measure on the executions. This is
different in probabilistic transition systems with non-determinism where it makes no sense to speak
about probabilities unless the non-determinism is resolved. However, the “probability” for an event
can be defined as the minimal or maximal probability measures for this event ranging over the possible
resolutions of the non-deterministic choices.

35Clearly, the qualitative properties can be viewed as special instances of the quantitive properties; we
just have to deal with e = 0.

36In particular, satisfaction of a qualitative linear time specifications means that p, () is 0 or 1.
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(see e.g. [HaJo89, Hans91, HaJo94, SeLy94, ASB*95, BidAl95, dAlf97a]) integrate the
lower /upper bounds for the acceptable probabilities into the syntax and use formulas
e.g. of the form Prob-,(¢) that state that the probability for the event ¢ is at least p.

Verification methods: Proving the correctness of a probabilistic process against qual-
itative properties expressed in the temporal logical framework amounts showing that
the given event ¢ holds with probability 0 or 1. For finite systems, it has been re-
alized that this is completely independent on the precise transition probabilities and
just depends on the “topology” of the underlying directed graph. This observation was
first made by Hart, Sharir & Pnueli [HSP83] for proving termination with probabil-
ity 1 and later used in several verification methods for establishing qualitative tempo-
ral properties; see e.g. [LeSh82, Pnue83, HaSh84, PnZu86a| for deductive methods and
[Vard85, VaWo86, PnZu86b, CoYa88, ACD91a, ACD91b, PnZu93, CoYa95] for algorith-
mic methods. Establishing quantitative temporal properties requires the computation
of the exact probabilities for the given event ¢; see e.g. [LSS94, PoSe95, Sega95a] for
proof rules, [CoYa88, HaJo94, ASBT95 CoYa95, IyNa96] for algorithmic methods for
fully probabilistic systems and [CoYa90, Hans91, BidA195, dAlf97a, dAlf97b] for algorith-
mic methods for probabilistic systems with non-determinism. The main concepts for the
handling of formulas involving the “eventually operator” < is the use of linear equation
systems in the case of fully probabilistic systems [CoYa88, HaJo94| and linear optimization
problems in the case of probabilistic systems with non-determinism [CoYa90, BidAl95].
The time complexities of the model checking algorithms for branching time logics are poly-
nomial [HaJo94, BidAl195]. For linear time logic, model checking is PSPACE-complete in
the case of fully probabilistic systems and complete for double exponential time in the
case of probabilistic systems with non-determinism [Vard85, CoYa95].

Fairness: For non-probabilistic parallel systems, it is well-known that fairness assump-
tions about the resolutions of the non-deterministic choices might be essential for proving
certain liveness properties. Clearly, this observation carries over to probabilistic systems
with non-determinism and concerns qualitative as well as quantitative properties. As an
example, consider the randomized dining philosophers [LeRa81]: when two philosophers
are simultaneously ready to flip a fair coin in order to decide which fork to pick up, one
can think of this as two probability distributions, each respectively with probability % of
obtaining heads or tails, enabled in the same state. If the scheduler never selects a given
philosopher for execution even though he is ready to proceed (e.g. to flip the coin) the run
thus produced would be unfair, and as a result one could not guarantee the qualitative
property that asserts lack of starvation. As an example for a situation where fairness
assumptions are essential for establishing quantitative properties, consider a communica-
tion protocol which attempts to deliver a message to the recipient if one is received on the
input channel from the environment, and loops back to the initial state otherwise. In a
realistic scenario, the outcome of the delivery is probabilistic, and will result in a message
being delivered correctly with some suitably high probability, say 0.999, or an error state
being reached if a fault has occurred in the transmitting medium. Then, the property
“the message is eventually delivered with probability 0.9” can only be established on con-
dition that the protocol does not loop back to the initial state forever. Hence, also in the
probabilistic case, it is desirable to have methods for proving (quantitative or qualitative)
temporal properties under fairness constraints. Establishing temporal properties under
fairness constraints (for a probabilistic system with non-determinism) amounts showing
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that an event ¢ holds with some sufficiently small or large probability (or with probability
0 or 1 in the case of a qualitative property), provided that the non-deterministic choices
are resolved in a fair manner.

Even though the verification of qualitative properties under fairness assumptions is well-
understood (see e.g. [HSP83, Vard85, PnZu86b, PnZu93] for algorithmic methods) only
a few research has been done so far in the field of verification methods for establishing
quantitative properties under fairness constraints. [LSS94, PoSe95, Sega95a| present proof
rules for establishing quantitative (timed) progress properties for randomized distributed
systems which can be combined with several notions of fairness. As far as the author
knows, [BaKw98, dAlf97a] are the first attempts to formulate algorithmic methods for
verifying quantitative properties of probabilistic systems with non-determinism which
take fairness into account.

1.3 The topics of this thesis

This thesis investigates several aspects of formal reasoning about probabilistic systems.3”

(I) The process algebra approach: We consider asynchronous and synchronous
probabilistic process calculi, operational and denotational semantics for them and
homogenous algorithmic verification methods. The main contributions are:

e denotational characterizations of bisimulation and simulation (Chapter 5),

e algorithms for establishing a branching time relation (bisimulation or simula-
tion) between probabilistic systems with non-determinism (Chapter 6),

e the definition of weak bisimulation for fully probabilistic systems together with
a corresponding verification algorithm (Chapter 7) and the definition of a lazy
synchronous parallel composition operator that preserves weak bisimulation
equivalence (Section 4.3).

(I) The temporal logic approach: We consider the linear and branching time frame-
work for establishing qualitative and quantitative temporal properties. The main
contributions are:

e a technique for proving qualitative linear time properties with well-known non-
probabilistic methods (Chapter 8),

e algorithms for establishing quantitive temporal properties of a probabilistic sys-
tem with non-determinism and fairness by means of a model checking algorithm
for a probabilistic temporal logic PCTL* with a satisfaction relation that in-
volves fairness of non-deterministic choice (Chapter 9).

(III) Symbolic verification: Chapter 10 presents verification algorithms for probabilis-
tic systems that use multi-terminal BDDs (MTBDDs) as data structure. The main
idea is the development of a “language” for manipulating MTBDDs in which sev-
eral verification problems for probabilistic systems can be embedded. This yields
symbolic model checking algorithms for PCTL (interpreted over fully probabilistic

3TMost results are published with coauthors. The corresponding reference can be found in the intro-
duction of each chapter.
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systems or probabilistic systems with non-determinism and fairness) and MTBDD-
based methods for checking strong and weak bisimulation equivalence for fully prob-
abilistic systems.

1.3.1 Related work

In the literature, a lot of work has been done in the field of formal methods for probabilistic
systems; see the references mentioned before.® In the authors opinion, it would make little
sense to list all related work here and to explain in which way this thesis is related. This is
done in the respective chapter. At this place, the author just wants to refer to the thesis’
[Chri90a, Jone90, Seid92, Hans91, Chri93, Lowe93a, Sega95a, dAlf97a, Norm97, HarG9§|
that are all about specification formalisms and/or verification methods of probabilistic
systems and hence related to this thesis at a large degree.?® Especially the excellent work
by Hans Hansson [Hans91], Roberto Segala [Sega95a] and Luca deAlfaro [dAlf97a] (and
several papers that they wrote with coauthors) had great influence on the development
of this thesis.?

e The model for concurrent probabilistic systems that we use here essentially agrees
with the one of [Sega95a, dAlf97a] and is a variant of the one of [Hans91].

e The process calculus PCCS of Chapter 4 is a variant of the process calculus (also
called PCCS) introduced by Hansson & Jonsson [HaJo90).

e The bisimulation equivalence and the simulation preorder that we consider in Chap-
ters 5 and 6 were introduced by Segala & Lynch [SeLy94].

e The main concepts of the logic PCTL" that we consider in Chapter 9 are taken from
papers by each of the three, namely [HaJo89, Hans91, HaJo94, SeLy94, BidAl195,
dAlf97a, dA1f97b]. Moreover, the idea of using w-automaton for our PCTL* model
checking algorithm was suggested by Luca deAlfaro.

e The symbolic PCTL model checking algorithm of Chapter 10 take the methods of
Hansson & Jonsson [HaJo94] and Bianco & deAlfaro [BidAl95] as basis.

1.3.2 How to read this thesis

Chapter 2 collects our notations concerning sets, relations, functions and distributions.
The reader is not supposed to read this chapter but he/she should keep in mind that
he/she has a fair chance to find the explanations for our notations in Chapter 2. Chapter
3 serves as basis for all other chapters because it introduces (and tries to motivate) the
models and explains the notations that are used in almost all parts of this thesis. A
reader not familiar with probabilistic systems should read this chapter first while a reader

38(Clearly, also any work on formal methods to reason about other quantitative aspects is related
to the topic of that thesis. In particular, the field of performance analysis, see e.g. [Herz90, GHR93,
GiHi94, Hill94, Pria96, dAKB98, BeGor98, Herm98, HHMO98]|, (where continuous time Markov chains
and stochastic Petri nets [Moll82, MBC84] belong to the standard models) is close to the approach here.

39This list of thesis’ might be far from being complete. It contains only those thesis’ that treat
probabilistic systems as their main topic and that had influences to this thesis.

40Tt should be pointed out that each of the three thesis’ also considers real-time aspects while this
thesis does not.
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who is familiar with probabilistic processes might skip this chapter keeping in mind that
the notations specific to this thesis can be found there. To support a reader who is only
interested in certain parts of this thesis the author tried to make the remaining chapters
as independent as possible. In those cases where a result of one chapter is used in another
chapter the reader will find a (page) reference. The appendix (Chapter 12) recalls some
definitions/concepts presented somewhere in the literature; the notations introduced there
are always used in connection with a reference to the relevant part of Chapter 12.

Proofs: For the sake of readability, in most chapters the main results are presented
without proofs (but with a page reference to the place where the proof can be found).
The proofs are given in the last section of the respective chapter.®! A reader not interested
in the theoretical development of the results might skip the appended “proof-sections”.

Examples: The main concepts are illustrated by simple toy examples. These are either
abstract examples (without any concrete meaning) or extremely simplified examples with
a realistic background. Examples of the former type should just demonstrate a certain
technique. Although unrealistic, examples of the latter type should give some insights
how to apply the proposed framework in realistic situations.

The symbols m and |: We use the symbol m to denote the end of a proof, remark or
example. Some proofs are devided into subclaims. The symbol | denotes the end of the
proof of such a subclaim.

Background: Even not necessary, some familiarity with the basic concepts of formal
methods for parallel systems might be helpful. Elementary notions of several mathemati-
cal disciplines (such as numerical analysis, linear algebra, probability and measure theory,
topology and graph theory) are used without any explanation. However, a reader not fa-
miliar with them (but interested in the topics of this thesis) should not immediately give
up to read this thesis; an intuitive understanding of e.g. the notion “probability” or the
knowledge what a linear equation system or optimization problem is should be sufficient
to understand the main ideas. We do not recall the basic notions of the above men-
tioned mathematical disciplines here and refer to any standard book about the respective
discipline.*?

41n a few cases, the proof of a certain theorem is given in the “proof-section” of another chapter. This
is only done in those cases where a simple proof can be derived from the results of a further chapter.

“2For instance, see [Halm50, Rudi66, Fell68, GrWe86] for measure and probability theory, [Dugu66,
Suth77, Enge89] for topology and [Even79, Goul88] for graph theory. Basic knowledge about the theory
of Markov (decision) processes, see e.g. [Derm70, Ross83, Pute94], might be helpful but is not necessary.



Chapter 2

Preliminaries

In this chapter, we briefly explain some notations that are used throughout the thesis.
For a first reading, the reader might skip this chapter, but should keep in mind that our
notations concerning sets, relations, partitions, functions and distributions are explained
here.

2.1 Sets, relations, partitions and functions

Sets: For X to be a set, 2% is the powerset of X. idx denotes the identity on X, i.e. the
function idx : X — X, idx(z) = x for all x € X. The characteristic function of a subset
X' of X is the boolean-valued function X — {0,1}, z — 1 iff z € X'. If X is finite
then |X| denotes the number of elements of X. If X is infinite then we put |X| = oc0. W
denotes disjoint union.

Relations: Let R, R;, Ry be binary relations on X. We also write z;Rzs to denote
that (z1,z9) € R. We define R™* = {(z9,71) € X x X : (z1,22) € R} and Ry o Ry =
{(z1,22) e X x X :dz e X ((z1,2) € Ry A (z,22) € Re)}. We often write Ry R, rather
than R; o Ry. R* denotes the transitive, reflexive closure of R.

Equivalences and partitions: If R is an equivalence relation on a set X then X/R
denotes the quotient space (i.e. the set of equivalence classes) and, for z € X, [z|g the
equivalence class of x with respect to R. A partition of X is a set A’ consisting of pairwise
disjoint nonempty subsets of X such that Ugcy B = X. We often refer to the elements
of a partition as blocks. Clearly, for each equivalence relation R on X, the quotient space
X/R is a partition of X. Vice versa, each partition of X induces an equivalence relation
on X: For X to be a partition of X, Ry denotes the induced equivalence relation, i.e. Ry
consists of all pairs (z1,z3) € X x X where z1, 2o € B for some B € X. We often
write [z]x (instead of [z]g,) to denote the unique block B € X that contains z. A
partition X is called finer than a partition X’ (and X"’ is called coarser than X) iff the
induced equivalence relation Ry is finer than Ry (i.e. iff each B € X is contained in some
B' € X'). We say X is strictly finer than X' (or X' strictly coarser than X') iff X' is finer
than A’ and X # X'.

Functions: For X and Y to be sets, X — Y denotes the function space of all functions
from X toY. If f : X — Y is afunction and X' C X then f|xs denotes the restriction of f
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on X' i.e. f|x denotes the function f|x: : X' — Y which is given by f|x/(z) = f(z). For
Y' CY, f~1(Y") denotes the inverse image of Y’ under f,ie. f71(Y')={z € X : f(z) €
Y'}. Fory € Y, we put f~*(y) = f~'({y}). Similarly, for X’ C X, f(X') denotes the
image of X' under f,ie. f(X') = {f(z): 2z € X'}. We define Range(f) = f(X) to denote
the range (image) of f. g o f denotes the usual function composition, i.e. if g : Y — Z
and f : X — Y are functions then go f : X — Z is given by (go f)(z) = g(f(z)). If
f: X — X is a function then f° = idx and, for n =0,1,2,..., f"™ = fo f

2.2 Distributions

Distributions: Let X be a set. A distribution on X is a function p : X — [0, 1] such
that {x € X : u(s) > 0} is countable and Y ,cx u(z) = 1. If z € X then pl denotes the
unique distribution on X with pl(z) = 1. Supp(u) denotes the support of u, i.e. the set
of elements z € X with p(z) > 0. For ) # A C S, we write pu[A] to denote > ,c4 p(z).
In particular, u[@] = 0. Distr(X) denotes the collection of all distributions on X.

The composition p x v: Let p, v be distributions on X and Y respectively. The
composition pxv is the distribution on X x Y which is given by (uxv)(z,y) = u(z)-v(y).

Weight functions (cf. [SeLy94, Sega95a]): Let yu, v distributions be on X and Y
respectively and R C X x Y. A weight function for (i, v) with respect to R is a function
weight : X x Y — [0, 1] which satisfies:

1. weight(x,y) # 0 for at most countably many (z,y) € X x Y.
2. Forallz e X, yeY:

> weight(z,y) = p(z), Y weight(z,y) = v(y)

yey zeX

3. If weight(z,y) > 0 then (z,y) € R.

We write u <p v if there exists a weight function for (i, v) with respect to R.! Clearly,
if Ry C R, then each weight function with respect to R; is also a weight function with
respect to Ry. Hence, u <g, v implies p <p, v.

Remark 2.2.1 Let pux, puy and upyz be distributions on X, Y, Z respectively, and let
Rxy € X xY, Ryz CY x Z and weightyy : X xY — [0,1] a weight function for
(px, py) with respect to Rxy, weighty , : Y x Z — [0, 1] a weight function for (uy, p1z)
with respect to Ry,z. Then, weighty , : X x Z — [0, 1],

Z Weightx,y(x, y) - Wejghty,z(y, z)

weighty ,(z,2) = o
yESupp(py) Hy\Y

Y

is a weight function for (ux,pz) with respect to Rxy o Ryz. Thus, if ux =gy, py and
Wy =Ry, Mz then ux =g pz where R = Rxy o Ry z. In particular, if X is a set and

Intuitively, the weight function weight shows how to split the probabilities u(z) and v(y) such that
the relation R is preserved: if p(z), v(y) > 0 then we “combine” the weight(z,y)/u(z)-part of = with
the weight(z,y)/v(y)-part of y. Then, the whole of each z € Supp(u) is combined with certain parts of
elements y € Supp(v) where (z,y) € R.
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R C X x X is a transitive relation then <p is a transitive relation on Distr(X). From
this, if R is a preorder on X then <p is a preorder on Distr(X). m

Remark 2.2.2 Let R C X x Y and pu € Distr(X), ¢ € Distr(Y) such that p <g p'.
Then, p' <g-1 p. m

The function Distr(f): For f : X — Y to be a function, the function Distr(f) :
Distr(X) — Distr(Y) is given by Distr(f)(u)(y) = u[ f7*(v) ].

Remark 2.2.3 Let f: X — Y be a function. Then,

ot : _ Jopl) i f(r) =y
weight : X x Y — [0,1], weight(z,y) = { 0 * othorwise

is a weight function for (u, Distr(f)(n)) with respect to R = {(z, f(z)) : * € X}. Thus,
p 2g Distr(f)(u). m
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Chapter 3

Modelling probabilistic behaviour

In this chapter we introduce the models for probabilistic systems (together with some
related notations) that are used throughout the thesis. We shrink our attention to those
models that are extensions of (non-probabilistic) transition systems which have been es-
tablished as one of the standard models for non-probabilistic systems.

The main distinctive mark for the probabilistic models proposed in the literature is the
treatment of non-determinism. On the one hand, there are various extensions of Markov
chains (MCs) that allow for probabilistic (but not for non-deterministic) choice; these
can be used to analyze the behaviour of sequential randomized algorithms or processes of
a calculus with synchronous parallel composition. On the other hand, there are several
extensions of Markov decision processes (MDPs) that are suitable to specify both prob-
abilistic and non-deterministic behaviour; these are suitable to describe the behaviour of
distributed randomized algorithms or processes of a calculus with asynchronous parallel
composition.

The formal definition of a model for probabilistic systems does not depend on whether in-
ternal or external probabilistic choice is assumed.! Internal probabilistic choice is resolved
independent on the environment while the resolution of an external probabilistic choice
depends on the processes/actions that are enabled in a certain state.> In this thesis, we
assume internal probabilistic choice. This will only be important in Chapter 4 where the
process algebra approach is considered.

Organization of that chapter: In the first three sections we give the formal definitions
of the models that we use in that thesis. We start with the basic models without any
labellings where Section 3.1 deals with the MC-based models (called fully probabilistic
systems) and Section 3.2 with the MDP-based models (called concurrent probabilistic
systems). These “stripped” models are extended in Section 3.3 by action labels for the
transitions and by proposition labels for the states. In Section 3.4, we recall the definition
of probabilistic bisimulation & la Larsen & Skou [LaSk89] and probabilistic simulation as
introduced by Segala & Lynch [SeLy94]. In the remainder of the thesis, we distinguish
between “systems” and “processes”. The notion “system” is used to describe a structure

!See page 18 for the motivation behind internal and external probabilistic choice.
2The underlying type of probabilistic choice influences the semantics of the composition operators of
a process calculus; in particular, the restriction operator. See Remark 4.2.4 (page 81).
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consisting of a state space and a transition relation (possibly extended by certain labels)
while a “process” denotes a “pointed system” (i.e. a system with an initial state). This
will be explained in Section 3.5. In Section 3.6, we sketch how our models fit into the
hierarchy of models studied in the literature.

3.1 Fully probabilistic systems

This section introduces the basic concepts for the MC-based models. We follow the
notations of Segala & Lynch [SeLy94, Sega95a| and use the adjective “fully probabilistic”.

Definition 3.1.1 [Fully probabilitistic systems| A fully probabilistic system is a tu-
ple S = (S,P) where S is a set of states and P : S x S — [0,1] is a function (called the
transition probability function) such that, for all s € S, P(s,t) > 0 for at most countably
many t € S and Y s P(s,t) € {0,1}.

Example 3.1.2 [Simple communication protocol: the sender| The behaviour of
the sender in the simple communication protocol of Example 1.2.1 (page 19) can be
formalized by the fully probabilistic system (S, P) where S = {S;nit, Sdel, Siost, Swait  and
P(Sinita sdel) - P(Slosta sdel) = P(swaita Sinit) =1, P(Sdela Sinit) = 0.01, P(sdela Swait) =0.99
and P(-) = 0 in all other cases. m

Let S = (S,P) be a fully probabilistic system. S is said to be finite iff S is finite. For
finite systems, we also refer to P as the transition probability matriz. If C C S and s € S
then we put P(s,C) = Ycc P(s,t). A state s of S is called terminal iff P(s,S) = 0.

An execution fragment or finite path in S is a nonempty finite “sequence” o = sy — s1 —

... —> s where k >0, sg,51,...,8¢ € S and P(s4,8;11) >0,1=0,1,...,k— 1.
e |o| denotes the length of o, i.e. we put |o| = k.
e first(o) denotes the first state of o, i.e. first(c) = so.

e last(o) denotes the last state of o, i.e. last(o) = sy.

e o(i) denotes the (i + 1)-st state of o, i.e. 0(i) = s, 1 =0,1,...,k,

e o denotes the i-th prefix of o, i.e. 0@ =59y =57 — ... = s, i =0,1,..., k.
If i > k = |o]| then we put ¢ = 0.

e If k= |o| =0 then we put P(c) = 1. For k > 1, we define

P(o) = P(so,51) - P(s1,82) ... - P(sg_1, s)-

e o is called mazimal iff last(o) is terminal.

A state t is called reachable from s if there exists a finite path o with first(c) = s and
last(o) = t.

Example 3.1.3 The system in Example 1.2.1 (page 19) has no finite maximal execution
fragment as there are no terminal states. ¢ = St — Sgel — Siost —> Sdel — Swait 1S AN
execution fragment (finite path) with |o| = 4, first(o) = Sinit, last(0) = Suait, 0(2) = Siost,
0@ = si0 — Sget — Siost and P(o) =1-0.01-1-0.99 = 0.0099. m
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An execution or fulpath is either a maximal execution fragment or an infinite “sequence”
T = Sg— S — S2 — ... where s9,1,... € Sand P(s; 1,s;) >0,i=1,2,.... Form
to be an infinite execution, 7 (i), 7 and first(n) are defined as for execution fragments.
For infinite executions we put |7| = oo and define

inf(r) = {s € S : (i) = s for infinitely many indices ¢ > 0}.
If o is a finite path then we put inf(o) = (0. A path denotes a finite path or a fulpath.

° Path}sul denotes the set of fulpaths in S,

o Path}sul(s) the set of fulpaths starting in s,

° Pathgn the set of finite paths in S,

e Pathy,(s) the set of finite paths starting in s,

e Reach®(s) denotes the set of states which are reachable from s.

If the underlying fully probabilistic system &S is clear from the context we abbreviate

Path]‘?;l to Pathgy, Path}il(s) to Pathgs,(s), Path}‘gn to Pathgy,, Path}‘gn(s) to Pathg,(s) and
Reach®(s) to Reach(s).

o If IT is a set of fulpaths in S and s € S then II(s) = II N Path,(s).
o If ¥ is a set of finite paths then X(s) = X' N Pathg,(s).

<,refiz denotes the prefiz relation on paths, i.e. if y;, 7, are (finite or infinite) paths then
T Zprefic V2 iff 1 is a prefix of v, (iff 13 =2 or 11 = yék) for some k). <,z denotes the
proper prefix relation on paths, i.e. 00 <ppef, v iff 0 = 7@ for some i < |7y]-

Let 0 = s9 — ... — s be a finite path and v =ty — t; — ... a (finite or infinite) path.
If last(o) = first(7y) (i-e. s = tp) then we define o o7y to be the path sy — ... — s, —

t1 — ts — ... that arises by appending v at the end of o where the last state of ¢ and
the first state of v are identified. We define:

e o 1 denotes the basic cylinder induced by o, i.e. 0T = {7 € Pathp(s) : 0 <prefic T} .
o 0T = {0 € Pathp,(s) : 0 <prefic 0'}.

o 0| = {0 € Paths,(s): 0" <prefiz 0}

e For Y to be a set of finite paths,

St=Uot Zl=Uob Stpm= U otm.

ceX ceXx ceXx

For each state s, P induces a probability space on Paths,(s) as follows. We define
SigmaField®(s) to be the smallest sigma-field on Pathy,(s) which contains all basic cylin-
ders o T where o ranges over all finite paths starting in s (i.e. o € Pathg,(s)). The prob-
ability measure Prob on SigmaField®(s) is the unique measure with Prob (0 1) = P(0).

Lemma 3.1.4 Let (S,P) be a fully probabilistic system and X C Pathg, such that o,
o' € X, 0 # 0 implies 0 Lprfiv 0'. Then, for all s € S,

Prob(Z(s) 1) = > P(o).

oeX(s)
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Proof: easy verification. Uses the fact that o 1, 0 € X', are pairwise disjoint. m

We now turn our attention how to compute the probabilities to reach a state of a certain
set Sy via a path leading through states of a certain set S; only. More precisely, we
consider a fully probabilistic system (S, P) and two subsets Sy, Sy of S. Let ¥ C Pathg,
be the set of all finite paths o such that

L O'(Z) 651\52,i=0,1,...,|0|—1,
e last(o) € Ss.
and let [T = X 1. Then, our aim is to compute the probabilities Prob(II(s)).

Lemma 3.1.5 Let (S, P) be a fully probabilistic system and let Sy, Sy, X and IT as above.

Forallse S,
> P(o) = Prob(Il(s)).

ogeX(s)

Proof: follows immediately from Lemma 3.1.4 (page 35). m

The following result characterizes the probabilities Prob(II(s)) as the least fixed point of
a certain monotonic operator on the function space S — [0, 1].

Theorem 3.1.6 Let (S,P) be a fully probabilistic system and let Sy, Ss, X and II as
above. Then,

p: S —1[0,1], p(s) = Prob (II(s)),

is the least fixed point of the operator F : (S — [0,1]) — (S — [0, 1]) which is given by
F(f)(s) =11ifs €5y, F(f)(s) =01f s €S\ (S1US>) and, if s € 51\ Sz,

F(f)(s) = > P(s,t)- f(1).

tesS

Proof:  see Section 3.7, Corollary 3.7.2 (page 65). m

Proposition 3.1.7 (cf. [CoYa88, HaJo94, CoYa95]) Let (S, P) be a finite fully prob-
abilistic system and let S, So, X, II and p be as in Theorem 3.1.6. Moreover, let
SNO ={s e S: X(s) =0}, SYP5 a subset of S with Sy C SYP C {s € S : X(s)
= Pathp(s)} and ST = S\ (S¥? U SYES). Then, p is the unique fixed point of the
operator F' : (S — [0,1]) — (S — [0, 1]) which is given by

F(f)(s) : ifse S’
1 . ifs € SYPS
0 . ifs € SO,

F'(f)(s) =

Here, F' is as in Theorem 3.1.6 (page 36).

Proof: The claim is a slight generalization of the results established in [CoYa88,
HaJo94, CoYa95| and can be shown in a similar way. m

Remark 3.1.8 [Computing the probabilities p(s)] If S is finite then Theorem 3.1.6
(page 36) yields that the probabilities p(s) = Prob(X(s) 1) can be obtained by iteration:
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We take p,(s) = 1if s € Sy and pp(s) = 0if s € S\ (S1US2), n = 0,1,2,.... For
s € S1\ S2, we define py(s) =0 and, for n =0,1,2,..

pn-l-l(s) = Z P(S,t)'pn(t).

tesS

Then, lim p,(s) = p(s) for all s € S. This iterative method can be reformulated as follows.
Let p,, be the vector (p,(s))scs and let Q be the matrix (gs¢)stcs Where

P(s,t) : ifse€ S\ S

st = 1 ifs=te S
0 : otherwise.
Then, p, = Q Pn1 = Q? pn2=... = Q" pg. In particular, the vector p = (p(s))scs

is given by y
p = lim Q" po

71— 00
where the matrices Q? are obtained by iterative squaring (i.e. by successively computing
Q¥ =Q¥.Q%¥,i=0,1,2,...). Another possibility (used in [CoYa88, HaJ094, CoYa95))
for computing the function p(-) is based on Proposition 3.1.7 (page 36). First, one com-
putes the sets SVO and SYP° by a graph analysis. Second, one solves the regular linear
equation system x = A -x + b (or equivalently, (I — A)-x = b) where b = (b;),cs7 with
bs =P(s,5Y55), x = (,)5e57, A = (P(s,1)),,4e57 and I the |S?| x |S?|-identity matrix. m

Example 3.1.9 For the simple communication protocol of Example 1.2.1 (page 19) we
compute the probabilities that the message is eventually delivered correctly by taking
S1 =28, 8s = {Syait} = SYES, SN0 = () and solving the linear equation system

Tinit = 1 Tget, Tiost =1 Tget, Tger = 1(1]_0 * Tiost T %
which yields it = Tiost = Tgey = 1. W
In the following lemma, we give a graph-theoretical criteria for Prob(II(s)) = 1 where

we assume that S; = S and Sy = U. In that case, Prob(II(s)) is the probability for the
“progress property” stating that, from state s, the system will eventually reach a U-state.

Lemma 3.1.10 Let (S,P) be a finite fully probabilistic system and U C S. Let X and
IT be as in Theorem 3.1.6 (page 36) where Sy = S and S = U. Let s € S and T =
{last(o) : 0 € Pathgsn(s),0 ¢ X 14, }. Then, we have:

X(t) # 0 for all statest € T iff Prob(II(s)) = 1.

Proof:  see Section 9.5, Corollary 9.5.5 (page 242). m

Lemma 3.1.10 yields that whether or not a qualitative progress property of the type “with
probability 1, the system will eventually reach a U-state” holds does not depend on the
exact probabilities but only the topology of the underlying directed graph.?

Example 3.1.11 In Example 3.1.9 (page 37), we computed the probabilities z, = 1 for
the states of the communication protocol of Example 1.2.1 (page 19) to reach the state
Swait Dy solving a linear equation system. Alternatively, we could apply Lemma 3.1.10. m

3This result is not surprising since a similar result for concurrent systems was established by Hart,
Sharir & Pnueli [HSP83] (see Chapter 9, page 227).
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Definition 3.1.12 [Boundedness, cf. [LeSh82, HaSh84, LaSk89]] A fully probabilis-
tic system (S,P) is called bounded iff there exists a real number ¢ with 0 < ¢ < 1 such
that, for all s, t € S, if P(s,t) > 0 then P(s,t) > c.

Clearly, each finite fully probabilistic system is bounded. Moreover, whenever (S, P) is
bounded and s a state in S then there are only finitely many states ¢ where P(s,¢) > 0.
Le. in bounded systems, the set of (immediate) successors of a state is always finite.

3.2 Concurrent probabilistic systems

The concept of non-determinism is necessary to describe the interleaving behaviour of par-
allel (non-probabilistic or probabilistic) systems whose components work asynchronously.
In this section we present the basic concepts of the MDP-based models that allow for both
probabilistic and non-deterministic branching. Thus, the MDP-based models are suitable
to specify the interleaving behaviour of randomized distributed systems (cf. Example
1.2.2; page 20); but they are also appropriate for all other situations where the concept
of non-determinism might be useful, e.g. to represent underspecification or incomplete
information about the environment [JHY94, JoYi95, Sega95a| (cf. Example 1.2.3, page
22).

Like the models considered e.g. in [HSP83, PnZu93, SeLy94, Sega95a, BidAl195, dAlf97a/,
our basic model — called “concurrent probabilistic systems” — assigns to each state a
set of non-deterministic alternatives where each of them stands for a randomized step
of the system. On the other hand, there are models, e.g. those considered in [Vard85,
Hans91, CoYa95], that capture the branching structure of the purely probabilistic choices
and distinguish between probabilistic and non-probabilistic states. These two kinds of
MDP-based models have equivalent “power”. We define the models of the latter type as
special instances of our basic model. Vice versa, we briefly explain how the behaviour
of a system described by our basic model can be specified by a model that distinguishes
between probabilistic and non-probabilistic states.

Definition 3.2.1 [Concurrent probabilistic system] A concurrent probabilistic sys-
tem is a pair S = (S, Steps) where S is a set of states and Steps a function which assigns
to each state s € S a set Steps(s) of distributions on S.*

Let S = (S, Steps) be a concurrent probabilistic system. A state s is called terminal iff
Steps(s) = 0. S is called finite iff S and U,cg Steps(s) are finite. We write s — p iff
s € S and pu € Steps(s) and refer to s — p as a transition or a step of s. If y is of
the form p} then we also write s — ¢ rather than s — u!. Intuitively, Steps represents
the non-deterministic alternatives in each state: given a state s € S, a scheduler chooses
some transition s — p which represents a randomized step of the system, i.e. if s — p
is the chosen step then, with probability u(t), the system reachs the state ¢ afterwards.

We depict concurrent probabilistic systems as follows. We use circles for the states. Thick
lines stand for the outgoing transitions from a state. The thick line corresponding to a
transition s — p is directed and ends in a small circle that represents the probabilistic

“For the definition of a “distribution” and related notations, see Section 2.2, page 30.
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or

Figure 3.1: Pictures for the transition s — p

choice. The picture on the left of Figure 3.1 stands for a step s — p where Supp(p) =
{s1,...,sr} and p(s;) =p; >0,i=1,..., k. Transitions of the form s — p; are depict
as shown in the pictures on the right.

Example 3.2.2 The picture on the right shows a

simple example for a concurrent probabilistic sys- M @\
tem where non-deterministic choice is present only

in state s. The states ¢ and w are “deterministic” 1% @
in the sense that ¢t and v have unique successor 2 2%

states (as Steps(-) consists of a single distribution
of the form . for some state z). The state v is
terminal (as Steps(v) = 0). m

Further examples for concurrent probabilistic systems are given in the introduction: the
simple communication protocol Sender||Receiver of Example 1.2.2 (page 20) and the
roulette player of Example 1.2.3 (page 22).°

Some MDP-based models (such as stratified transition systems [vGSST90], the alternat-
ing model [HaJo89, Hans91| or concurrent Markov chains [Vard85, CoYa88|) capture the
branching structure of the purely probabilistic choices and distinguish between proba-
bilistic and non-probabilistic states. The behaviour in a probabilistic state is “purely
probabilistic” which is described by a distribution on the state space while the behaviour
in each other state s is “purely non-probabilistic” in the sense that none of the possible
steps in s is randomized, i.e. Steps(s) consists of distributions p}, t € S. Formally, these
models can be defined as special instances of concurrent probabilistic systems. We follow
the notations of [vGSST90| and use the adjective “stratified” for these models.

Definition 3.2.3 [Stratified system] A stratified system is a concurrent probabilistic
system (S, Steps) such that for all s € S:

Steps(s) C {u} : t € S} or |Steps(s)| = 1.
Let (S, Steps) be a stratified system. A state s is called probabilistic iff Steps(s) = {u}

for some distribution u ¢ {u; : t € S}. Otherwise, s is called non-probabilistic. Note
that the system behaviour in a non-probabilistic state s might be non-deterministic (if

°Note that in the simple communication protocol of Example 1.2.2 (page 20), the states sinit, Sqel
and sqc; behave deterministically. Formally, the “non-deterministic” alternatives in these states can
be described by singleton sets consisting of a distribution that returns the probability 1 for the unique
successor state.

6See Section 3.6 (page 62) for the exact relation between our notion of a stratified system and the
original notion by van Glabbeek et al [vGSST90].
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|Steps(s)| > 2) or deterministic (if |Steps(s)| = 1, in which case Steps(s) = {u}} for some
state t) or s might be terminal (if Steps(s) = 0).

Notation 3.2.4 [Stratified transition probabilities] Let (S, Steps) be a stratified sys-
tem. Then, the transition probability function P : S x S — [0, 1] is given by

p(t) = if s is probabilistic and Steps(s) = {u}
P(s,t) = ¢ 1 . if s is non-probabilistic and s — ¢
0 . otherwise.

We defined stratified systems as special instances of concurrent probabilistic systems.
Nevertheless, the stratified view is as powerful as the concept of concurrent probabilistic
systems where each state change involves the resolution of a non-deterministic choice
(the choice for some pu € Steps(-)) and a probabilistic choice (the randomized choice
corresponding to the chosen distribution p). If we devide these two choices into two
“steps” then the behaviour of a concurrent probabilistic system can be described by a
stratified system. Intuitively, in the stratified view, the small circle in the picture of a
transition s — g is viewed as a state where the system performs a randomized step.
Formally, if S = (5, Steps) is a concurrent probabilistic system then S can be identified
with the stratified system &' = (S, Steps') where S = SU{(s,v) : s € S,v € Steps(s)},
Steps'(s) = {u(,,) : v € Steps(s)} and Steps'(s,v) = {v}. Of course, the resulting system
S’ can be simplified by removing states of the form (s, u}).”

Example 3.2.5 The system of Example 3.2.2
(page 39) can be modelled by the stratified sys-
tem shown on the right. The state w represents
the probabilistic choice that is resolved when in @
state s the transition p is selected; i.e. w stands
for the auxiliary state (s, u). The states (¢, ul),

(u, pl), (s,ul) and (v, pl) are omitted. m @b

3.2.1 Paths in concurrent probabilistic systems

DO
(S

Execution sequences (or paths) arise by resolving both the non-deterministic and proba-
bilistic choices. Formally, an ezecution fragment or finite path in a concurrent probabilistic
system S = (S, Steps) is a nonempty finite “sequence” o = sy % s; 2 55... % 55 where
k>0ands; €5, pu; € Steps(s;_1), pi(s;) >0,i=1,2,..., k2 o is called mazimal iff s
is terminal. An execution or fulpath is either a maximal execution fragment or an infinite
“sequence” m = sp = 51 B s, B . where sg,51,52,... € S and p; € Steps(s;_1),
pi(s;) >0, ¢ =1,2,.... We use similar notations as in the fully probabilistic case (see
page 34): If v is a (finite or infinite) path in S then ~(i) (the (i + 1)-st state of 7), v
(the i-th prefix of ), || (the length of v), first(y) (the first state of ) and inf(7y) (the
set of states that occur infinitely often in 7) are defined as in the fully probabilistic case.

"Distributions of the form u} do not really represent randomized steps as they yield a unique next
state.

8Note that we write s — u to denote that p is a possible step in s (i.e. € Steps(s)) and s & ¢ to
denote that p is a possible step of s which leads (with non-zero probability) to the state ¢.
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Similarly, for o to be a finite path, last(o) denotes the last state of o, o 1 the set of all
fulpaths where o is a prefix, o 14, the set of finite paths o' where o is a prefix of ¢’ and
o | the set of finite paths o' where o' is a prefix of 0. The prefix relation <,.4,, the
proper prefix relation <p.fz, & T, X' |, X T4, and “path concatenation” o o are defined
as in the fully probabilistic case (see page 35). Moreover, for v = s L A -
to be a (finite or infinite) path in S and i < ||, we put

step(7, 1) = Hit1-

A state ¢ is called reachable from s if there exists a finite path o with first(c) = s and
last(c) = t. Reach®(s) denotes the set of states which are reachable from s.

Example 3.2.6 For the system in Example 3.2.2 (page 39),0 = s 5t 8 s X yisa
fulpath with first(c) = 0(0) = s, last(o) = 0(3) = v, 0(1) =t, 0(2) = s, step(o,0) = p,
step(o,1) = ut, step(o,2) = pi and |o| = 3. We have:

1

c®@ = sit@s, 0(2)0(sﬂ>t) =@ B = s B BBy

Moreover, o o v = 0.2 The states s, t, u, v are reachable from s and ¢ while only v is
reachable from v, only u is reachable from u. m

Path}sul denotes the set of all fulpaths in S, Pathgn the set of all finite paths in &, and
Path}sul(s) the set of fulpaths 7 with first(m) = s. When it is clear from the context
what S is we abbreviate Pathj, by Pathg,, and similarly, Path§, by Pathg,, Path?,(s)
by Pathg,(s), and Reach®(s) by Reach(s). As in the fully probabilistic case, if IT is a set
of fulpaths in S and s € S then II(s) = II N Pathsy,(s); if X' is a set of finite paths then
Y (s) = XN Pathgy,(s).

3.2.2 Adversaries of concurrent probabilistic systems

We split a concurrent probabilistic system S = (.S, Steps) into its computation trees (called
execution trees in [HSP83] and mazimal resolutions in [JoLa9l]), with each component
described as a fully probabilistic system. The computation trees arise by resolving the
non-deterministic choices (but not the probabilistic choices). It is convenient to suppose
that the “environment” (called adversary in [SeLy94, Sega95a), policy in the theory of
MDPs, scheduler in [Vard85]) decides — based on the past history of the system — which of
the possible steps to perform next. We follow the notations of [SeLy94, Sega95a] and use
the word “adversary” to denote the instance that resolves the non-deterministic choices.’

9Here, the state v stands for a finite path of length 0.

10We only consider deterministic adversaries, i.e. those that schedule a unique next step. The notion of
randomization of adversaries or probabilistic adversaries has been investigated in [HSP83] and [SeLy94,
Sega95a], where it is shown that the probability of a measurable set IT with respect to a randomized
adversary is a convex combination of the measure of II with respect to non-randomized adversaries, and
hence lies between the minimal and maximal measure of II with respect to non-randomized adversaries.
Since we are only interested in the maximal and minimal measures, we shall not need the randomized
adversaries.
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Definition 3.2.7 [Adversary, simple adversary| Let S = (S, Steps) be a concurrent
probabilistic system. An adversary of S is a function A : Pathg, — Distr(S) such that
A(o) € Steps(last(o)) for all 0 € Pathg,. An adversary A of S is called simple iff for
every state s € S there ewists i, € Steps(s) with A(0) = [iast(o) for all o € Pathg,
where last(c) = s.

Adv® denotes the set of all adversaries of S and Advfimple the set of simple adversaries.
S

When clear from the context we write Adv and Adv gy rather than Adv® and AdvSpre-

An adversary chooses for every finite path ¢ in & an outgoing transition from last(o).
Simple adversaries resolve the non-determinism by selecting for every state a next step
which is executed whenever the state s is reached — independent of the past history.!

Example 3.2.8 The system of Figure 3.2.2 (page 39) has exactly two simple adversaries
A, B. These are given by A(s) = pu, B(s) = p!. Note that the other states do not behave
non-deterministically because there is at most one outgoing transition. m

Given an adversary A, the “behaviour” of S under A can be described by a bounded fully
probabilistic system S*.

Notation 3.2.9 [The fully probabilistic system S4] If A € Adv then
8* = (Pathg, P*)

is the fully probabilistic system where P4 is given by P4(o, 0 Ao s) = A(o)(s) and
PA(.) =0 in all other cases.

Note that, in general, S# is infinite even if S is finite. If A a simple adversary then S4
can be identified with the fully probabilistic system (S, A) where A(s,t) = A(s)(¢t) for
all s, t € S. For S to be finite and A € Advgimpre, the associated fully probabilistic
system SA = (S, A) is finite. For an adversary A of a concurrent probabilistic system
S = (S, Steps) and o to be an execution fragment, we define:

Pathﬁd denotes the set of all paths m € Pathy, with step(m,i) = A(r®) for all i > 0.
Path}‘gn is the set of all finite paths o € Pathg, with step(o,i) = A(c¥) for all i < |o].
oti={r € Pathﬁd 10 Zprefiz T} and o T]‘fi‘nz {o' € Path;iln 00 Zprefiz 0'}

If IT is a set of fulpaths in S then IT4 = IT N Pathy,.

If X is a set of finite paths in S then

A =YnPathy, St=U ot*, Tth=U ot

=P ocy

Reach®(s) = {last(0) : 0 € Path}‘gn(s)}

Note that, in the notations introduced on page 41, Pathﬁd(s) = Paths,(s) N Pathﬁd,
Pathgn(s) = Pathg,(s) N Pathﬁn, I (s)=In Pathﬁd(s) and X4(s) = XN Pathﬁn(s).

1Tn some sense, simple adversaries are extremely unfair and would be ruled out for practical purposes.
We need them only for the sake of convenience.
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We identify each (finite or infinite) path v = 0y — 07 — ... in S# which starts in a state
sp € S (i.e. 09 = sp is a path of length 0) with the path last(op) Ao last(o) A
in §. Vice versa, if 7 € Pathﬁd U Path}‘gn then we identify v with the path ® —

7 — 4@ —  in 84 This yields a one-to-one correspondence between the paths
v E Pathﬁn(s) U Pathﬁd(s) and the paths in S# that start in s. Hence, the probability

measure Prob on Path%(s) (defined as in Section 3.1 on page 35) turns Path}il(s) into a
probability space. If IT C Paths,(s) and II* is measurable then we refer to Prob(II*) as
the measure of II with respect to A.

Example 3.2.10 For the system of Example 3.2.2 (page 39) and the finite path o of
Example 3.2.6 (page 41), we have o € Pathﬁn(s) for each adversary A with

P 1
A(s) = p and A(s—>t4s> = [y
Moreover, for each such adversary A, the probability measure of o 14 is 1/2. m

Theorem 3.2.11 Let (S, Steps) be a concurrent probabilistic system, Sy, Sy C S and let
X be the set of finite paths o such that o(i) € S1, i =0,1,...,|0| — 1, and last(o) € Ss.
Forse S and A € Adv, let

min _ : A A mazx _ A A
p™"(s) = Alerhfdv Prob (E (s) ), pm(s) = Ase]ill?iv Prob (E (s) 1 )

mar are the least fixed points of the operators

Fmin pmaz (S —[0,1]) — (S — [0,1])

that are defined as follows. If s € Sy then F(f)(s) = 1. If s € S\ (S1UJSy) then
F(f)(s)=0. If s € S;\ Sy then

Then, p™" and p

F™™(f)(s) = min { > ou(t)- f(t) + pe Steps(s) },

tesS

Fre) = max {32 w0 £0) < e stensts) |.

tesS

Proof:  see Section 3.7, Corollary 3.7.4 (page 67). m

Remark 3.2.12 [Computing the probabilities p™"(s) and p™(s)] Theorem 3.2.11
yields that the values p*(s) can be approximated with the following iterative method. We
put pi(s) =1if s € Sy and pi(s) =0if s € S\ (S1US2),n=0,1,2,.... For s € S;\ S,
we define pi(s) =0 and, forn =0,1,2,...,

) = min (a0 20 < e Seps(s)),

tes

pnti(s) = max {Z p(t) - p™m(t) s p € Steps(s)}.

tes

Then, limp}(s) = p*(s) for all s € S. As proposed by [CoYa90, BidAl95], for S to
be finite, the values p*(s) can also be computed by solving linear optimization problems
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which can be solved in polynomial time with well-known methods of linear programming
[Derm70, Bert87, Schr87].

Computation of p™®@(s): Let S\ (S;US;) C SY C {s € S : ¥(s) = 0} and
ST =8\ (SO U S,). We define y, = 1if s € S, and y, = 0 if s € SV°. For each
state s € S?, we choose a variable y,. Then, the vector (p™(s)),cs is the unique
solution of the linear minimization problem 0 < y, < 1 and

> > u(t) -y, p e Steps(s)

tesS

where .57 Y5 is minimal.

Computation of p™"(s): Let S¥? = {se€ S: X(s) =0} and S* =S5\ (S¥° U S,). We
define y, = 1 if s € Sy and y, = 0 if s € SV9. Then, the vector (p™"(s)),cs? is the unique
solution of the linear maximization problem 0 < y, <1 and

< > w(t) -y, p e Steps(s)

tes
where .57 ys is maximal.

The set {s € S : X(s) = 0} can be obtained by a reachability analysis in the underlying
directed graph. Note that for the computation of the values p™"(s) it is essential that we
deal with S¥? = {s € S : X(s) = 0} (rather than e.g. SV = S\ (S, USs) as it is possible
for computing p™®*(-)). For instance, for the system ({s}, Steps) where Steps(s) = {ul}
and S; = {s}, Sy = 0 we have ¥ = ) (and hence p™"(s) = 0) while the optimization
problem 0 < y, <1 and

< D plt) -y, p € Steps(s)
teS

where Y, y; is maximal yields y; = 1 (because we just deal with the inequation y, <

Yo pi(t) Yy = ys). m

Example 3.2.13 We consider the concurrent probabilistic system of Example 1.2.3 on
page 22 (see Figure 1.3, page 22) that describes the one-day-behaviour of the roulette
player. The maximal/minimal probabilities to reach the state sjqpp, (i-e. the state where
the roulette player leaves the casino winning the last game) can be computed by taking
S; = 0 and Sz = {Shappy}- By Theorem 3.2.11 (page 43), p* : S — [0,1] is the least
function S — [0, 1] that satisfies p*(Shappy) = 1, P*(Ssa¢) = 0 and

p*(sinit) = p*(splay) - p*(slost) = % : p*(swon) + % : p*(slost)a

pmm(swon) = min {pmm(splay)a %} ) pmaz(swon) = max {pmaw(splay)a %} .

Thus, p™"(s) = 0 for all s € S\ {Spappy } and p™*(s) = 1/2 for all s € S\ {Shappy, Ssad }-
Note that the minimal probabilities p™"(s) = 0 are obtained by the simple adversary A
that always chooses the transition s,,, — Spiey (i.e. the pathological adversary which
forces the roulette player to stay forever in the casino). For any other adversary A, the
probability for sn; to reach spqppy is the maximal probability p™** (sin;) =1/2. m



3.2. CONCURRENT PROBABILISTIC 5YSTEMS

3.2.3 Fairness of non-deterministic choice

In the verification of non-probabilistic concurrent systems, it is well-known that certain
liveness properties can only be established when appropriate fairness assumptions about
the resolution of the non-deterministic choices are made. Clearly, this also holds for con-
current probabilistic processes as they also allow for non-deterministic choice. Thus, as in
the non-probabilistic case, certain (qualitative or quantitative) liveness properties cannot
be established unless fairness of non-deterministic choice is imposed. For instance, for
the roulette player of Example 1.2.3 on page 22 (see Figure 1.3, page 22) the quantitative
liveness property stating that there is a 50% chance for the roulette player to leave the
casino while winning the last game (i.e. eventually to reach the state sjqpp,) can only be
established when fairness in the state s, is assumed (see Example 3.2.13, page 44).

Fairness of non-deterministic choice (i.e. fairness of adversaries) of concurrent probabilis-
tic systems was first introduced by Hart, Sharir & Pnueli [HSP83] and later considered
by Vardi [Vard85] and several other authors. Fairness of non-deterministic choice requires
that — in some sense — the environment (the adversary) resolves the non-deterministic
choices in a fair manner. [HSP83] defines two types of fairness for adversaries: an ad-
versary is strictly fair iff each of its fulpaths is fair, and it is fair if almost all execution
sequences are fair (i.e. if the measure of its fair fulpaths is 1) where fairness of a fulpath can
be defined as in the non-probabilistic case. [HSP83] deals with concurrent probabilistic
systems which arise by the interleaving of sequential probabilistic processes and defines a
fulpath 7 to be fair iff each sequential process is activated infinitely often in 7 (i.e. [HSP83]
deals with “process fairness”). [Vard85] deals with “concurrent Markov chains” (stratified
systems, see Definition 3.2.3, page 39) — which distinguish between non-deterministic and
probabilistic states — and defines a fulpath 7 to be fair if all possible successor states of a
non-deterministic state, in which fairness is required and which occur infinitely often in
m, also occur infinitely often.

In this section, we follow the approachs of [HSP83, Vard85] and define fairness of ad-
versaries. We adapt Vardi’'s notion of fairness to our model for concurrent probabilistic
processes — which does not distinguish between non-deterministic and probabilistic states
— and define an execution sequence 7 to be fair if none of the non-deterministic alterna-
tives in a state occurring infinitely often in 7 is refused continuously. Moreover, we define
W -fairness for a set W of states in which fairness is required.!?

Definition 3.2.14 [Fairness for fulpaths| Let S = (S, Steps) be a concurrent proba-
bilistic system and w a fulpath in S. 7 is called fair uff either w is finite or, for each
s € inf(m) and each p € Steps(s), there are infinitely many indices i with 7(i) = s and
step(m, i) = p.

Remark 3.2.15 [Process fairness a la [HSP83]] Our notion of fairness of a fulpath is
stronger than fairness of fulpaths in [HSP83|. In [HSP83| “process fairness” is considered,
in the sense that all sequential processes (whose composition is the concurrent probabilistic
system under consideration) are activated infinitely many times in fair fulpaths 7. If S
is a concurrent probabilistic system which arises through the interleaving of sequential

12An alternative notion of fairness for concurrent probabilistic systems and a discussion about the
relation to our notion is presented in [dAlf97a).
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processes without shared variables then fairness in the sense of Definition 3.2.14 (page 45)
implies fairness in the sense of [HSP83|; to see this suppose that there are k sequential
probabilistic processes Pi, ..., P, where each of them is described by a Markov chain
S; = (Si,P;), i = 1,...,k, and that § = (S, Steps) where S = S} x ... x Si and
Steps(s1,...,8k) = {Vgn,---,s;g) ci=1,...,k} where

o Pz(Sz,tz) . ift]':Sj,j:].,...,k,i#j
G sk)(tl""’tk) - {0 . otherwise.

Then, whenever 7 is a fulpath in S that is fair in the sense of Definition 3.2.14 (page 45)
then 7 is fair in the sense of [HSP83], which requires that for each ¢ € {1,...,k} there
are infinitely many indices j > 0 with step(w,j) = er(j). ]

Notation 3.2.16 [The set Fair of all fair fulpaths] Fair® (or shortly Fair) denotes
the set of fair fulpaths in S.

As in [HSP83] we consider two kinds of fairness for adversaries: strictly fair adversaries,
where all fulpaths are fair, and fair adversaries, where the set of fair paths has probability
1, i.e. where almost all fulpaths are fair.

Definition 3.2.17 [(Strict) fairness of adversaries, cf. [HSP83, Vard85]| Let S be
a concurrent probabilistic system and F an adversary for S. F' s called

e strictly fair iff Pathf;l C Faar,

e fair iff Prob(Fair® (s)) =1 for all states s in S.
Adv?

sfair denotes the set of strictly fair adversaries, Advﬁm the set of fair adversaries.

Clearly, strictly fair adversaries are fair. If F' is a fair adversary then for each o € Pathgn
there exists 7 € Fair® where o is a prefix of w. This reflects “liveness” in the sense of
Alpern & Schneider [AlSch84| which states that every finite computation can be extended
to an infinite (fair) computation.

Example 3.2.18 For the system of Example 3.2.2 (page 39), the fulpath
1 1
T = sttty g By te g B
is not fair since s € inf(m) and pp € Steps(s) \ {step(mo, ) : © > 0}. Every other fulpath
7 € Pathg,(s) is fair (as it “ends” in v or u). Thus,
Fair(s) = Pathp,(s) \ {mo}.

The simple adversary B with B(s) = pl is strictly fair since my ¢ Path}il. The simple

adversary A with A(s) = p is not strictly fair since 7 € Path]f:‘l( ). Nevertheless, A is fair.
To see this, consider the set IT of all fulpaths 7w € Pathful where 7(7) € {u, v} for some 1.
Then, HA( ) = Fair®(zx) for all states « and Prob(Fair*(u)) = Prob(Fair®(v)) = 1,

Prob (Faz'r ) i 3 (%)z =1

=0

1
and Prob (FairA(t)) = Prob {t B 1w € Fair® } = 1. Hence, A is fair. m
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Following Vardi [Vard85], the above definition of fair fulpaths or fair adversaries can
be weakened by requiring fairness with respect to the non-deterministic choices only in
certain states rather than in all states.

Definition 3.2.19 [W-Fairness of fulpaths| Let S = (S, Steps) be a concurrent prob-

abilistic system and W C S. A fulpath w in S is called W -fair iff, for all s € inf(m) "W
and all p € Steps(s), there are infinitely many indices j > 0 with step(w,j) = u.

Fairness with respect to W = S (in the sense of Definition 3.2.19) is weaker than fairness
of a fulpath in the sense of Definition 3.2.14 (page 45)."* Vardi’s notion of fairness of
adversaries adapted to our model for concurrent probabilistic systems is the following.

Definition 3.2.20 [W-Fairness of adversaries, cf. [Vard85]|] Let S and W be as
before. An adversary F' is called W -fair iff, for all s € S, the measure of the set of fulpaths
T E Pathf;l(s) which are W -fair s 1. Advﬁ,fm denotes the set of W -fair adversaries.

S
sfair>

When clear from the context, we write Advfir, Advyr or Advyy feir rather than Adv
Adv}sm or Adv‘gvfair. Clearly, Advypy C Advgir C Advwiair

3.3 Labelled probabilistic systems

Formal reasoning about the behaviour of programs requires additional informations about
the states and/or the transitions. In the literature two kinds of labellings have been es-
tablished: one uses atomic propositions (or, more general, first order logical formulas) as
labels for the states, the other uses action labels for the transitions. Models based on
the former type of labellings are often called Kripke structures and used in the context of
temporal logic specifications while the models based on the latter type of labellings are
often called labelled transition systems and used in the context of process algebras and
implementation relations. Several authors proposed transformation techniques between
proposition-labelled and action-labelled systems, see e.g. [JHP89, dNVa90]. Even though
they are originally formulated for non-probabilistic systems they can also be applied in
the probabilistic case. We follow these standard approachs and use action labels for the
transitions in Chapters 4, 5, 6 and 7 where we work with process calculi and implemen-
tation relations and proposition labels for the states in Chapter 9 where we deal with
temporal logic specifications.

3.3.1 Action-labelled probabilistic systems

In the action-labelled approach one usually deals with a set Act of abstract action symbols.
Each action symbol a represents an activity of the program that is viewed to be “atomic”
in the sense that it cannot be interleaved by actions of programs which run in parallel.
Typical examples are communication actions like sending or receiving a message along a
certain channel.

13Note that in Definition 3.2.19 we do not require that step(r,j) = u and 7(j) = s.
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ack?, 1

Figure 3.2: The sender with action labels

In (non-probabilistic) labelled transition systems, the possible steps in the states are de-
scribed by a transition relation — C S x Act x S (where Act stands for the underlying
set of actions), i.e. the state changes are associated with action labels. Intuitively, s—t
asserts that, in state s, it is possible to perform the action a and to reach state t after-
wards. Hence, for fixed state s, the set {(a,t) : s—t} represents the non-deterministic
alternatives in state s. This can be adapted for probabilistic systems as follows: In
the concurrent case, the transitions are associated with action labels (i.e. one deals with
Steps(s) to be a set of pairs (a, ) where a is an action label and p a distribution on the
state space.) In the fully probabilistic case, the arguments of the transition probability
function P are extended by an action (i.e. one deals with the probabilities P(s,a,t) for
state s to perform the action a and to reach ¢ afterwards).

The action set Act: Throughout all sections, Act stands for a nonempty set of actions.
For L C Act, L* denotes the set of finite sequences over L. The empty sequence is denoted
by €. L' denotes the set of finite nonempty sequences over Act, i.e. L™ = L*\ {¢}. In
Chapters 4 and 5, we assume that Act contains a special symbol 7. Intuitively, 7 stands for
any “internal” activity of the system which is invisible for an observer (or the environment
of the system). We refer to 7 as the internal action. The other actions are called wvisible.
We use greek letters «, (3, ... to denote visible actions and arabic letters a, b, ... to range
over all actions.

Definition 3.3.1 [Action-labelled fully probabilistic systems] An action-labelled
fully probabilistic system is a tuple (S, Act,P) consisting of a set S of states, a nonempty
set Act of actions and a transition probability function P : S x Act x S — [0,1] such
that, for each s € S, P(s,a,t) > 0 for at most countably many pairs (a,t) € Act x S and

Yt P(s,a,t) € {0,1}.

Example 3.3.2 [The sender with action labels| Figure 3.2 (page 48) shows an action-
labelled extension of the simple communication protocol of Example 1.2.1 (page 19). We
use the visible actions send! (an output action by which the sender passes the message
to the medium) and ack? (an input action which stands for the receipt of the acknowl-
edgement). The other steps are supposed to be invisible and thus labelled by the special
action symbol 7. m

Let (S, Act, P) be an action-labelled fully probabilistic system. For s € S, C C S, a € Act
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and L C Act, we define

P(s,a,C) = > P(s,a,t), P(s,a) =P(s,a,5), P(s,L)=> P(s,a).

teC acL
An ezecution fragment or finite path is a finite “sequence” o = sy > 51 3 5, 3 ... &
sk such that sp,s1,...,8: € S, a1,...,ar € Act and P(s; 1,a;,8) > 0,7 = 1,... k.

Maximality, o (i), c®, first(c), last(c), |o|, P(0), o 1 are defined as in the unlabelled
case (see page 34 ff). If o is as above then we put trace(c) = ajas...ag. An ezecution
or fulpath in (S, Act,P) is either a maximal execution fragment or an infinite “sequence”
T o= 8935 B sy B ... where sq,51,...,€ S, a1, as,... € Act and P(s;_1,a;,5;) > 0,
t =1,2,.... As before, a path denotes an execution fragment or execution. For 7 to be
an infinite path, (i), 7@, first(7) and |r| are defined in the obvious way.

Example 3.3.3 For the system of Figure 3.2 (page 48),

send!

T = Sinit ? Sdel } Slost } Sdel } Slost ;

send!

is an execution (fulpath) with 7 = s ™% 540 — S10st, first(T) = Sinit, T(3) = Sger,
P(r®) = 1.0.01-1-0.01 = 0.0001 and trace(r®) = send! 7 7 7. m

The probabilities Prob(s,§2,C): The sigma-field SigmaField(s) and the probability
measure Prob are defined as in the unlabelled case (Section 3.1, page 35). For s € S,
2 C Act® and C C S, we define Prob(s,(2,C) to be the probability for s to reach C
via an execution fragment that is labelled by some string of {2. The formal definition of
Prob(s, £2,C) is as follows. Let Pathg,(s,(2,C) be the set of finite paths o € Pathg,(s)
trace(o) € (2 and last(o) € C. Let Pathp(s, 2,C) = Uscpaths,(s,2,0) 0 15 Pathpu(s, 2)
= Pathsy(s, £2,S) and Path(s, 2,t) = Pathg,(s, 2,{t}). We define Prob(s,(2,C) =
Prob( Pathg, (s, $2,C) ), Prob(s, §2,t) = Prob(s, £2,{t}) and Prob(s, 2) = Prob(s, 2, 5).

Proposition 3.3.4 Let (S, Act,P) be an action-labelled fully probabilistic system and
C C S. The function S x 24" — [0,1], (s, £2) — Prob(s, 2,C), is the least fired point of
the operator F : (S x 24t [0, 1]) — (S x 24¢t” — [0, 1]) which is defined as follows.
F(f)(s,02) = 1ifseCandecec (2. Ifs¢ C ore ¢ (2 then

F(f)(S, ‘Q) = Z P(s,a,t)-f(t, .Q/CL,C)

(at)eActxS

where 2/a = {x : ax € N} If S is finite and SNO = {s € S : Paths,(s, 2,C) = 0},
SYES = Cifee 2, SYPS =0 ife ¢ 2 and S* = S\ (SV° U SYFS) then the function
(s,82) — Prob(s, 2,C) is the unique fized point of the operator F' : (S x 24t [0, 1]) —
(S x 24t [0, 1]) which is defined by:
{ F(f)(s,02) : ifse S’

1 . ifse SYPS
0 . if s € SN0

Fl(f)(s) ‘Q) =

where F' s defined as above.

14Recall that £ denotes the empty word in Act*.
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Proof:  easy verification. Uses Theorem 3.1.6 (page 36). m

The probabilities Prob(s,7*,C) and Prob(s, 7*a7*,C): In what follows, we identify
a regular expression (e.g. 7*, 7"« or 7*ar*) with the corresponding set of traces. For
instance, Prob(s,7*,t) denotes the probability to reach ¢ from s via internal actions,
Prob(s,ajas . .. a) stands for the probability for s to perform the trace a;as . . . a;. Clearly,
for finite action-labelled fully probabilistic systems and regular expressions of the form
7, 7" and T*at*, the second part of Proposition 3.3.4 yields that the probabilities
Prob(s, £2,C') can be computed by a reachability analysis in the underlying directed graph

(which yields S¥© and S*) and solving a linear equation system.

Example 3.3.5 Consider the simple communication protocol of Example 3.3.2 on page
48 (Figure 3.2, page 48). The probability Prob(s;, 7" send! 7%, $yqi) can be computed
by solving the linear equation system:

Tinit = 1 Ygel
Ydet = 0.01- Yiost + 0.99 - Ywait
Yiost = 1- Ydel, Ywait — 1

(Here, y. = Prob(s., 7", Suait).) We get Prob(spit, 7° send! 7%, Syqit) = Tinit = 1. W

Next we extend concurrent probabilistic systems by action labels. For this, each transition
in the system is associated with an action label. I.e. we deal with a function Steps that
assigns to each state s a set of pairs (a, ) where a is an action and u a distribution on the
state space. Thus, action-labelled concurrent probabilistic systems are associated with a
transition relation — C S x Act x Distr(S).

Definition 3.3.6 [Action-labelled concurrent probabilistic system| An action- la-
belled concurrent probabilistic system is a tuple (S, Act, Steps) where S is a set of states,
Act a nonempty set of actions and Steps : S — 24ctxDistr(S) o function which assigns to
each state s a set Steps(s) of pairs (a,u) € Act x Distr(S).

Let S = (S, Act, Steps) be an action-labelled concurrent probabilistic system. S is called
finite iff S, Act and U,cs Steps(s) are finite. We write s——pu iff s € S, a € Act and
(a,p) € Steps(s) and refer to s——u as a transition or a step of s. If p is of the form u}
then we also write s——t rather than s—>ul. As in the unlabelled case, for each state s,
the elements of Steps(s) represent the non-deterministic alternatives in the state s. Given
a state s, an adversary chooses some outgoing transition s—~+u. Then, the action a is
performed and the next state is chosen randomly according to the distribution pu.

Example 3.3.7 [The communication protocol with action labels] The simple com-
munication protocol of Example 1.2.2 (page 20) can be extended by action labels as shown
in Figure 3.3 on page 51. Here, we assume Act = {produce, consume, try} where produce
stands for the action by which the sender generates a message and passes the message to
the medium, consume for the action by which the receiver reads and works up the message
and acknowledges the receipt while ¢ry represents the actions by which the medium tries
to deliver the message. m

Paths and adversaries of action-labelled concurrent probabilistic systems are defined as
in the unlabelled case (see Sections 3.2.1 and 3.2.2) where the action labels are added.
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consume

consume

Figure 3.3: The simple communication protocol with action labels

. . a, as, . .
For instance, a path is of the form sy 2% s 2% ..., adversaries are functions that

take a finite path o as their input and return a step of the last state of o, i.e. a pair
A(o) = (a,p) € Steps(last(o)).

Non-probabilistic labelled transition systems (where the transition relation — is a subset
of Sx Act x S) arise as special cases of action-labelled concurrent probabilitistic systems by
identifying each “non-probabilistic transition” s—t with the “probabilistic transition”
s—sul. Le. the non-probabilistic labelled transition system (S, Act, —s) corresponds to

the probabilistic system (S, Act, Steps) where Steps(s) = {(a, E si>t}.

Let S = (S, Act, Steps) be an action-labelled concurrent probabilistic system.

Notation 3.3.8 [The sets Steps,(s) and act(s)] For s € S and a € Act, let
Steps,(s) = {u: s—su}, act(s)={a € Act: Steps,(s) # 0}.

Definition 3.3.9 [Finitely branching, image-finite systems] S is called

e finitely branching iff, for each s € S, Steps(s) is finite,
e image-finite iff, for each s € S and a € Act, Steps,(s) is finite.

Definition 3.3.10 [Reactive systems, cf. [LaSk89, vGSST90]] S is called reactive
iff, for each s € S and a € Act, |Steps,(s)] < 1.

The use of reactive systems is motivated by the assumption that the system “reacts” on
the stimuli of the environment which offers the communication on certain actions. The
choice between several (different) actions is not under the control of the system (hence,
no probabilistic assumptions are — or can be — made about the resolution of the choice
between the actions) while the choice between the several branches of the same action
is resolved randomly according to a certain distribution. For further details about the
reactive view see [LaSk89, vGSST90].

In what follows, we often describe reactive systems as tuples (S, Act, P) where P : S X
Act x S — [0,1] returns the probability P(s, a,t) for the transition s——t (if it exists).
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Notation 3.3.11 [Reactive transition probabilities| If S is reactive then the induced
transition probability function P is given by P (s, a,t) = 0 if Steps,(s) = 0 and P(s,a,t) =
1u(t) if Stepsy(s) = {u}-

For the extension of stratified systems (Definition 3.2.3, page 39) by action labels we make
the requirement that the transition of the probabilistic states are labelled by a special
action symbol a,un4om that stands for any activity that resolves a probabilistic choice
(e.g. “tossing a fair coin”).

Definition 3.3.12 [Action labels in stratified systems] An action-labelled stratified
system is an action-labelled concurrent probabilistic system (S, Act, Steps) such that Act
contains the special action Grengom and, for all s € S:

e cither Qrandom ¢ aCt(S) and St@pS(S) C {(a,,u%) te S,a S ACt}
o o7 {Gangom } = act(s) and |Steps(s)| = 1.

Thus, for any probabilistic state s of an action-labelled stratified system, Steps(s) =
{(@random, i)} for some distribution p.

3.3.2 Proposition-labelled probabilistic systems

In the proposition-labelled approach, a state is viewed as a function which assigns values
to the program and control variables. In many applications, it suffices to abstract from
the exact values of certain (or all) variables and just to work with assertions about the
values of certain variables. Typically, these assertions are formulated in a first order or
propositional logical framework. For instance, we can use atomic propositions of the form
az—, which states that the current value of variable z is v or a,., which states that the
current value of variable z is less than v. In many applications, it suffices to use a finite
nonempty set AP of atomic propositions and to deal with a labelling function £ : S — 247
that assigns to each state s the set £(s) of atomic propositions that are satisfied in s.

Definition 3.3.13 [Proposition-labelled probabilistic systems| A proposition-la-
belled probabilistic system is a tuple (S, AP, L) consisting of a (fully or concurrent)
probabilistic system S, a finite nonempty set AP of atomic propositions and a labelling
function L : S — 247 which assigns to each state s € S a set L(s) of atomic propositions.

Example 3.3.14 [Sock selection problem] We briefly explain how to use proposition-
labelled probabilistic systems to specify the behaviour of randomized algorithms. We
consider the “sock-selection problem” of [GSB94]. The starting point is a dresser drawer
with 2n socks, n read socks and n blue socks. The problem is to extract a matching
pair of socks (i.e. two red socks or two blue socks) where it is not allowed to have at
hand more than two socks at any time and where a sock, once extracted from the drawer,
cannot be put back in the drawer. The randomized method of [GSB94| can be sketched as
follows. We extract the first two socks. If we do not have a matching pair then we choose
randomly one of the two socks, threw it away and replace it by the next sock from the
drawer. We proceed in this way until we have a matching pair or no more socks are in the
drawer. As shown in [GSB94], the expected number of socks that have to be extracted
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from the drawer until a matching pair is obtained is approximately 4. Nevertheless,
there is a small chance that the algorithm fails (i.e. does not return a matching pair of
socks). This can be seen by analyzing the induced Markov chain: Given a fixed sequence
socky, socks, . .., socks, of socks that represents the order in which the socks are extracted
from the drawer the behaviour of the algorithm can be described by a fully probabilistic
system. We use the state space S = {red, blue} x {red, blue} x {0,1,...,2n — 2} where
the first two components stand for the colors of the two socks we have in hand while the
last component is the number of socks that are still in the drawer. The terminal states
are those states (c1, co, k) where either ¢; = ¢, (the states where we have a matching pair)
or k = 0 (the states where the drawer is empty). If ¢; # ¢ and k£ > 1 then we have the
transition probabilities

P({(ci,co, k), {c,co,k — 1)) = P({c1,co,k), (c1,c,k—1)) = 1

2

where ¢ = color(socka,—) is the color of socks,_r. Figure 3.4 (page 53) shows the fully
probabilistic system that we obtain for n = 2 and the sequence red, blue, red, blue. For

red, blue, 2

red, blue, 0 blue, blue, 0

Figure 3.4: The fully probabilistic system for n = 2 and the sequence red, blue, red, blue

analyzing the correctness of the algorithm one might use a single atomic proposition
success that characterizes the successful states (i.e. the states where a matching pair is
found). Hence, we deal with the labelling function £ where success € L({cy,co,k)) iff
c1 = ¢o. Using Theorem 3.1.6 (page 36) or Proposition 3.1.7 (page 36), it can be shown
that the probability to reach a success-labelled state from (cy,cq, k) (where ¢; # c¢2) is
1 — 1/2%. By considering the initial state s;,; = (color(socki), color(socks),2n — 2) we
obtain that the probability to get a matching pair is 1 — 1/2*"72. m

3.4 Bisimulation and simulation

Bisimulation equivalence [Miln80, Park81] is one of the standard concepts to obtain a
natural notion of “process equality”, i.e. a notion of “behaves like”. While bisimulation
is “bi-directed” and asserts that each step of one process can be simulated by a step of
the other process, simulation is “uni-directed” and states that for each step of the first
process (the “implementation”) there is a corresponding one of the second process (the
“specification”).

In this section, we recall the definition of bisimulation equivalence as introduced by
Larsen & Skou [LaSk89] for reactive systems (and its modifications for action-labelled
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concurrent probabilistic systems [SeLy94] and for action-labelled fully probabilistic sys-
tems [vGSST90]). Section 3.4.2 presents the notion of a simulation a la Segala & Lynch
[SeLy94] for action-labelled concurrent probabilistic systems. Moreover, we show how to
adapt this notion of a simulation for fully probabilistic systems with action labels.®

3.4.1 Bisimulation

In [LaSk89|, Larsen & Skou introduce probabilistic bisimulation for reactive systems as
an elegant extension of bisimulation for non-probabilistic systems [Miln80, Park81|. Van
Glabbeek et al [vGSST90] reformulate probabilistic bisimulation for action-labelled fully
probabilistic; Segala & Lynch [SeLy94] for action-labelled concurrent systems (which —
when applied to reactive systems — yields the original definition by Larsen & Skou).

Definition 3.4.1 [Bisimulation (fully probabilistic case), cf. [vGSST90]|] A bi-
simulation on an action-labelled fully probabilistic system (S, Act,P) is an equivalence
relation R on S such that P(s,a,C) = P(s',a,C) for all (s,s') € R, all a € Act and
C e S/R.

Definition 3.4.2 [Bisimulation (concurrent case), cf. [SeLy94]] A bisimulation on
an action-labelled concurrent probabilistic system (S, Act, Steps) is an equivalence relation

R on S such that for all (s,s') € R:
If s—"5u then there is a transition s'——u' with u[C] = W'[C] for all C € S/R.

Definition 3.4.3 [Bisimulation equivalence ~| Two states s; and s> of an action-
labelled (fully or concurrent) probabilistic system are called bisimilar (denoted by s; ~ s3)
iff there exists a bisimulation which contains (si, s3).

Clearly, the above notion of a bisimulation equivalence applied to a non-probabilistic
system (S, Act,—) (identified with the concurrent probabilistic system (.S, Act, Steps)
where Steps,(s) = {u} : s—t}) coincides with the classical bisimulation equivalence
a la [Miln80, Park81].1% Jonsson & Larsen [JoLa91] give an alternative description of
bisimulation for fully probabilistic systems with proposition labels which is based on
weight functions for distributions.!” The following proposition reformulates this result
(Theorem 4.6 in [JoLa91]) for concurrent probabilistic systems with action labels. A
similar observation was made by de Vink & Rutten [dViRu97] for reactive systems (using
a categorical characterization of what we call weight functions).

Proposition 3.4.4 Let (S, Act, Steps) be an action-labelled concurrent probabilistic sys-
tem and s, s' € S. Then, s and s’ are bisimilar iff there exists a binary relation R on S
such that (s,s') € R and, for all (t,t') € R:'8

15Bisimulation equivalence and the simulation preorder can also be defined for proposition-labelled
probabilistic systems (see e.g. [JoLa91, ASB*95]). These definitions are omitted here.

16This simple observation should not be confused with the more delicate result by Bloom & Meyer
[BIMe89] who have shown that any finitely branching non-probabilistic action-labelled transition system
can be decorated with probabilities such that the resulting system is a reactive system with the same
bisimulation equivalence classes.

17See Section 2.2, page 30, for the definition of weight functions.

18Recall that u <g u' iff there exists a weight function for (u, ') with respect to R (see Section 2.2,
page 30).
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®

Figure 3.5: s ~ &'

o Ift—"3u then there exists t'——u' with u <g p'.
o Ift'-2su then there exists t——>p with u <g '

Proof:  easy verification. Uses similar arguments to those in [JoLa91, dViRu97|. m

Proposition 3.4.4 yields that two states s, s' are bisimilar iff for each transition s—u of
s there is a transition s'—%+u' where 1 <. 1. In that case, the weight function weight for
(u, p') with respect to ~ shows how to combine parts of bisimilar states that are reached
by s and s’ respectively via that transitions.

Example 3.4.5 The states s and s’ in the action-labelled concurrent probabilistic system
shown in Figure 3.5 on page 55 are bisimilar. A weight function for (u, ') with respect
to ~ can be obtained as follows. Clearly, t ~ t’ and vy, vo ~ v'. Hence, t and ¢’ can be
combined as well as vy, vo and v'.

t U1 (]
po — |
t v
wo | |
weight|——— 5

Thus, weight(t,t') = 1/2, weight(vq,v') = 1/8, weight(vs, v') = 3/8 (and weight(z,y) = 0
in all other cases) yields a weight function for (u, u') with respect to ~. m

Remark 3.4.6 The “inference” from concurrent probabilistic systems to stratified sys-
tems sketched on page 40 can be extended for the action labelled case. For this, we asso-
ciate with each action-labelled concurrent system S = (S, Act, Steps) the action-labelled
stratified system S’ = (S, Act, Steps') where

S'=SU{(s,v):s € S ve Steps,(s) for some a € Act},
Steps'(s) = {(a, i) : (a,v) € Steps(s)} and Steps'(s,v) = {(@randoms 1)}
It is easy to see that this inference preserves bisimulation equivalence; i.e., if s, s’ € §

then s and s’ are bisimilar as states of S iff s and s’ are bisimilar as states of S'. m

The result of Milner [Miln89] that in every image-finite (non-probabilistic) labelled tran-
sition system bisimulation can be approximated by “finitary bisimulation” carries over to
the probabilistic case.
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Definition 3.4.7 [The relations ~,| Let (S, Act, Steps) be an action-labelled concur-
rent probabilistic system. We define inductively equivalence relations ~,, on S. We set
~o = SxSand forn=0,1,2,..., 8~ 8 iff:

o If s—>u then there is a transition s'—u' with u[C] = p'[C] for all C € S/ ~,.
o If '~y then there is a transition s——u with u[C] = p/[C] for all C € S/ ~,.

Lemma 3.4.8 Let (S, Act, Steps) be an image-finite action-labelled concurrent probabilis-
tic system and s, s' € S. Then, s ~ s iff s ~, ' for alln > 0.

Proof:  see Section 3.7, Lemma 3.7.5 (page 68). m

Lemma 3.4.8 can be adapted for the fully probabilistic case. In that case, no further
assumptions (like image-finiteness) are needed. We state (without proof) that, whenever
s, s' are states of an action-labelled fully probabilistic system then s ~ s' iff s ~,, §' for
all n > 0. Here, s ~y ¢ for all states s, s’ and s ~, ;1 §' iff P(s,a,C) =P(s,a,C) for all
a € Act and C € S/ ~,.

3.4.2 Simulation

Simulation can be viewed as “uni-directional bisimulation” in the sense that a process P’
“simulates” another process P if each step of P can be “simulated” by a step of P'. In
that case, P can be viewed as an “implementation” of P’ as each step of P is “allowed”
by the “specification” P’. The definition of a simulation for concurrent probabilistic
systems with action labels by Segala & Lynch is based on that idea: the notion of a
simulation is derived from the characterization of bisimulation in Proposition 3.4.4 (page
54) by dropping the symmetry (cf. Definition 3.4.9). At the end of this section, we show
how this definition of a simulation can be modified for the fully probabilistic case. The
resulting simulation preorder on action-labelled fully probabilistic systems can be viewed
as an adaption of the “satisfaction relation” proposed by Jonsson & Larsen [JoLa91] that
work with fully probabilistic systems and proposition labels.

Definition 3.4.9 [Simulation (concurrent case), cf. [SeLy94]| Let (S, Act, Steps)
be an action-labelled concurrent probabilistic system. A simulation for (S, Act, Steps) is

a subset R of S x S such that for all (s,s') € R:
If s—2511 then there exists a transition s'——u' with u <g '

We say s implements s’ and s’ simulates s (denoted by s Cgy, s') iff there exists a simu-
lation which contains (s,s'). s, s’ are called similar (denoted by s; ~sim S2) iff $ Cgim '
and s' Cgp S.

In the non-probabilistic case, the above notion of a simulation agrees with Milner’s notion
of a simulation [Miln89]. Note that in the non-probabilistic case, s Cgy, s iff the function
weight with weight(u,u') = 0 if (u,u') # (s, s') and weight(s, s') = 1 is a weight function
for (ul, pul) with respect to Cgy. Hence, if (S, Act, —) is a non-probabilistic labelled
transition system (i.e. S is a set of states and — a subset of S x Act x S) and R C S x S
then R is a simulation in the sense of Definition 3.4.9 (i.e. R is a simulation for the induced
probabilistic transition system (S, Act, Steps) where Steps(s) = {(a, uf) : s—t}) if and
only if R is a simulation in the sense of Milner.
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Example 3.4.10 Counsider the transition system of Figure 3.6 (page 57). Clearly, u T

®

a, p

W=
w N

S

i

©

Figure 3.6: s Ty, '

v and u,t Cgp t'. A weight function for (u,u') with respect to Cg,, can be obtained
by combining certain parts of ¢ (of u) with certain parts of ¢’ (of «' and #'). The
weight function weight for (u, p') with respect to Cgyy, is given by: weight(t,t') = 1/3,
weight(u,t') = 1/6, weight(u,u’) = 1/2.

t U
peo | |
t u
- | |
weight | - : - : - |
3 % 2

We obtain s Ty 5. B

Remark 3.4.11 [Alternative simulation-like preorders] There are simpler possibil-
ities to drop the symmetry from the definition of bisimulation equivalence thus yielding
alternative definitions of a simulation preorder that do not use weight functions. One pos-
sibility is to consider the downward closure ¢ | g of all elements ¢t € S and to (re-)define
the relation <g on Distr(S) by:

p = p it plt Lg| > @[t Lg] forallt € S.

Another possibility is to deal with the upward closures ¢ 1z. Both possibilities yield a
preorder that is strictly coarser than the simulation preorder a la [SeLy94]. We argue that
none of these relations can be viewed as a probabilistic counterpart to Milner’s simulation
preorder.

We define a |-simulation to be a binary relation R on S such that for all (s,s') € R
and s—+ there exists s'—“u' with ult |g] > /[t g] for all t € S. Here, t |g= {u €
S : (u,t) € R}. Similarly, a T-simulation is a binary relation R on S such that for all
(5,8') € R and s——pu there exists s'—=+u' with u[t Tr] > p/[t T&] for all t € S where
t TR={u e S:(t,u) € R}. Wedefines C| s’ (s Ty §') iff (s, s') € R for some |-simulation
(T-simulation). Using the results of Chapter 5 (Lemma 5.3.11 on page 113) we obtain
that, for (S, Act, Steps) to be finite, the simulation preorder Cg, is a |-simulation and a
T-simulation. Thus,

s Cgim ' implies s T s’ and s Ty s'.
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Figure 3.7: s C| s’ and s Zgp, s

In the system of Figure 3.7 (page 58) we have s C| s’ but s g, s'. From the branching
time view, the process on left (i.e. the process with initial state s) should not be considered
to be an implemention of the process on the right (i.e. the process with initial state s')
as s can reach a state where both actions ¢ and b can be performed while s’ cannot. In
the system of Figure 3.8 (page 58) we have s Ty s’ but s Zgm s'. In our opinion, the
process on the right (the process with initial state s’) cannot be viewed as a simulation
of the process on the left (the process with initial state s) since s reachs a non-terminal
state after performing a with probability 1, while s’ can reach a terminal state (w') after

b c b c b c
@ )@  ® @ @

Figure 3.8: s T4 s’ and s Zgp, s
performing a with non-zero probability.!® m

Definition 3.4.12 [The relations C,] Let (S, Act, Steps) be an action-labelled concur-
rent probabilistic system. By induction on n we define relations T, C S x S

o s Ly s forall states s, s' € S

o s L, s iff whenever s—=su then there ewists a transition s'—u' and a weight
function weight for (u, p') with respect to C,, (i.e. p =, p').

Similarly to Lemma 3.4.8 (page 56) we obtain the following.

9Even the relation Ty N T is coarser than Cgm. In the system of Figure 3.8, we add a transition
w'—spl, and obtain s Zgm s’ while (s Ty s') A (s T s').
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Lemma 3.4.13 Let (S, Act, Steps) be an image-finite action-labelled concurrent proba-
bilistic system and s, s' € S. Then, s Ty §' iff s &, 8’ for alln > 0.

Proof:  see Section 3.7, Lemma 3.7.6 (page 63). m

The following lemma shows that Cgy, is a preorder and its kernel ~g,, is coarser than
bisimulation equivalence.

Lemma 3.4.14 Let (S, Act, Steps) be an action-labelled concurrent probabilistic system
and s,s',s", s1,8], 82,85 € S. Then:

(a) s ~s = $~gm s
/ / " "
(b) 5 Csim 8, 8' Coim 8" = 5 Coim

! ! ! !
(¢) s1 Cgim S, 81~ 81, so~ sy = ] Cgim 59

Proof:  (a) follows immediately by the definition of a simulation and Proposition 3.4.4
(page 54). (c) follows by (a) and (b). The transitivity of gy, (item (b)) can be derived
from Remark 2.2.1 (page 30). m

By part (a) of Lemma 3.4.14, bisimulation equivalence ~ is finer than simulation equiva-
lence ~gn,. As in the non-probabilistic case, simulation equivalence ~y;,, does not coincide
with bisimulation equivalence ~. For instance, for the non-probabilistic system of Figure
3.9 (page 59) we have s ~gy, s’ but s o s'. In the case of reactive systems, simulation and
bisimulation equivalence coincide. This result can be viewed as the probabilistic counter-

®
)
QR Car e

Figure 3.9: s ~gn s’ but s £ &

part to the well-known result that simulation equivalence and bisimulation equivalence
are the same for deterministic (non-probabilistic) transition systems.?

Theorem 3.4.15 Let (S, Act, Steps) be a reactive action-labelled concurrent probabilistic
system and s, s' € S. Then, s ~gm s iff s ~ .

Proof:  see Section 5.3.1, Thoerem 5.3.6 (page 110). m

We adapt the definition of the simulation preorder a la Segala & Lynch [SeLy94] (Defini-
tion 3.4.9, page 56) for action-labelled fully probabilistic systems. The resulting definition
of the simulation preorder on fully probabilistic systems with action labels (Definition
3.4.17, page 60) can be viewed as the action-labelled counterpart to the definition of the
“satisfaction relation” for fully probabilistic systems with proposition labels by Jonsson
& Larsen (cf. Definition 4.3 in [JoLa91]). In the sequel, S = (S, Act,P) denotes an
action-labelled fully probabilistic system.

20Recall that a non-probabilistic action-labelled transition system is called deterministic iff, for each
state s and action a, there is at most one transition s—t.
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Definition 3.4.16 [Weight functions in fully probabilistic systems]| Let s, s’ € S
and R C S x S. If s is non-terminal then a weight function for (s, s') with respect to R
is a function weight : S x Act x S — [0,1] such that for all a € Act and t, t' € S:

1. If weight(t,a,t') > 0 then (t,t') € R.
2.
> weight(t,a,u') = P(s,a,t), > weight(u,a,t') = P(s' a,t).
u'cS ues
We write s Cg s' iff either s is terminal or there exists a weight function for (s,s') with
respect to R.

In particular, if s is non-terminal and s Cg s’ then s’ is non-terminal. Suppose s and s’
to be non-terminal and let x and y' be the induced distributions on Act x S, i.e. u(a,t) =
P(s,a,t) and p'(a,t') = P(s',a,t'). If s Cg s’ then the weight function weight for (s, s)
induces a weight function weight' : (Act x S) x (Act x S) — [0,1],

weight'({a,t), (a,t')) = weight(t,a,t)

for (u, 1') with R = {({a, ), (a,t') : a € Act,(t,t') € R}. Vice versa, if 4 <p u' (where
R' is as before) then s Cg '

Definition 3.4.17 [Simulation (fully probabilistic case)] A simulation for S is a
binary relation R on S such that s Cg s' for all (s,s') € R. We say s implements s’ and
s’ simulates s (denoted by s T s') iff there exists a simulation that contains (s, s').

Example 3.4.18 Consider the action-labelled fully probabilistic system of Figure 3.10
on page 60. The relation R = { (s,s'), (¢,t'), (u,u'), (v,u'), (w,w') } is a simulation
as e.g. weight(t,a,t') = weight(v,b,u') = weight(u,b,u’) = 1/3 (and weight(-) = 0 in all

)
2] 1 a, 3 b, 2
b, 3

®

8
W=
S
wl

c, 1

Figure 3.10: s Cgpy, 8
other cases) is a weight function for (s, s’) with respect to R. Hence, s Cgp, s'. ®

As in Lemma 3.4.14 (page 59) it can be shown that T, is transitive; as in Lemma
3.4.13 (page 59), it can be shown that C can be approximated by the “finitary” relation
C,.. More precisely, if s, s’ are states of an action-labelled fully probabilistic system then
$ Cgim 8" iff s C,, 8’ for all n > 0.2! Similarly to Theorem 3.4.15 (page 59) we obtain that,

2Here, the relations C,, are defined as follows. Let Ry = S x S and R,,4; = Cg, (where Cg, is defined
as in Definition 3.4.16, page 60). Then, s C,, s' iff (s,s’) € R,,.
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for action-labelled fully probabilistic systems, bisimulation equivalence and simulation
equivalence are the same. This result can be viewed as the action-labelled counterpart
to Theorem 4.6 of [JoLa91] which considers fully probabilistic systems with proposition
labels and characterizes bisimulation equivalence for them in terms of weight functions.

Theorem 3.4.19 (cf. Theorem 4.6 in [JoLa91]) Let (S, Act,P) be an action-labelled
fully probabilistic system and s, s' € S. Then,

s~ s iff s~gm S

Proof:  see Section 5.3, Theorem 5.3.7 (page 110). m

3.5 Probabilistic processes

The behaviour of a probabilistic process can be described by “pointed probabilistic sys-
tems”, i.e. a probabilistic system together with a specified state, the wnitial state. Alter-
natively, we could deal with a distribution for the initial states in the fully probabilistic
case and a set of initial states in the concurrent case (as done e.g. in [CoYa95, JoYi95,
Sega95al).

Definition 3.5.1 [Probabilistic processes] A probabilistic process is a tuple P =
(S, Sinit) consisting of a (fully or concurrent) probabilistic system S with state space S
and an initial state s;,; € S.

For instance, a fully probabilistic process is a tuple P = (S, P, s;,;) consisting of a
fully probabilistic system (S,P) and an initial state s;;; € S. Probabilistic processes
are extended by action or proposition labels in the obvious way. E.g. an action-labelled
concurrent probabilistic process is a tuple (S, Act, Steps, sinit) consisting of an action-
labelled concurrent probabilistic transition system (S, Act, Steps) and an initial state
St € S. Bisimulation equivalence and the simulation preorder are adapted for prob-
abilistic processes as follows. We consider the probabilistic system that arises by taking
the disjoint union of the two underlying probabilistic systems and compare the initial
states in the composed system. For instance, let P = (S, sinit) and P’ = (8, s),;;) be
two action-labelled concurrent probabilistic processes where S = (S, Act, Steps), S' =
(S, Act', Steps') are the underlying systems. Then, P and P’ are said to be bisimilar
(written P ~ P') iff s;n;+ and s),;, are bisimilar as states of the composed system SWS' =
(SwS' Act U Act', Steps) where Steps(s) = Steps(s) if s € S and Steps(s) = Steps'(s) if
s € §'.?2 Similarly, we define bisimulation equivalence (also denoted ~) for action-labelled
fully probabilistic processes, the simulation preorder LCg,,, simulation equivalence ~gy,
and the relations ~,, and C,, for action-labelled probabilistic processes. Here, in the fully
probabilistic case, the composed system S W S’ is defined as follows. If S = (S, Act, P)
and &' = (', Act',P’) then SWS = (SWS', Act U Act',P) where P(s,a,t) = P(s,qa,t) if
(s,a,t) € Sx Act xS, P(s,a,t) = P'(s,a,t)if (s,a,t) € S'x Act' x S" and P(s,a,t) = 0in
all other cases. Clearly, the results of Section 3.3.1 carry over to the pointed case. That is,

22Here, each distribution p on § is identified with the distribution i : Sw .S — [0,1], @(t) = p(t) if
t € Sand @(t) =0if ¢’ € S'. In the same way, each distribution p’ on S’ is viewed as a distribution on
Sy S



CHAPTER 3. MODBELLING PROBABILISTIC BEHAVIOUR

in the fully and concurrent case, Ty, is a preorder on the collection of all action-labelled
(fully or concurrent) probabilistic processes.

e In the fully probabilistic case: P ~ P" iff P ~gm P'.
e In the concurrent case: ~ is strictly finer than ~g,,. And:
(a) If P and P’ are image-finite then
i) P~Pif P, P foraln>0
(ii) P Cgim P'ifft P C,, P’ for all n > 0.
(b) If P and P’ are reactive then P ~ P' iff P ~gy P'.

3.6 Related models

We briefly explain the relation of our models to those proposed in the literature. First we
observe that in contrast to some authors we require that, in the fully probabilistic case,
the probabilities of the outgoing transitions of a non-terminal state s sum up to one. In
those models that allow for substochastic states (i.e. states s where >, P(s,t) €]0,1] or
>t P(s,a,t) €]0,1] for action-labelled systems) the value

A(s) =1 — ; P(s,t)

(or, when dealing with action labels, A(s) = 1 —3,, P(s,a,t)) can be viewed as the
probability for the system to “halt” in s. Depending on the system under consideration,
this “halting” might be interpreted as well-termination, deadlock or divergence. In our
fully probabilistic model (which does not allow for substochastic states), we assume that
“halting” is described by special state transitions. For instance, in absence of action
labels, one can use an auxiliary terminal state 0 and the probabilistic state transitions
P(s,0) = A(s) to formalize “halting”. Using action labels, one might deal with such
an auxiliary state 0 and a special action symbol, e.g. 0, and the transition probabilities
P(s,0,0) = A(s).

We now briefly sketch how our models are related to the models considered in the literature
where we ignore the differences arising from the use of sets of initial states or distributions
for the initial states (rather than dealing with a single initial state as we do) and/or
allowing substochastic states.

In the notations of [vGSST90], fully probabilistic processes with action labels are called
generative processes.?> They also agree with the fully probabilistic automaton of Segala
[Sega95a]. In the concurrent case, our action-labelled processes coincide with the simple
probabilistic automaton of Segala & Lynch [SeLy94, Sega95a].

The alternating model of Hansson & Jonsson [HaJo90, Hans91] can be obtained from
action-labelled stratified processes (in the sense of Definition 3.3.12 on page 52) by re-
moving the action symbol a,4n40m from the steps of the probabilistic states. The stratified
model of [vGSST90] essentially agrees with the alternating model. The main difference be-
tween stratified systems a la [vGSST90] and alternating systems a la [HaJo90, Hans91] are

23Tt should be noticed that this just holds for the formal definition of the model. The interpretation of
generative systems in the approach of [vGSST90] is slightly different from ours since we assume internal
probabilistic choice while [vGSST90] deals with external probabilistic choice.
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that [vGSST90] assume an external probabilistic choice while [HaJo90, Hans91] deal with
internal probabilistic choice and that, in the approach of [vGSST90], the non-probabilistic
states cannot behave non-deterministically.?* Ignoring the different interpretation of the
probabilistic choice operator and allowing non-determinism in the non-probabilistic states
of a stratified system in the sense of [vGSST90] we obtain the alternating model; and
hence, by adding the action symbol a4n40m, action-labelled stratified systems in our sense.

A proposition-labelled fully probabilistic process is a sequential Markov chain in the sense
of Vardi [Vard85] (or Courcoubetis & Yannakakis [CoYa88, CoYa95]) while proposition-
labelled concurrent probabilistic processes agree with probabilistic non-deterministic sys-
tems a la Bianco & de Alfaro [BidAl95, dAlf97a, dAlf97b]. In essence, the concur-
rent Markov chains of [Vard85, VaWo86, CoYa88, CoYa95| are the same as stratified
proposition-labelled systems.

The model considered by Pnueli & Zuck [Pnue83, PnZu86a, PnZu86b, PnZu93] (just
called probabilistic programs) can be viewed as a generalization of concurrent probabilistic
systems in our sense. In the approach of Pnueli & Zuck, each probabilistic program is as-
signed a set of “commands” (called “transitions” in the approach of Pnueli & Zuck), where
each command comm is associated with an enabling predicate (represented by a subset
Enabled(comm) of the state space S) and a set Modes(comm) = {mode®,. .., mode*} of
“modes”. Each mode mode® is associated with a non-zero probability and a set of possible
next successor states. If we assume the sets of the modes to be singletons (that prescribe
unique successor states), each command comm corresponds to a distribution ficomm on
the state space. In that case, the probabilistic programs a la Pnueli & Zuck specializes to
concurrent probabilistic systems in our sense where Steps(s) is given by the set of com-
mands that are enabled in state s, i.e. Steps(s) = {fcomm : s € Enabled(comm)}. If we
assume that in addition the commands are associated with an action label then the model
of Pnueli & Zuck can also be viewed as a generalization of our concurrent probabilistic
systems with action labels.

Remark 3.6.1 Van Glabbeek et al [vGSST90] present a hierarchy for the several action-
labelled systems (reactive, generative, stratified) together with the corresponding type of
bisimulation equivalence. We briefly sketch how the inferences between the models can
be reformulated for our notations.

Given a generative (i.e. action-labelled fully probabilistic) system Sg = (S, Act, Pg), we
may abstract from the probabilities for chosing a certain action and deal with the reactive
transition probabilities

PG(87 a, t)

PR(S)aat) = PG(S a)

(provided that Pg(s,a) > 0).

In the case where Pg(s,a) = 0 we put Pg(s,a,t) = 0 for all states ¢. As shown in
[vGSST90], this inference from generative systems to reactive systems preserves bisim-
ulation equivalence.?> We now compare the generative and stratified view. Let Pg =

24Note that [vGSST90] considers a process calculus with synchronous parallelism and probabilistic
choice rather than non-determinism. Thus, the systems in [vGSST90] do not behave non-deterministically.

ZSFormally, if P¢ and Q¢ are generative processes and Pr, Qr the associated reactive processes then
Pa ~ Qg implies Pr ~ Qr while the converse does not hold.
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(S, Act, Steps, sinit) be an action-labelled stratified process where none of the non-probabilistic
states of Pg behaves non-deterministically (i.e. if s is non-probabilistic then s——t for

at most one action a and state t) as it is the case for the systems in the approach of
[vGSSTI0]. Ps can identified with the generative process Pg = (S, Act, Pg, Sinit) Wwhere

,Lt(t) o if SL),LL and a = Grandom
Ps(s,a,t) = < 1 . if s—"5t and @ # Grandom
0 : otherwise.

Given two such action-labelled stratified processes Ps and Qs where none of the non-
probabilistic states behaves non-deterministically, we have

(*) Ps ~ Qg iff Pg ~ Q¢

where Py and Qg denote the associated generative processes.?® This should be con-
trasted with the abstraction result of [vGSST90] where a different inference is used. In
the approach of [vGSST90], the “if”-part of (*) does not hold. The inference from the
stratified to the generative model used in [vGSST90] (adapted for our type of action-
labelled stratified systems) removes the transitions labelled by a,4n4om and deals with the
cumulative effect of all probabilistic choices. Formally, if S¢ = (S, Act, Steps) is an action-
labelled stratified system as above (i.e. |Steps(s)| < 1 for all non-probabilistic states) then,
in the approach of [vGSST90], the associated generative system is (S, Actg, Py;) where
Actg = Act \ {@random } and Py 1 S x Actg < (S'\ Spros) — [0, 1] the least function such
that

ZUES M(U) ’ P,G(u’ a, t) poif SLM and a = argndom

Pe(s,a,t) = {1 . if s—"5t and @ # Grandom
0 : otherwise.

Here, S, is the set of probabilistic states in Sg.?” =

3.7 Proofs

3.7.1 Probabilistic reachability analysis
We give the proof for Theorem 3.1.6 (page 36) and Theorem 3.2.11 (page 43) that char-
acterizes the probabilities to reach certain states as least fixed points.

In fully probabilistic systems, we use the following notation. If o € Pathg,, |o| = i and
P(last(c),t) > 0 then o — ¢ denotes the unique path y € Pathg, with y9 = o, |y| = i+1

26The underlying notion of bisimulation equivalence for Ps and Qg is that of Definition 3.4.2 (page
54) while for Pg and Qg we deal with bisimulation in the sense of Definition 3.4.1 (page 54).

2"Both transformations from the stratified to the generative model fail when non-determinism is allowed
in the non-probabilistic states, because, for those states s in which non-determinism is present, the
transition probabilities P (s, -) or Py (s, ) do not sum up to 1. Given an action-labelled stratified system
Ss (where non-determinism is present in some non-probabilistic states), the generative (fully probabilistic)
system associated by an adversary can be viewed as a refinement of S. Here, the underlying refinement
step just resolves the non-deterministic choices.
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and last(y) = t. Similarly, in concurrent probabilistic systems, we write o % ¢ to denote
the unique path y € Pathg, with v) = o, |y| = i + 1, step(v,4i) = p and last(y) = t.
(Here, we assume that o € Pathg,, |o| =, u € Steps(last(o)) and t € Supp(u).)

Proposition 3.7.1 Let (S, P) be a fully probabilistic system, ¥ C Pathg,. Foro € X, let
Y (o) = {0’ € Pathgy(last(o)) : coo' € X'} and p : Pathg, — [0,1], p(o) = Prob(X(o) 1).
Then, p is the least fized point of the operator F : (Pathgs, — [0,1]) — (Pathg, — [0,1])
which is given by F(f)(o) =1 ifo € X and

F(f)(o) = >, Plast(o)t)- flo—1)

te Next(o)

if o ¢ X. Here, Next(c) ={t € S: P(last(o),t) > 0}.

Proof: Clearly, F' is monotone and preserves infinima and suprema. Let f be the
least fixed point of F.?® If o € X then the path consisting of the state last(o) belongs
to Y(0). Thus, X(o) T = Pathg,(last(o)) and p(o) = f(o) = 1. Next we assume
that o ¢ X. For t € Next(o), let Z%(c) be the set of finite paths last(c) — o' where
o' € ¥(0 — t). Then, ¥(0) can be written as disjoint union of the sets X*(o), t € Next(o).
As Prob(X'(o) 1) = P(last(o),t) - p(c — t) we obtain:

po) = X Prob(Z'o)1) = Y Pllast(0),t) - plo —t) = F(p)(o).

te Next(o) teNext(o)
Thus, p is a fixed point of F. We conclude f(o) < p(o) for all o € Pathgy,.
For k=0,1,2,..., let X(0) = {0’ € X(o) : |o'| <k} and pg(c) = Prob(Zy(o) 1). Then,
Yo(0) € Xi(0) € Xs(o) C ... and Y(o) = U Zk(0). Thus, p(o) = limpg(o). It is easy to
see that pyy1 = F(pg). By induction on k we get pi(c) < f(o) for all o € Pathg,. Hence,
p(o) < f(o). We conclude that p = f is the least fixed point of . m

Corollary 3.7.2 (cf. Theorem 3.1.6, page 36) Let (S,P) be a fully probabilistic sys-
tem. Let Si, Sy be subsets of S. Let X C Pathg, be the set of all finite paths o such that
o(i) € S\ S2,i=0,1,...,|0| =1, last(c) € Sy. Let II = X 1. Then,

p: S —1[0,1], p(s) = Prob (II(s)),
is the least fized point of the operator F : (S — [0,1]) — (S — [0,1]) which is given by
F(f)(s)=11ifs€ Sy, F(f)(s)=01fs €S\ (S1US2) and, if s € 51\ Sy,
F(f)(s) = X P(s,t)- f(1).

tesS

Proof:  follows immediately by Proposition 3.7.1 (page 65). Uses the fact that X(o) =
Y (last(o)) for each o € Pathp,. m

Proposition 3.7.3 Let (S, Steps) be a concurrent probabilistic system and X C Pathg,.
Foro € X and A € Adv, let ¥4(0) = {0’ € Pathg,(last(c)) : 0 o0’ € X4} and

min o : A A max o A A
) = i, Peb (T ) = Prob (S0 1),

mazxr

Then, p™" and p are the least fixed points of the operators

28The existence of a least fixed point can be shown using standard arguments of domain theory. See
e.g. Proposition 12.1.1 (page 309).
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Fmin Fmee . (Pathg, — [0,1]) = (Pathg, — [0, 1])
that are defined as follows. If o € X then F(f)(o) =1. If o ¢ X then

F™(f)(c) = min { >ooou)-f (U Y t) : p € Steps(last(o)) },

t€ Supp (p)

Fm™(f)(0) = max { Sooou@)-f (a e t) : p € Steps(last(o)) }

teSupp ()

Proof: Clearly, the operators F™* are monotone and preserve suprema. Let f* be the
least fixed point of F*.2 For A to be an adversary, let p# : Pathg, — [0, 1] be given by

p*(0) = Prob (Z]A(g) TA) _
M: pmin _ fmin
Proof: We define F4 : (Pathg, — [0,1]) — (Pathg, — [0,1]) by
FADe) = X Al)e)-f (o 23 e).
te Supp(A(c))

By Proposition 3.7.1 (page 65), p* = Ifp(F4). For each o € Pathg,, we choose some
pe € Steps(last(o)) such that

frre) = pet)- frm (o B ).

teSupp (po)
Let A be the adversary with A(o) = u,. Then, f™" is a fixed point of F'4. Thus,
(1) pmn < PAo) = Ifp (F4) =< fm.
Let A € Adv, o € Pathg, and v = A(o). Then,

o) = X v)pt(o2t) = Y vt)pmt (o Bt)

teSupp(v) teSupp(v)

v

min { Z u(t) - p™n (U Eay t) € Steps(last(o)) }

teSupp(p)
— me(pmm)(O').
Thus, p™n > F™n(p™n), By Proposition 12.1.1 (page 309) p™" > Ifp(F™m) = f™n, By
(1), we get p™" = fm™n. |
Claim 2: p™** = [fp(F™*)
Proof: Let o € Pathg,. We choose some v € Steps(last(o)) such that
Z V(t) . pmaz (0' ﬁ> t) _ Fmaz (pmam) (0,)

te Supp (v)

29 As in Proposition 3.7.1 (page 65), the existence of a least fixed point can be derived by standard
arguments of domain theory. See e.g. Proposition 12.1.1 (page 309).
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For each € > 0 and t € Supp(v), we choose some A.; € Adv with
p™e (a Y t) < phet (a = t) + e

Let A, be an adversary with A.(c) = v and A, (0’ 5 a’) = A, (a iy a’) for each o' €
Pathg, with first(c') = t. Then,

14 14

pAf (0’ — t) = pA“t (0’ — t) > pm (a — t) — €.
Thus, for all € > 0:

p"(o) = pM(o) = Y w(t)-pt (oS t)
teSupp(v)
> Y wt)pm(cHt) — e = F™ (") (0) — e
teSupp(v)

Thus, p™®@® > Fme (p™me®) By Proposition 12.1.1 (page 309):

(2) pmaz Z lfp(Fmam) — fmaz'
Let Y4(0) = {0’ € Z4(0) : |0'| < n} and pi(o) = Prob(X2(o) 14). Then,
A o A

pi(o) = lim p; (o).

Moreover, pi(c) =1 if o € X. If 0 ¢ X then pj (o) = 0 and
Ao
i) = X A@®-p (0 1)

te Supp(A(0))

By induction on n, we get p4 < f™. Thus, p* < f™* which yields

pmaz = sup pA S fmaa:'
AcAdv

From (2), we get p™** = f™%. |m

Corollary 3.7.4 (cf. Theorem 3.2.11, page 43) Let (S, Steps) be a concurrent prob-
abilistic system, S1, Sa C S and let X be the set of finite paths o such that o(i) € Sy,
i=0,1,...,|0| =1, and last(o) € Sy. For s € S and A € Adv, let
min _ : A A max _ A A
p™(s) = Alerhfdv Prob (E (s) ), pm(s) = Ase]ill?iv Prob (E (s) 1 )

mer are the least fixed points of the operators

Fmin pmaz (S —[0,1]) — (S — [0,1])

that are defined as follows. If s € Sy then F(f)(s) = 1. Ifs € S\ (S1UJSy) then
F(f)(s)=0. If s € S1\ Sy then

F™™(f)(s) = min { > u(t)- f(t) © pe Steps(s) },

tes

Then, p™" and p

Fr)e) = max {32 w0 £0) < e stensts) |.

tesS

Proof:  follows immediately from Proposition 3.7.3 (page 65). m
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3.7.2 Bisimulation and simulation in image-finite systems

We give the proofs for Lemma 3.4.8 and Lemma 3.4.13 that show that, in image-finite
systems, (bi-)simulation can be approximated by the finitary relations ~, and C,. Let
(S, Act, Steps) be a fixed image-finite concurrent probabilistic system with action labels
and s, s’ € S.

Lemma 3.7.5 (cf. Lemma 3.4.8, page 56) s ~ s’ iff s ~, s’ for alln > 0.

Proof:  Let ~' = (1,59 ~,. We have to show that ~ = ~'. It is easy to see that ~' is
an equivalence relation. By induction on n it can be shown that ~g D~y D~y D ... D ~.
Hence, ~' O ~. In order to show that ~' C ~ we prove that ~' is a bisimulation.

For each n > 0 and each A € S/ ~/, there exists a unique element A, € S/ ~, with
ACA, Then, Ay=SDA; DA D...and A= A,

Claim 1: If s—sp and A € S/ ~' then p[A] = inf,so u[A,].

Proof: Since A =NA, and A,, O A,;1 we have 1 = u[Aq] > ulA;1] > ... > u[A]. We put
r = inf,>o plA,]. Clearly, r > u[A]. We suppose 7 > pu[A]. Let A = r — pu[A]. Then,
A > 0. There exists a finite subset X of S\ A such that u[Y] < A where Y = S\ (AUX).%°
Foralln >0, A, = AU NA,)U(XNA,). The sets A, Y N A, and X N A, are
pairwise disjoint. Hence,

plAn] = plAl+ plY N A +p[X N Ay <plAl+ A+ p[X N A = 74 p[X N A

Since r < u[A,] we get XN A, # 0. Since X is finite and Ay D A; D ... we get XNA # .
Contradiction!3! |

Claim 2: ~' is a bisimulation.

Proof: Let s ~' s' and s—+u. By Claim 1 it suffices to show that there is a transition
s'—5u' such that u[C] = p/[C] for all n > 1 and C € S/ ~,,. Since s ~,, s' there exist
transitions '~/ such that u[C] = p'[C] for all C € S/ ~,. Since (S, Act, Steps) is
image-finite the set {u/, : n > 0} is finite. Hence, there exists a transition s'—*+u' with
p' = p, for infinitely many n. Let n > 1 and C' € S/ ~,. There exists £ > n with
p' = pp. Cis of the form C = U;e; B; where (B;);cs is a family of pairwise disjoint
equivalence classes with respect to ~y (as ~p C ~y,). Thus, u[B;| = p,[Bi] = /'[B;] for
all B € 5/ ~. Then, u[C] = Yier p[Bi] = Lierw'[Bi] = w/[C]. |m

Lemma 3.7.6 (cf. Lemma 3.4.13, page 59) s Ty, ' iff s T, §' for alln > 0.

Proof: Let C' = N LC,. By induction on n it can be shown that Ty D C; O ... D
Ceim- Hence, C' D Cgp. In order to prove that ' C Ty, we show that T/ is a simulation.
Let s C' s’ and s—>u. There exist transitions s’/ and weight functions weight,, for
(w, pr,) with respect to C,,_;. Because of the image-finiteness we get that there exists a
transition '~y such that p' = p!, for infinitely many n. Let A, be the set of pairs
(u,u') € S x S with weight,(u,u') # 0. Let By, B;, C S, be finite sets with

> ouls) > 1—2—116, () > 1—%.

sEBy S’EBI’c

30This is because 2 tga H(t) is convergent.
31Note that by definition X is a subset of S\ A.
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W.lo.g By € By C ..., Bl C By C .... We define by induction on n infinite sets
Iy O I; O ... of natural numbers such that the sequence (weight,,(u, u'))ncy, is convergent
for all (u,u') € B; x B}, i > 1.

We put Iy = {n : p, = p}. Let i > 1. We suppose that [;_; is already defined. Let
(w1, u}),. .., (ug, u}) be the sequence of pairwise distinct pairs (u,u') € B; x B} which do
not belong to B; 1xBj_,. For all infinite sets J of natural numbers and each { € {1,...,k},
there exists an infinite subset J(I) of J such that (weight, (u, u]))ne @) is convergent.

We define J; = I;_1(1), J; = Ji_1(I), L = 2,...,k and I; = J;. Then, I; is an infinite
subset of I;_; and (weight,(u, u')),es, is convergent for all (u,u') € B; x B.. We put
weight : S x S — [0,1], weight(u,u’) = lim weight,(u,u')
nel;
if (u,u') € B; x B} and weight(u,u') = 0 if (u,u') ¢ B; x B} for all ¢ > 1. We show that
weight is a weight function for (u, u') with respect to C'.
1. If weight(u,u') > 0 then (u,u') is contained in the countable set U B; x Bi.

2. Let u € S. We show that >, weight(u,u') = p(u). If p(u) = 0 then weight,, (u, u') =
0 for all ¥’ € S and n > 0. Hence, weight(u,u’) = 0 for all v’ € S. We suppose
p(u) > 0. Let i be the smallest natural number i such that 1/2° < p(u). Then,
uw € Bj for all j > i. Let A’ be a finite subset of S. There exists some j > 7 such that
{u' € A": p/(u') > 0} C B;. Thus,

> weight(u,u') = lim > weight, (u,u') < p(uw)
wEA nel;, u'eAl

Hence, ¥, weight(u,u') < p(w). In order to show that >, weight(u,u') > p(u)
it is sufficient to show that for all € > 0 there exists a finite subset A’ of S with
> weight(u,v') > plu)—-e.
u' €A’
Let ¢ > 0 and j > i with 1/2/ < e. For all n € I},
> weight,(u,u') < > W) =1 - > pW) < 5 <&
u! ¢B; u! ¢B; u! EB;
Hence,
> weight,(u,u') = p(u) — > weight,(u,u') > plu) —¢
u’EB; u’e_fB;
for all n € I;. Therefore,
> weight(u,v') = lim Y weight,(u,u') > p(u) —e.

n—oo

! ! . ! !
u EBJ. nel; u ij

Similarly, it can be shown that Y, weight(u,u’) = p'(u').
3. If weight(u,u’) > 0 then (u,u') € B; x B} for some ¢ > 1 and weight,,(u,u’) > 0 for
infinitely many n (more precisely, for almost all n € I;). Hence, u C,, v’ for infinitely

many n, and therefore u T’ u'.

32This is because weight,,(u;,u]) € [0,1], and hence, (weight,, (u;,u}))nes is bounded. Therefore, it
contains a convergent subsequence.
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Chapter 4

Probabilistic process calculi

Process calculi such as Milner’s CCS or SCCS [Miln80, Miln83, Miln89], Hoare’s CSP
[Hoar85] or Bergstra & Klop’s ACP [BeKI184| can successfully serve as high-level specifi-
cation languages for compositional design and analysis of parallel systems. For specifying
the quantitative behaviour of probabilistic parallel systems, various authors proposed
variants of such process calculi. The main goal of that chapter is to present the basic
concepts of probabilistic process calculi and how to supply them with an operational se-
mantics based on action-labelled probabilistic processes. We mainly concentrate on the
issue of parallelism. Detailed discussions about the several types of non-deterministic
and probabilistic choices and their interplay can be found e.g. in [Lowe93b, MMS*94,
HMS97, HarG98, HadVi98]. Following the notations of [Lowe93b, MMS*94], we use an
internal probabilistic choice operator where the process chooses randomly which set of
events/actions to offer the environment and external non-determinism where the environ-
ment offers a set of events/actions.!

Synchronous parallelism: In the synchronous parallel composition of two processes
P1 and P,, the components work in a time-dependent fashion; i.e., each step of the syn-
chronous parallel composition is composed by the independent execution of the activities
of P; and P, within one time step. The transition probabilities of the composed system
are obtained by multiplying the probabilities of the individual moves of the components
P1 and P,. This reflects the assumption that P; and P, work independently between the
synchronization points.

In the literature, several types of synchronous parallel composition for probabilistic pro-
cesses are proposed. [GJS90, JoSm90, vGSST90, SmSt90, LaSk92, Toft94, KwNo9I8b]
deal with the (synchronous) product Py x P, in the style of Milner’s SCCS [Miln83] where
each step of P; x Py is composed by exactly one action of P, and P,. Other authors,
e.g. [FHZ93, HarG98|, focuss on the concept of a lazy (synchronous) product P; @ Po
where the processes P; and P, have to synchronize on certain “synchronization points”
but perform sequences of actions independently between these synchronization points.
One side-effect of the use of lazy synchronous parallelism (in a non-probabilistic or prob-
abilistic setting) is that the transition system representation of P; ® P, is in general much

Tt should be noticed that the different types of probabilistic choice operators lead to different restric-
tion operators. See Remark 4.2.4, page 81.
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smaller than those of P; x P».2 In this sense, the use of the lazy product can also be
viewed as an abstraction technique that attacks the state explosion problem.

In most cases, in the probabilistic extensions of synchronous calculi, the concept of
non-deterministic choice is replaced by probabilistic choice. Typically, such languages
(with synchronous parallelism and probabilistic choice rather than non-determinism) are
equipped with an operational semantics that uses a model based on Markov chains (such
as fully probabilistic processes with action labels) [GJS90, JoSm90, vGSST90, Toft90,
LaSk92, Toft94] but — as e.g. in the case of probabilistic extensions of SCCS — such lan-
guages can also be provided with operational semantics that are based on the reactive
or stratified view [vGSST90, Toft90, Toft94, KwNo096, Norm97, KwNo98b|. Moreover,
some of these languages — together with their stratified semantics — can be used to reason
about priority [SmSt90, Toft90, Toft94]. Synchronous calculi with non-deterministic and
probabilistic choice are considered e.g. in [FHZ93, Norm97, KwNo98b]. The semantic
models of these calculi can be viewed as generalizations of the reactive model.

Asynchronous parallelism: There are several probabilistic extensions of asynchronous
calculi with non-deterministic and probabilistic choice operators. The underlying (asyn-
chronous) parallel operators allow communication on certain actions (e.g. communication
in the CCS-style on “complementary” actions or CSP-like communication on common
actions) but also independent evolvement of the components. The operational seman-
tics of such calculi are usually given in terms of probabilistic transition systems with
non-determinism where the independent evolvement of the components is modelled by
interleaving. For instance, [HaJo90, Hans91, YiLa92, Yi94| extend Milner’s CCS by a
probabilistic choice operator; probabilistic variants of Hoare’s CSP are considered e.g. in
[Lowe93a, Lowe93b, MMS*94, Lowe95, Seid95].

Probabilistic shuffle: Baeten, Bergstra & Smolka [BBS92| introduce a modification
of ACP [BeKIl84] which uses probabilistic choice instead of non-determinism and several
types of probabilistic shuffle operators (with possible communication). The probabilis-
tic shuffle operators are parametrized by the probabilities for a communication and the
autonomous moves of the components. The operational semantics is based on fully prob-
abilistic processes with action labels. Several authors, e.g. [SCV92, NudF95, dAHK98|,
took up the idea of using probability parameters that associate weights to the possible
steps of the composition (communication on certain actions or independent evolvement
of the components).? [GLN'97] introduce the process algebra PTPA for generative (and
timed) processes in which probabilistic shuffle is modelled with the help of a normalization
function (rather than probability parameters). In the approach of [GLN'97], the com-
ponents P; and P, of the probabilistic shuffle P;||4P> must synchronize on the actions
a € A while the actions a ¢ A are performed autonomously. The transition probabili-
ties of P1||aPs are defined with the help of the normalization function that sums up the
probabilities for P; and P, to participate in an a-step of Py|| 4P, where a ranges over all
possible actions of P;[[4P>.* Both types of probabilistic shuffle (the one that use prob-
ability parameters and the one that use a normalization function) can be viewed as the
interleaved execution of the two components P; and P, (extended by certain synchroniza-

2This is because the lazy product abstracts from certain local states.

3See [IAHK98] for an overview of these parametrized shuffle operators.

*Similar ideas are used in the approachs of e.g. [Chri90b, CSZ92, YCDS94, NdFL95] that define a
notion of parallel composition P||T of a generative probabilistic process P and some kind of “test” 7.



tion mechanisms) with respect to a fixed randomized scheduler. This scheduler decides
randomly which of the possible steps is executed next: either a synchronization action or
an individual move of P; or an individual move of P,. The probabilities of the possible
steps are given either by the parameters of the probabilistic shuffle operator or by the
normalization function that depends on the local states of P; and Ps.

Modelling asynchronicity by synchronicity: In the non-probabilistic synchronous
case (i.e. in the case of Milner’s SCCS), a delay operator 9 can be defined which makes it
possible e.g. to force a process to wait for a possible communication partner and to embed
the asynchronous calculus CCS into the synchronous calculus SCCS [Miln83]. Intuitively,

OP behaves as P but it may idle for indefinitely many time steps before performing the

first action. Formally, 9P is given by the process equation 9P i 1; 0P which states

that OP decides non-deterministically to behave as P or to be idle in the next step. Here,
+ denotes non-deterministic choice, ; sequential composition and 1 the idle action. In
absence of a non-deterministic choice operator, the delay operator 0 cannot be defined;
hence, if non-deterministic choice is replaced by probabilistic choice (as it is the case for
several probabilistic variants of synchronous process calculi proposed in the literature),
it is no longer true that asynchronicity can be reduced to the synchronous case (at least,
the author does not see how).

Organization of that chapter: We study three calculi. The first two are standard
extensions of Milner’s CCS and SCCS; the third a variant of SCCS that uses a lazy
synchronous parallel composition. In Section 4.1 we consider an asynchronous calculus
with CCS-like communication and non-deterministic and probabilistic choice (similar
to the calculi of [HaJo90, Hans91, YiLa92]) and give an operational semantics based
on action-labelled concurrent probabilistic processes. In Sections 4.2 and 4.3, we work
with synchronous calculi with probabilistic choice (but without non-determinism) which
are supplied with an operational semantics based on generative (i.e. action-labelled fully
probabilistic) processes. The calculus in Section 4.2, called PSCCS, is a probabilistic
extension of Milner’s SCCS that works with a parallel composition P; X P, where the
components Py, P, synchronize on all actions. Basically, it agrees with the calculi studied
in [GJS90, JoSm90, vGSST90, Toft94]. In Section 4.3 we propose a probabilistic calculus
which uses a lazy synchronous parallel composition P; ® P, where P; and P, have to
synchronize on all visible actions while they evolve independently on their internal actions.

Modelling recursion by declarations and process equations: For all three calculi,
we model recursion by declarations. We use process variables (of some fixed set ProcVar)
in the statements. The process variables can be interpreted as procedure names. The
bodies of these procedures are given by declarations. Formally, a declaration is a function
decl that assign to each process variable Z a statement decl(Z) (that also might con-
tain process variables, i.e. recursive procedure calls). A program is a pair P = (decl, s)
consisting of a declaration decl and a statement s. The intended meaning of a program
P = (decl, s) is that the behaviour of P is given by the statement s where each occurrence
of a process variable Z in s is viewed as a recursive procedure call. This corresponds to the

use of process equations that we use in our examples. Let Zi,..., Z; be pairwise distinct

. . def .
process variables and sq,..., s, statements. Then, we write Z; = sj, J=1,...,k, to

denote that Z; stands for the recursive procedure whose body is given by s;. That is,
we deal with the declaration decl where decl(Z;) = s;, j =1,...,k, and identify Z; with
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the program (decl, Z;). If op is a n-ary operator symbol of the underlying process cal-
culus (e.g. a binary parallel composition operator || or the 1-ary (action-)prefix operator
s+ a.s) and P; = (decl,s;), i = 1,...,n, are programs then we write op(Py,...,P,) as
short for the program (decl, op(sy, ..., Su))-

4.1 PCCS: an asynchronous probabilistic calculus

In this section we consider a probabilistic extension of Milner’s CCS [Miln89] which is
based on the calculus of [Hans91| (see also [HaJo90, YiLa92, Yi94|). The syntax of our
calculus, called PCCS, in obtained from C'CS by replacing the prefix operator a.s by an
action-gquarded probabilistic choice operator

a. (E [pi]si )

iel

where p; are real numbers between 0 and 1 denoting the probability that after performing
a the above process becomes s; (provided that the statements s; are pairwise distinct).

In what follows, ProcVar is a set of process variables and Act is a finite nonempty set of
atomic actions which contains an internal action 7 (representing internal computations
of a process, not visible for the environment) and which is equipped with a function
Act — Act, a — a, where 7 = 7 and @ = a for all a € Act. If L C Act then we put
L ={a:ac L} Forato be a visible action, @ is called the complementary action of
a. Synchronization of processes is only possible by performing complementary actions «
and @. The result of a synchronization is supposed to be invisible, i.e. it is described by
the internal action 7.

Syntax of PCCS statements: PCCS statements are built from the production system
shown in Figure 4.1 (page 74). Here, a € Act, Z € ProcVar, L is a subset of Act \ {7}

s = mnil ‘ A ‘ a.(E [pz]sl> ‘ 1+ $2 ‘ s1 || so ‘ s\ L ‘ s[¢]

iel

Figure 4.1: Syntax of PCCS statements

with L = L, £ : Act — Act is a relabelling function (i.e. (@) = {(«) for all visible actions
a and {(7) = 7), I is a nonempty countable indexing set and (p;);c; a family of real
numbers p; €]0,1] such that 3,c;p; = 1. For finite indexing set I = {i,...,,}, we also
write a. ([pi]-si, ® ... D [pi,]s:,) instead of a.(®;c; [pi]si). a.s stands short for a.([1]s).
Stmtpcces (or shortly Stmt) denotes the set of all PCCS statements. PCCS denotes the
set of all PCCS programs, i.e. all pairs P = (decl, s) where decl is a declaration (a function
decl : ProcVar — Stmtpccs) and s a PCCS statement.

The intended meaning of the statements is as follows. mnul stands for a process which
does not perform any action. The idea behind action-guarded probabilistic choice is that
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a.(Wicr [pi)si ) first performs the action a and then randomly chooses to behave as t
afterwards according to the distribution p where

pt) = > pi

i€l

si=t
+ models non-deterministic choice, that is, s; + so either behaves like s; or like s5. || de-
notes the parallel composition with CCS-style communication on complementary actions
(i.e., in s1||s2, s1 and s, can evolve independently but may also communicate via visible
actions a and @). The operators s — s\ L, s — s[f] model restriction and relabelling:
s \ L behaves like s as long as s does not perform an action o € L. s[¢] behaves like s
where each action a € Act is replaced by ¢(«).

Example 4.1.1 [The controller system] We consider a simple controller system of a
plant that tests certain products. There are n “testing machines” where each of them
can test a product (via an action called test). We assume that the reliability of the
production is known: with probability 1/100 the product fails the test in which case the
product is returned to the production department (via an action called return); with
probability 99/100 the product passes the test in which case the product is transmitted
to the vending department (via an action called release). Each of the testing machines
can be specified by the PCCS program

Test % test. ([1(1)—0] return. Test @ {%} release.Test).

Thus, the controller system (with n testing machines) is given by

P, & Test|...| Test.

n

Here, we use process equations to describe the underlying declaration as explained on
page 73. m

Remark 4.1.2 [PCCS ala Hansson & Jonsson| Our language PCCS is closely related
to the calculus (also called PCCS) of [HaJo90] (see also [Hans91, YiLa92] and the extended
version in [Yi94]). In contrast to our approach, [HaJo90] allow for general probabilistic
choice ®[p;]s; (while we use action-guarded probabilistic choice a.(®[p;]s;)). For instance,
[HaJo90| allow statements like [%] a.nil @ [%] b.nil which stands for a process that offer a
with probability 1/3 and b with probability 2/3 and terminates after performing a or b
respectively. Thus, syntactically, our language PCCS can be viewed as a subcalculus of
the calculus of [HaJo90]. Vice versa, using similar ideas as for the “inference” from action-
labelled stratified systems to concurrent probabilistic systems (see Remark 3.4.6, page 55),
the calculus of [HaJo90] can be embedded syntactically into ours by introducing a special
action symbol a,4ngom (Which represents any activity that resolves the probabilistic choice,
e.g. one might think of a,4ngom to stand for “tossing a fair coin”) and

replacing Z [pi]si by @random - (Z [pi]si ) g
el el

It should be noticed that the above mentioned “embeddings” are only syntactic trans-
formations. Even though the intended meanings are similar the formal semantics do not
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Zl>decl 12 if decl(Z)imecl 1%

a. <Z [pz]sl ) L>decl IJ/ Where I,L(S) = Z 1)z
el P
5;=8

a if a a
81+ S2 ?decl M 11 81 ?decl 4 OT S2 ?decl |4

s1 || s2 %5 geet 1o if one of the following three conditions is satisfied:

| . [l cifs = s s
(i) s1 —dea p1 and p(s) = 0 otherwise
) . _ [oma(sh) ifs = s s
(i) 2 —dect p2 and p(s) = 0 . otherwise

(iii) a = 7 and there exists o € Act \ {7} with

a d a
51 ?decl 1 Al 52 ?decl 2

such that

_ ) om(sh) - pe(sy) :oifs = s s
uls) = { 0 otherwise
p'(s')  ifs=s\L

a : a ! —
S \ L — et H if 5 — deci By a ¢ L and /’L(S) - { 0 - otherwise

p'(s') o if s =4[]

S[E] thecl 1% if s —b>decl ,ula E(b) =a and :LL(S) = { 0 - otherwise

Figure 4.2: Operational semantics of PCCS

coincide since the interpretations of + and || are different. While we deal with an oper-
ational semantics based on concurrent probabilistic processes [HaJo90] work with an op-
erational semantics based on the stratified (alternating) model where action-labelled and
probabilistic transitions are distinguished. In contrast to our rules for non-determinism
+ or parallel composition || (which are immediate derivations of Milner’s rules for + and
parallel composition and in the style of Segala [Sega95a] who defines a CSP-like par-
allel composition for concurrent probabilistic systems), the rules of [HaJo90] are based
on a higher priority for the probabilistic transitions than the action-labelled transitions.
In the approach of [HaJo90], the summands s; and s, of the non-deterministic choice
s1 + §o first have to perform their probabilistic transitions before the non-determinism
is resolved. Similarly, by the rules of [HaJo90]|, the parallel composition s;||ss cannot
perform an action-labelled transition unless both components s;, s, have resolved their
probabilistic choices. m
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Operational semantics for PCCS: Using the classical SOS-style a la Plotkin [Plot81],
we give an operational semantics for PCCS based on concurrent probabilistic processes
with action labels. Let decl be a declaration. We define the transition relation — 4.y C
Stmt x Act x Distr(Stmt) to be the smallest relation satisfying the rules of Figure 4.2 on
page 76. Here, we write s— g..; ¢ instead of (s,a, 1) € —>g4ee;- The operational semantics
assigns to each PCCS program P = (decl, s) the action-labelled concurrent probabilistic
process O[P] = (Stmt, Act, Steps®, s) where Steps®™(s) = {(a,p) : s—gees pt}-

Figure 4.3:

Example 4.1.3 The operational semantics of the PCCS program (decl,s) where s =
a. ([%] b.nil & [%] m’l) (and where decl is an arbitrary declaration) is the process shown on
the left of Figure 4.3 (page 77). The picture on the right shows the operational semantics
O[Po] of the recursive program Py = (so, decly) where so = s + Z and decly(Z) = a.Z.
Figure 4.4 (page 78) shows the semantics of the program (decl, (s1||s2) \ L) where

s1 = a. ([ﬂ B.nil & [%] @.m’l), Sy = Q. ([%] B.nil @ [%] a.nil) + a.nil

and L = {a,@,3,8}. ti||'t, stands short for (¢||ts) \ L. The a-transition of s;||'ss
represents the case where the a-transition of s, is chosen non-deterministically. Thus,
s1]|'ss can make an a-move where s; does not participate, i.e. does not change its local
state. The 7-transition of s;||'sy stands for the synchronization of oo and @. For instance,
with probability i . % = %, 51 moves to the local state 8.nil and s, to B.nil. In the global
states s1||'nil, B.nill|'a.nil and @.nil||' 3.nil no actions are possible because of the restriction
operator while in the global states 3.nil|’3.nil and @.nil||'a.nil further synchronizations
take place. m

In what follows, we identify each program P with its operational meaning O[P] and lift
bisimulation equivalence ~ and the simulation preorder Cg, to PCCS programs. We
define P ~ P’ iff O[P] ~ O[P'] and P Cgy, P' iff O[P] Cem O[P']. It can easily
be shown that all operators preserve bisimilarity and the simulation preorder. More

precisely, if decl is a declaration then we define ~% and C%¢ as binary relation on Stmt

by s ~dc " iff (decl,s) ~ (decl,s') and s CZ s iff (decl,s) Cgm (decl,s'). Let
§ =~decl or § =C 4l Then:

1. If s; 6 s}, i € I, then a. ®[pi]s;) 0 a.(®[pi]s)).
2. If 51 0 s} and s5 0 s, then s; +s5 6 ] + s5.
3. If 51 0 s} and s 0 s, then sq||ss 6 s} ||sb.

4. If s 0 s' then s[{] 6 s'[{].
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( a.nil || Bml)
1
2
( a.nil ||" a.nil )

—
ol
=

6
( Bonil || B.mz) ( Bondl | a.m’l)
T

nil ||" nil

Figure 4.4: Example for the operational semantics of a parallel PCCS program

5. If s 0 s"thens\L 6 s\ L.
6. Z 0 decl(Z)

Similarly, it can be shown that the weak and branching bisimulation equivalences of
Segala & Lynch [SeLy94| are preserved by all operators with the exception of the non-
deterministic choice operator +. The fact that these relations are congruences with respect
to the parallel composition || can be derived from the results of [Sega95a].?

Example 4.1.4 [Simplified representation of the controller system] We consider
the controller system of Example 4.1.1 on page 75. The state space of O[P,] consists of
3™ states (as each of the n components Test is described by three states). In order to get
a “simpler” description of the behaviour of P,, with a smaller state space (whose size is
not exponential in the number of testing machines) one can use counters ¢, Crepyrn and
Crelease Where the value of the counter ¢, gives rise about the number of testing machines
that are in the local state where the action a has to be performed next. That is, we

consider the PCCS program P, % P(n,0,0) where

P(m, k1) & Test(m,k,l) + Return(m,k,l) + Release(m,k,1)

and
o | (] Pon =10 108 (3] P =1, 1.141)
Test(m, k,1) = it
nil : otherwise
Return(m, k1) 4 | returnP(m+L k=110 = ifk>1
nil : otherwise
e . - il >
Release(m, k,1) & { release. P(m + 1,k —1) + ifl>1
nal : otherwise.

®Note that our parallel composition is similar to the one introduced in [Sega95a]; the only difference is
that [Sega95a] uses another communication mechanism which is based on CSP-style synchronization on
common actions and independent evolvement on all other actions (rather than the C'CS-style synchro-
nization on complementary actions that we use).
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Intuitively, the first component m is the value of the counter c;.s; for the testing machines
that are in their initial state (i.e. that have to test a product) while the second compo-
nent k and the third component [ stand for the values of the counters c,esurm and Crejease
respectively. It is easy to see that O[P,] ~ O[P,] and that O[P;] has (n +1)(n +2)/2
states. Thus, by the compositionality of bisimulation equivalence ~, for investigating the
behaviour of the controller system P, in an environment ... ||P,|| ... one can switch from
the exponential-large system O[P,] to the polynomial-large system O[P,]. m

4.2 PSCCS: a synchronous probabilistic calculus

The specification language PSCCS was introduced by Giacalone, Jou & Smolka [GJS90]
and later considered by several authors, e.g. [JoSm90, vGSST90, LaSk92].6 PSCCS uses
a SCCS-style synchronous parallel composition s; X s where all transitions of the product
51X 89 are composed by individual moves of s; and s,; more precisely, in each step of s; X s9,
each of the components s; and s, performs exactly one step. We assume a commutative
and associative function Act x Act — Act, (a,b) — a *b where a * b stands for the result
of the simultaneous execution of the actions a and b.” In contrast to Section 4.1 (and
the following Section 4.3) the special action symbol 7 is not needed here. Nevertheless,
it might be contained in Act in which case it does not play a distinguished role and is
treated as any other action.

Syntax of PSCCS: Let ProcVar be a set of process variables. PSCCS statements are
given by the grammar shown in Figure 4.5 (page 79). Here, Z € ProcVar, a € Act,

s u= nil‘Z‘ a.s ‘ 3 [pilsi ‘ $1 X 8o ‘ s\ L ‘ s[¢]

el

Figure 4.5: Syntax of PSCCS statements

L C Act, I is a countable indexing set, p; are real numbers p; € ]0,1] with ¥ p; = 1
and ¢ : Act — Act is a relabelling function. Stmtpsccs (or shortly Stmt) denotes the
collection of all PSCCS statements. A PSCCS program is a pair P = (decl, s) where s is
a statement and decl a declaration (i.e. a function decl : ProcVar — Stmtpsccs)-

The intended meanings of inaction nil, prefixing a.s, restriction s \ L and relabelling s[/]
are as in the case of CCS or PCCS. ®;c; [p;]s; models probabilistic choice: if s;, ¢ € I,
are pairwise distinct then, with probability p;, ® [p;]s; behaves as s;. For finite indexing
set I = {iy,...,0,}, we also write [p;,].s;, ® ... P [pi,]si, instead of ®;c; [pi]si. If s; may
perform the action a; and becomes t; afterwards ¢ = 1,2, then s; X s may move to t; X t,
via the action a; *xas. In the synchronous parallel composition (also called product) s; X s2,

6Note that several authors use the name PCCS for that calculus while we call it PSCCS since it is an
extension of SCCS and to avoid confusions with the language PCCS considered in Section 4.1.

"In SCCS [Miln83], (Act, x) is supposed to be an Abelian monoid with a unit 1. For our purposes, it
suffices to assume that * is commutative and associative.
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P! Z a,t) = P*!(decl(Z),a,t), P%(a.s,a,s) = 1

Ppdect <Z [pi]si,a’t> = Z Di * Pdecl(si,a,t)

i€l el

Pdecl(sl X 89,a,t; X tz) = Z PdECl(S]_, b, tl) . Pd€cl(82, c, tz)
(b,c)ESyn,

P (s\ L,a,t\ L) = P%(s a,t) ifad¢ L

Pel(s[0),a,t[l]) = Y P¥(s,b,t)
bel—1(a)

Figure 4.6: Equations for P in the case of PSCCS

the probabilistic choices in s; and s, are supposed to be resolved causally independently.
Thus, the probability of the transition of s; X s3 to the state t; x ¢ty via the action a is
obtained by summing up the products of the probabilities for s; to move to ¢; via an
action b and sy to move to t5 via an action c¢ such that a = b * c.

Operational semantics of PSCCS: With slight differences — that mainly arises from
the fact that we do not allow substochastic states in fully probabilistic systems and deal
with internal probabilistic choice (which leads to another interpretation of the restriction
operator; cf. Remark 4.2.4, page 81) — we provide PSCCS with the operational generative
semantics of [GJS90, JoSm90, vGSST90|. For this, we fix a declaration decl and define
the transition probability function P : Stmt x Act x Stmt — [0, 1] as the least function
that satisfies the equations of Figure 4.6 on page 80.% Here, for a € Act,

Syn, = {(b,c) € Act x Act : bxc = a}.

Example 4.2.1 We consider the recursive PSCCS program (decl, Z) where
decl(Z) = [%] Z & [%] a.nil.
We get the equation P%(Z,a, nil) = % -P%*(Z,a,nil) + 2 whose unique solution is
P! Z, a,nil) = 1.

For the recursive PSCCS program (decl, Z') where decl(Z') = Z' we get the equation
Picl(Z' a,t) = P (Z' a,t). Clearly, the least solution is 0. Hence, P%(Z’ a,t) = 0
for all a € Act and t € Stmt. m

The so defined transition probability function P4 : Stmt x Act x Stmt — [0,1] is
substochastic which means that the sum of the probabilities for the outgoing transitions

8The existence of a least function satisfying the equations of Figure 4.6 follows with standard domain-
theoretic arguments; see e.g. Propostion 12.1.1 on page 309.
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Figure 4.7: Examples for the operational semantics of PSCCS programs

of a certain statement might be a real number between 0 and 1 (rather than 0 or 1).
For instance, for the statement s; = [é] a.nil ® [%] nil we have P (s, a, nil) = 1/3 and
Pdcl(sy,b,t) = 0 if (b, t) # (a, nil). For this reason, we introduce an auxiliary statement
0 that denotes inaction and a special action symbol 0 which is needed for modelling
transitions from a state s € Stmt to 0. We define Stmto = Stmt U {0}, Acty = Act U {0}
and extend P9 to a function Stmte x Acty x Stmte — [0, 1] (also called P9) as follows.
For s € Stmt, we put

P%*(5,0,0) = 1 — >y P(s, a,t).

acAct teStmt

and P%(.) = 0 in all remaining cases (e.g. P (s,0,t) = 0ift € Stmt or P4/(0,a,t) = 0
for all a € Acty and t € Stmte). The operational semantics assigns to each PSCCS
program P = (decl, s) the fully probabilistic process O[P] = (Stmtq, Acty, P4 s).

Example 4.2.2 The operational semantics of (decl, s;) where s; = [%] a.nil @ [%] nil is
the process shown on the left of Figure 4.7 on page 81. The picture on the right shows the
operational semantics of (decl, s; X s3) where s is as before and s, = [i] b.nil [%] c.nil.

In both cases, decl is an arbitrary declaration. m

Remark 4.2.3 There are several possibilities for a formal definition of the transition
probability function P%. Some authors, e.g. [vGSST90], use indices for the transitions
and rules like
if s, a—[p}m t for some j € I then Z [pi]si M]’-k t
icl

from which the transition probability function P%¢ can be derived by

Pél(s,a,t) = > {p:sﬂj t}.

J

Other authors, e.g. [JoSm90, Toft94], use multisets of transitions. However, the resulting
semantics O[P] does not depend on the chosen way for defining the transition probability
function P, m

Remark 4.2.4 [Internal, external probabilistic choice and restriction] Our inter-
pretation of restriction s\ L differs from those in [GJS90, JoSm90, vGSST90| (where the
syntax s[A instead of s\ L where L = Act \ A is used). In the rule for s\ L, they use
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a normalization factor (the probability P9!(s, Act \ L) for state s to perform an action
a € Act \ L). Their rule for the restriction operator leads to the equation

PdECl(S, a, t)

Pdecl L L) =
(8\ 7a)t\ ) Pde‘:l(S,ACt\L)

(provided that P! (s, Act \ L) > 0). Thus, they deal with the conditional probabilities
for the (Act \ L)-labelled transitions of s under the assumption that s performs an action
from Act\ L. In contrast to this, in our approach the value P4 (s, Act\ L) represents the
probability of deadlock in s\ L that results from the restriction (but not from a deadlock
in s). For example, for the statement

s=t\{a} where t = [%] a.nil @ [%] b.nil

we deal with the transition probabilities P% (s b, nil \ {a}) = P%(s,0,0) = 1/2 while
Pdecl(s b, nil \ {a}) = 1 in the approachs of [GJS90, JoSm90, vGSST90] that focus on
an external probabilistic choice operator where the process randomly chooses one of the
events offered by environment. Hence, for the statement ¢ of above, if the environment
offers @ and b then a and b are chosen with equal probability while, for an environment that
just offers b (but not a), the action b will be performed (with probability 1). In contrast to
this, we assume an internal probabilistic choice operator where the probabilistic choices
are resolved independently on the environment. Thus, in our approach, if just b is available
while ¢ is willing to perform a and b with equal probability then either b will be performed
(if the randomized choice selects b) or a deadlock occurs (if a is selected), both with
probability 1/2. m

Beside the use of another probabilistic choice operator, several other variants of the op-
erational semantics are possible and might be useful in certain applications.

e We do not distinguish between well-termination and deadlock. If one wants to consider
nil as a well-terminated process then one can use an auxiliary statement (e.g. exit),
a new action symbol (e.g. /) and the transition probabilities P9 (nil, \/, exit) = 1
instead of P9 (nil,0,0) = 1. Then, the 0-labelled transitions to 0 (that might arise
from the restriction operator or recursion) represent deadlock while the y/-labelled
transitions to exit represent well-termination.

e Another possible variant concerns the rule for the product. In our approach, a deadlock
in s X s occurs if it occurs in one of the components s; or ss. Alternatively, one could
allow the non-deadlocked component to perform further actions even if a deadlock has
occurred in the other component. If 0-labelled and 4/-labelled transitions are used, one
can use rules to specify that a deadlock in s; X s, occurs iff it occurs in one of the
components while s; X so behaves as s; if s has well-terminated (i.e. has performed
the action /) and vice versa.

For fixed declaration decl, we define the relations ~¢ and T4 for PSCCS statements

as in the case of PCCS (see page 77). Then, ~% and "4 are congruences with respect
to all operators of PSCCS. This result for bisimulation equivalence ~%¢! was established
by Jou & Smolka (cf. Lemma 4.1 in [JoSm90]). The congruence proof for C is an easy

Sim
verification and omitted here.
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4.3 PLSCCS: a lazy synchronous calculus

In this section we propose a new calculus, called PLSCCS, which arises from PSCCS by
replacing the synchronous parallel composition x by a lazy synchronous parallel compo-
sition ®. In the lazy product P; ® P, the processes P; and P, are forced to synchronize
on all visible actions while the internal actions 7 are executed independently.

As in the case of PCCS, we assume a special action 7 that denotes any internal or invisible
computation. While 7 does not play a distinguished role in the product s; x s of PSCCS
(i.e. 7 is treated as any other action), in the lazy product s; ® s,, the components s; and
s may perform arbitrary many internal 7-steps independently before they synchronize on
some wvistble actions. In other words, each step of s; ®s5 is composed by sequences of steps
of s; and s», where each of them starts with an arbitrary number of internal actions 7 and
ends up with a visible action. As in the case of PSCCS, the probabilistic choices of the
components are supposed to be independent. Hence, the probabilities for the transitions
of s;1 ® s, are given by the product of the individual probabilities where we deal with the
cumulative effect of the 7-transitions.

Syntax of PLSCCS: PLSCCS statements are given by the grammar shown in Figure
4.8 (page 83). Here, Z € ProcVar, a € Act, L C Act \ {7}, I is a nonempty countable

s u= m’l‘Z‘ a.s ‘ ¥ [pilsi ‘ $1 ® So ‘ s\ L ‘ s[¢]

el

Figure 4.8: Syntax of PLSCCS statements

indexing set, p; are real numbers p; € |0,1] with ¥ p; = 1 and ¢ : Act — Act is a
relabelling function with ¢(7) = 7. Stmtprsccs (or shortly Stmt) denotes the collection
of all PLSCCS statements. PLSCCS denotes the set of all PLSCCS programs, i.e. pairs
P = (decl, s) consisting of a declaration decl and a PLSCCS statement. The intended
meanings of nil, the prefix operator a.s, the probabilistic choice operator ¥ [p;]s;, the
restriction operator s \ L and the relabelling operator s[¢] are as in the case of PSCCS
(see page 79). For the lazy product s; ® s, we assume a function

(Act \ {7}) x (Act \ {7}) = Act, (a,f)+— ax*p.

where, as in the case of PSCCS, a * (3 stands for the result of the synchronization on the
visible actions a and 3. Note that a *x § = 7 is possible. Each a-labelled transition of
the lazy product s; ® s, is composed by sequences of steps of the components s; and s
that are labelled by strings of the form 7"« and 7*( respectively such that a is the result
of the synchronized execution of the visible actions o and § (i.e. a = a * (). Thus, the
probability of s; ® s3 to move via the action a to t; ® t5 is given by the sum over all
probabilities Prob(sy, 7*a, t1) - Prob(sa, 7%, t2) where («, 3) ranges over all pairs («, )
of visible actions such that a * 3 = a. °

9Recall that ProdeCl(s, T*a, t) is the probability for s to perform a sequence of internal actions followed
by « ending up in the state ¢ (cf. Section 3.3.1, page 50).
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Operational semantics for PLSCCS: We supply PLSCCS with an operational seman-
tics based on action-labelled fully probabilistic processes. As in the case of PSCCS, we fix
a declaration decl : ProcVar — Stmt and define the transition probabilities P4 (s, a,t)
(where s, t € Stmt and a € Act) with the help of a higher-order operator on the function
space Stmt x Act x Stmt — [0, 1]. For the definition of the semantics of the lazy product,
we have to deal with the probabilities Prob® (s, 7*a, t) for s to move to ¢ via a sequence
of steps labelled by a string of 7*a. For this, we deal with an operator on function pairs
and define the pair (P! Q%) as the least pair of functions

Pl Stmt x Act x Stmt — [0, 1]

and
QA : Stmt x (Act \ {r}) x Stmt — [0, 1]

that satisfies the equations of Figure 4.9 on page 85.1° We proceed as in the case of

PSCCS and extend the so defined function P% : Stmt : Act x Stmt — [0,1] to a
function Stmtg x Acty x Stmte — [0,1] (also called P4). For s € Stmt, we put
P¥l(50,0) = 1 — Y Y P¥*(sq,t)
acAct teStmt

and define P%(-) = 0 in all remaining cases.!! The operational semantics assigns to
each PLSCCS program P = (decl, s) the action-labelled fully probabilistic process O[P]
= (Stmtg, Acty, P% ). Let Prob® denote the probability measure in the action-labelled
fully probabilistic system (Stmtg, Actq, P9).

Lemma 4.3.1 For all s, t € Stmt and o € Act, Q% (s,a,t) = Prob®(s, m*a,t).12

Proof: easy verification. Uses structural induction on the syntax of s and Proposition
3.3.4 (page 49). m

Corollary 4.3.2 For all s1, s3, t1, to € Stmt and a € Act,

PUl(s; @ s59,a,t; @ty) = Z Probded(sl, T a, ty) - Probded(sz, "6, t2).
Proof: follows immediately by Lemma 4.3.1 (page 84). m
Recall that Prob™ (s, m*a) = ¥, Prob® (s, 7*a,t) is the probability for s to perform a
sequence of 7’s followed by « (cf. Section 3.3.1, page 50).
Corollary 4.3.3 For all s1, sy € Stmt,

Pil(s; ®55,0,0) = 1 — Y 3 Prob®™(s;, 7" aq) - Prob®(sy, m*as).
ayEAct  agEAct

a1 #T Qo F#T

10A5 in the case of PSCCS, the existence of a least function pair satisfying the equations of Figure 4.9
can be derived with standard methods of domain-theory; see e.g. Remark 12.1.2 on page 309.

"Here, Stmto = Stmt U {0} and Acty = Act U {0} where the new action symbol 0 and the auxiliary
statement 0 are interpreted as in the case of PSCCS. See the explanations on page 81.

12Tn the notations of Section 3.3.1 (page 50), ProdeCl(s,T*a,t) is the probability for the program
(decl, s) to behave as (decl, t) after performing a sequence of steps labelled by an element of 7*a.
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P Z a,t) = P*(decl(Z),a,t), P%*(a.s a,s)=1

Ppdect (Z [pi]si,a’t> = Z Di * Pdecl(si,a,t)

i€l el

PdECl(Sl & S9,Q, tl & t2) = Z QdECl(Sl, a, 7fl) ) QdECl(SQ, ﬁ, t2)
(a,B)ESyn,

P (s\ L,a,t\ L) =P%(s,a,t) ifad L
Phl(s[0),a,t[l]) = 3 P¥(s,b,t)
bel—1(a)

Qdecl(s’ a, t) — Pdecl(s’ a, t) 4 Z Pdecl(s, T, u) . Qdecl(u, a,t).

uEStmt

Figure 4.9: Equations for P% and Q9 in the case of PLSCCS

Proof: follows immediately by Corollary 4.3.2 (page 84). m

Example 4.3.4 We consider the PLSCCS programs P; = (decl, s1), P = (decl, s3)
where decl is an arbitrary declaration,

sp = [%] T.(nil\ L) ® [%] a.nil and sy = T.e.nil

for some subset L of Act \ {7}. The operational semantics of P; and P, are shown in
Figure 4.10 (page 86). We now investigate the lazy product s; ® sy where we assume
that a * @ = a. In the lazy product s; ® sy, s first performs its internal step and
then offers the synchronization on o while s; chooses randomly between the internal
step and the synchronization on «, both with probability 1/2. In the former case, s;
and sy cannot synchronize, because, after performing the internal transition, s, waits
forever for the synchronization on a. In the latter case, s; is idle until s, offers the
synchronization on «. Figure 4.11 (page 86) shows the operational semantics of the
program (decl,s; ® s;). Clearly, we have Prob®(s,,7*a,nil) = P%(sy, o, nil) = 1/2
and Prob™(sy, 7*a, nil) = 1. Thus, P% (s, ® s5, a, nil @ nil) = 1/2. On the other hand,

- > > Prob®(sy, %) - Prob®(s,, 7 rp)
aj€Act ag€Act
Q1 AT Q2 AT

1 1
= 1 — Prob®(s;, 7*a) - Prob™(sy, 7%a) = 1— 3 1= 5
which yields P%(s; ® $5,0,0) = 1/2. m
Example 4.3.5 We consider the programs Q; = (decl, s1), Qo = (decl, s5) where
sy =2, decl(Z) = [%] 7.2 ® [%] T.w P [%] B, 5o = [i] Tyt D B] d.u.
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i

Figure 4.11:

Here, t, u, v, w are pairwise different statements. The operational semantics of Q; and
Q, are shown in in Figure 4.12 (page 87) where the outgoing transitions of ¢, u, v and w
are omitted. We consider the lazy product Q; ® Q,. We have

Probdecl(sl,,r*a,w) = ProdeCl(Sl,T*/B)/U) - 1/2

and Prob™(sy, 7*y,t) = 1/4, Prob®(sy, 7*0,u) = 3/4. Thus,

Pded(sl®82,a*’7,w®t) = Pdecl(81®s2,ﬁ*’y,v®t) = %)
Pded(81®82,a*(5,w®u) = Pdecl(81®32,ﬂ*(5,’v®u) = %..

In some applications, it might be helpful to work with a special visible idle action,
e.g. called wait, by which a process can be forced to be idle in the next time step.
Formally, we require that wasit is a visible action such that wait x a = a * wait = « for all
a € Act\{7}. For example, a.s®@wait.t first performs a and then behaves as s®t. ILe. the
process wait.t does not influence the first step, even though formally, it participates by
performing the action wast.

Example 4.3.6 [The communication protocol Sender ® Receiver] We consider a
variant of the simple communication protocol of Example 1.2.2 on page 20 which we
specify as the lazy product of a sender (who tries to send messages) and a receiver (who
waits for the messages by the sender). The sender works with an uncertain medium
that might lose message (with probability 0.01). If the message gets lost then the sender
retries to deliver the message. In case where the message is delivered correctly, the
sender waits for an acknowledgement of the receipt. For simplicity, we assume that the
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Figure 4.12: The operational semantics of PLSCCS programs Q; and Qs

acknowledgement is transmitted by a safe medium that does not loose messages. The
behaviour of the sender can be specified using process equations as explained on page 73.

Sender défproduce. Try_to_send
Try_to_send & [0.01]Lost & [0.99]Deliver
Lost ¥ 7. Try_to_send

Deliver % deliver!. Wait_for_response

: def .
Wait_for_response = wait.ack?.Sender

We use the visible actions produce (which means the action by which the sender generates
a message), deliver! (the output action by which the medium transmits the message
to the receiver), ack? (an input action that denotes that the sender sender reads the
acknowledgement) and the action wait that is used to force the sender to be idle in the
step where the receiver works up the message. The invisible action 7 is used to describe
the activities that are needed for preparing the next attempt to deliver the message. The
operational semantics of the sender is shown in Figure 4.13 (page 87.) The receiver is

(G

\produce, 1

( ack?.Sender )
A
7, 0.01 deliver!, 0.99 wazit, 1
(Wait_for_responseD

Figure 4.13: The operational semantics of the sender

ack?, 1
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specified as follows.

. def .
Receiver = wait. Get_message
def 5 .
Get_message = deliver?.consume. Acknowledge

Acknowledge ' ack!. Receiver

We use the actions deliver? (the input action that stands for the receipt of the message),
consume (an action by which the receiver works up the message and produces the acknowl-
edgement), ack! (the output action by which the receiver acknowledges the receipt of the
message) and the action wait (which ensures that the receiver is idle while the sender
generates the next message). We suppose that deliver! x deliver? = ack? * ack! = 7. The
operational semantics of Sender ® Receiver is shown in Figure 4.14 (page 88.)'° m

. N
C Sender ® Receiver Da \

produce, 1

Y

(Try_to_send ® GeLmessage)

7,1 7,1
Y

CWait_for_response ® consume.Acknowledga

consume, 1

Y

chk?.Sender ® Acknowledg% /

Figure 4.14: The operational semantics of Sender ® Receiver

As in the cases of PCCS or PSCCS, we adapt bisimulation equivalence ~ and the sim-
ulation preorder Cgy, for PLSCCS programs and statements where, for 6 € {~, Cqn},
we define P 0 P’ iff O[P] 0 O[P'] and s 99 s iff (decl,s) 69 (decl,s'). Tt is easy to
see that s; 6% i sy 99! s, implies s; ® sp 09! s ® s,,. Thus, bisimulation equiva-
lence and the simulation preorder are congruences for PLSCCS. In Chapter 7 we define
weak bisimulation equivalence for action-labelled fully probabilistic systems for which we
show that it preserves all operators of PLSCCS (except the probabilistic choice operator).
This algebraic property is especially useful, since it allows one to replace components by
equivalent ones that are minimized with respect to their internal behaviour.

13Note that the probability for the sender to reach the state Wait_for_response from Try_to_send via
a path labelled by a trace of 7* deliver! is 1.



Chapter 5

Denotational models

The recent trend in the semantics of programming languages is to provide a program-
ming language with several (pairwise “consistent” ) semantics that describe different views,
e.g. an operational, a denotational and a logical based semantics. While the operational
semantics focusses on the stepwise behaviour, the denotational approach is based on
compositionality (i.e. the existence of semantic operators for modelling the syntactic con-
structs of the language such as non-deterministic choice +, sequential composition ; or
parallel composition ||). Another characteristic features of denotational semantics for pro-
gramming languages with recursion or repetition is a the use of fized point equations for
the definition of the meaning of recursive or repetitive programs. Typically, these fixed
point equations are solved with the help of Tarski’s or Banach’s fixed point theorems in
which cases the semantic domain is supposed to be equipped with an appropriate partial
order or metric. Thus, denotational semantics, being compositional, provide the theory
that underpins system decomposition; and, if fully abstract, i.e., if the inherent order
(in the partial order setting) or equality (in the metric setting) in the model precisely
corresponds to the operational (pre)order or equivalence, the denotational semantics can
provide additional insight into the nature of operational notions, and eventually serve as
an intermediate link between the operational semantics and an appropriate logic.

Several authors proposed denotational semantics for probabilistic process calculi (see Sec-
tion 1.2.2, page 23), but only a few of them investigate the issue of full abstraction with
respect to an operational notion of “process equality”. In the context of probabilistic
process calculi with recursion, denotational models and related full abstraction results
are presented for testing [Chri90a, Chri90b, Norm97, KwNo98a, KwNo98b]| and failure
[MMS*94] equivalence. To handle recursive processes, Morgan et al [MMS*94] use the
standard partial order approach for establishing denotational least fixed point seman-
tics. Christoff [Chri90a, Chri90b| deals with a variant of acceptance trees a la Hennessy
[Henn88] and models recursion by equations as labellings for the branches in these ac-
ceptance trees. Kwiatkowska & Norman [KwNo96, Norm97, KwNo98a, KwNo98b] use
a variant of the standard metric denotational approach and define the semantics as the
limit of a Cauchy sequence in a complete metric space.

Based on the joint work with Marta Kwiatkowska [BaKw97], this chapter presents a
method for providing denotational semantics for probabilistic calculi like PCCS or PSCCS
that are fully abstract with respect to bisimulation and simulation. Full abstraction of

89
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a denotational semantics D with respect to bisimulation means that D identifies exactly
those programs that are bisimilar, i.e. D[P] = D[P'] iff P ~ P’ while full abstraction
with respect to simulation means that the semantic domain (the range of D) is equipped
with an order C that reflects the simulation preorder, i.e. D[P] C D[P'] iff P Cgm P’
The partial order approach is used to obtain a fully abstract denotational semantics
with respect to simulation; the metric setting to obtain full abstraction with respect to
bisimulation.

As in the non-probabilistic case (e.g. [dBaZu82, GoRo83, dBaMe88, Abra9l, RuTu93,
Bai97]) the semantic domains ID and IM of the partial order and metric semantics re-
spectively are obtained by applying standard categorical methods for solving recursive
domain equations.* The main idea of the fully probabilistic case is to identify each pro-
cess P with a distribution p on pairs (a, Q) where a is an action label, Q is a process
and p(a, Q) the probability for P to perform the action a and to behave as Q afterwards.
This leads to recursive equations of the form

X = {0} U Distr(Act x X)

for the semantic domain X.? Here, 0 is a special symbol to denote inaction (i.e. a process
like nil that does not perform any action). The central idea in the concurrent case is to
represent a process P by a set of pairs (a, ) consisting of an action a and a distribu-
tion p on processes where each element (a, ) of that set represents a non-deterministic
alternative. From this, we obtain domain equations of the form

X = Pow,.(Act x Distr(X))

where Pow, () denotes a suitable powerdomain construction and where inaction is mod-
elled e.g. by 0. Unfortunately, in both cases the equation cannot be solved with the stan-
dard methods of [SmP182, AbJu94| or [AmRu89, MaZe91, RuTu93| for solving recursive
domain equations in the partial order or metric approach respectively since the distribu-
tion operator X ~— Distr(X) fails the necessary condition of preserving completeness.?
Nevertheless, the equations X = {0}UDistr(Actx X) and X = Powg,(Act x Distr(X))
have final solutions in SET, the category of sets and functions, which yields final se-
mantics in the sense of Rutten & Turi [RuTu93] that are fully abstract with respect to
bisimulation.*

In order to obtain fully abstract denotational models that can serve as semantic domains
for providing denotational semantics in the metric or partial order framework we switch
from Distr(-) to the probabilistic powerdomain Eval(-) of evaluations in the sense of Jones
& Plotkin [JoP189] (cf. Section 12.1.4, page 313). While distributions assign probabilities
to elements, the evaluations decorate sets with “probabilities” (values in [0,1]). In our
cases, where the underlying domain is a metric space or partial order, the set Eval(-) of
all evaluations on () covers Distr(-). We solve domain equations of the form

X = {0} U Eval(Act x X) and X = Pow,(Act X Fval(X))

! The recursive domain equations reflect the coinductive nature of bisimulation and simulation.
ZRecall that Distr(-) denotes the set of distributions on (-). See Section 2.2 (page 30 ff).

3See Remark 5.1.13 (page 95) and Remark 5.1.18 (page 97).

*Here, Powg;, (-) denotes the collection of finite subsets of (-).
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where we apply the method of Abramsky & Jung [AbJu94] in the partial order approach
and the method of Rutten & Turi [RuTu93] in the metric setting. The resulting do-
mains ID and IM are shown to be internally fully abstract with respect to (bi-)simulation
which means that the inherent order on ID agrees with the simulation preorder and that
bisimulation equivalence coincides with the equality on M. Using the standard proce-
dures to give denotational semantics in the partial order and metric approach we obtain
denotational semantics on ID and IM and the desired full abstraction results.

Organization of that chapter: In Section 5.1 we consider the (more interesting and
complicate) case of concurrent probabilistic processes in detail and the language PCCS
(see Section 4.1, page 74 ff) where we shrink our attention to finitely branching systems.®
The results for the fully probabilistic case and PSCCS (see Section 4.2, page 79 ff) are
summarized in Section 5.2.

In this chapter, the reader is supposed to be familiar with the basic concepts of denota-
tional (least fixed point or metric) semantics and categorical methods for solving recursive
domain equations. The mathematical preliminaries that are needed in this chapter can
be found in the appendix (Sections 12.1.1, 12.1.2, 12.1.3 and 12.1.4; see page 307 ff).
Moreover, the reader should recall the notations that we use for distributions and weight
functions (Section 2.2, page 30).

5.1 Denotational models: concurrent case

We take as basis finitely branching action-labelled concurrent probabilistic processes to-
gether with the bisimulation equivalence (Definition 3.4.3, page 54) and the simulation
preorder (Definition 3.4.9, page 56). First, we turn our attention to the construction of
semantic domains which can serve as fully abstract denotational models for languages
with non-determinism, probabilistic choice and recursion (such as PCCS). We start with
the equation X 2 Pow,(Act x Distr(X)) that we solve in SET and that yields “final
semantics” in the sense of [RuTu93] (see Section 5.1.1). Then, taking the domain equa-
tions for non-probabilistic processes as basis, we derive domain equations involving the
probabilistic powerdomain of evaluations which — when solved respectively in appropriate
categories of partially ordered sets or metric spaces — give rise to semantic domains for
probabilistic processes that are internally fully abstract with respect to simulation and
bisimulation respectively (see Sections 5.1.2 and 5.1.3). Having obtained these internally
fully abstract semantic domains, we use the standard procedures for establishing denota-
tional semantics on dcpo’s and complete metric spaces and obtain dentational semantics
for PCCS that are shown to be fully abstract with respect to bisimulation and simulation
respectively (see Section 5.1.4).

Simplified notations: In the remainder of this section we deal with finitely branch-
ing action-labelled concurrent probabilistic systems or processes with action labels of a
fixed finite nonempty set Act. For simplicicity, we briefly speak about probabilistic sys-
tems or probabilistic processes rather than finitely branching action-labelled concurrent
systems/processes of the form (S, Act, Steps) or (S, Act, Steps, s).

’Note that the operational semantics for PCCS (which does not allow for unbounded non-deterministic
choice) always yields a finitely branching process.
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5.1.1 The domain P

~/

In the non-probabilistic case, the final solution of the equation X = Powg,(Act X X) in
SET yields a characterization of “action-labelled trees” [Barr93, RuTu93, Bai97]. These
can be viewed as canonical representatives of the bisimulation equivalence classes of (non-
probabilistic) finitely branching labelled transition systems with action labels in Act.
Here, Powgy,(-) denotes the collection of finite subsets of (). We adapt this idea for
the probabilistic case and show that the bisimulation equivalence classes of probabilistic
processes form the final solution of the domain equation X = Powg,(Act x Distr(X)).

Notation 5.1.1 [The domain P] Let IP be the set of bisimulation equivalence classes
of probabilistic processes.b

We use symbols like T, 7", T1, T2, . . . to range ober the elements of IP.

Notation 5.1.2 [The bisimulation equivalence classes [P]] For P to be a proba-
bilistic process, [P] denotes the bisimulation equivalence class of P.

Notation 5.1.3 [The process P;] Let P = (S, Act, Steps, s) be a probabilistic process
and t € S. Then, Py denotes the probabilistic process (S, Act, Steps, t).

Notation 5.1.4 [The elements 74| Let P = (S, Act, Steps, s) be a probabilistic process
and A € S/ ~. Let Ty be the unique element of IP with Ty = [P;] for all (some) t € A.

We associate with IP the probabilistic system S(IP) = (IP, Act, Steps™) where

Steps” ([P1) = {(a, Distr(f)(n)) : (a, p) € Steps(s)}.

where f : S — IP is given by f(t) = [P:]. Hence, if T is the bisimulation equivalence
class of P = (S, Act, Steps, s) (i.e. T = [P]) then T—sv iff there exists a transition
s—sp with v(T4) = u[A] for all bisimulation equivalence classes A € S/ ~. In the sequel,
each element 7 of IP is identified with the probabilistic process ([P, Act, Steps,T ). The
following lemma and its corollary show that for each probabilistic process P, [P] (viewed
as a probabilistic process) is the unique element of /P which is bisimilar to P.

Lemma 5.1.5 Let P, P’ be probabilistic processes.
(a) P~ [P]

(b) P~ P"if and only if [P] = [P']

(c) P Csim P' if and only if [P] Cam [P']

Proof: (b) is clear since [-] is defined to be the bisimulation equivalence class of
(). (c) follows by (a) and part (c) of Lemma 3.4.14 (page 59). We show (a). Let

6In order to see that IP is really a set consider a fixed set States of cardinality w and define IP to be
the set of bisimulation equivalence classes of probabilistic processes whose states belong to States. Then,
each probabilistic process is bisimilar to some probabilistic process whose states belong to States. L.e. IP
represents all bisimulation classes of probabilistic processes. Note that the set of states s which can be
reached from the initial state is always countable. Recall that we assume a fixed finite set Act of actions
and that we only consider finitely branching processes.
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P = (S, Act, Steps,s) and R = {(t,[P¢]) : t € S}. We show that R fulfills the conditions
of Proposition 3.4.4 (page 54).” Let f : S — IP be as before (i.e. f(t) = [P:]). It is easy
to see that

- If t—%5p then [P;]—=> Distr(f)(u).
- If [P]—v then v = Distr(f)(u) for some transition s——pu.

By Remark 2.2.3 (page 31), u =g Distr(f)(n). By Proposition 3.4.4 (page 54), P; ~
f(t) =[Py] for all t € S. In particular, with ¢t = s, we obtain P ~ [P]. m

Corollary 5.1.6 P is internally fully abstract with respect to bisimulation, i.e. for all

T, T eP: T~T if T=T.

Proof: Let P, P' be probabilistic process with 7 = [P], 7' = [P']. Then, by part
(a) of Lemma 5.1.5, T ~ P and 7' ~ P'. Hence, T ~ T' implies P ~ P’, and therefore
T=[PI=-[P]=T".m

Next we show that [P is a final solution of the equation X = Powg,(Act x Distr(X)) in
SET.

Theorem 5.1.7 P is the final coalgebra (and hence the final fized point) of the functor
Powgp, 0 Fpcr 0 Distr : SET — SET?®

Proof: Let F = Powgy, © Fae o Distr. We define e : P — F(IP) by e(T) =
{(a,p) : T-—"su}. Then, (IP,e) is a coalgebra of F. Let (Y, f) be a coalgebra of K,
ie. f:Y — F(Y)isafunction. We associate with Y a probabilistic system (Y, Act, Steps)
where we put Steps(y) = f(y). Hence, y——v iff (a,v) € f(y). It is easy to see that the
function F':' Y — P, F(y) = [P,] satisfies F(F) o f = eo F. We show the uniqueness
of F' as a function Y — IP satisfying F(F)o f = eo F. Whenever F' : Y — P is a
function with F(F') o f = eo F' then we show that R = {(y, F'(y)) : y € Y} satisfies the
conditions of Proposition 3.4.4 (page 54).7 It is easy to see that

- If y—">v then F'(y)—*> Distr(F')(v).
- If F'(y)—>u then y—=v for some v € Distr(Y') where p = Distr(F')(v).

By Remark 2.2.3 (page 31), v <g Distr(F')(v). Thus, P, ~ F'(y) for all y € Y. By
Lemma 5.1.5 and Corollary 5.1.6, F'(y) = [P,] for ally € Y. Hence, F =F'. m

Since [P is the final coalgebra we get a final semantics in the sense of Rutten & Turi
[RuTu93]. Let (S, Act, Steps) be a probabilistic system. Then, (S, f) is a coalgebra of
F = Powgy, o Fay o Distr where f: S — F(S) is given by f(s) = {(a,v) : s—>v}. The
final semantics F' : S — [P is defined as the unique function with F(F)o f =eo F. As
we saw in the proof of Theorem 5.1.7, F(s) = [Ps] where P, = (S, Act, Steps, s). By
Lemma 5.1.5 (page 92), the final semantics is fully abstract in the sense that it identifies
two states iff they are bisimilar and that it preserves the simulation preorder Cgy,.

"Here, R is viewed as a binary relation on the state space of the composed system (which is defined
as described on page 61).

8Recall the definitions of the distribution functor Distr : SET — SET (page 312), the functor Fa.; :
SET — SET which assigns to each set X the set Act x X (see page 312) and the functor Powg, : SET —
SET which assigns to each set X the set Powg, (X) of finite subsets of X (see page 312).

%Here, R is viewed as a binary relation on the state space of the composed system (which is defined
as described on page 61).
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Example 5.1.8 We consider the processes P and P’ of Figure 3.6 on page 57. (Le. P
and P’ are the processes with initial state s and s’ respectively.) The final semantics [P]
and [P'] of P and P’ (as elements of IP = Powg,(Act x Distr(IP))) are

[Pl ={(a,v)} and [P] = {(a,)}
where (7)) =1/3, v(0) =2/3, V'(T) =v'(0) =1/2 and T = {(b, )} m

5.1.2 The semantic domain D

We aim at solving a recursive domain equation of the form D = Pow,(Act x Eval(D)) in
an appropriate category of dcpo’s. The reason not to deal the equation D 2 Pow, (Act X
Distr(D)) is that the distribution functor Distr does not preserve completeness of partially
ordered sets (cf. Remark 5.1.13, page 95), and hence, fails for the standard methods
for solving recursive domain equations for dcpo’s. First we turn to the question which
powerdomain Pow,(-) should be used. We follow the ideas of the non-probabilistic case
where the initial solution of the domain equation

D = Powpgee ({L} U Act x D)

yields a semantic domain that is internally fully abstract with respect to the simulation
preorder [Bai97].1° Note that the auxiliary element L is needed as Act x D fails to be a
dcpo (because it does not have a bottom element). Inaction (nil) is then modelled by the
set { L}, the bottom element in Pow gy ({L} U Act x D). In the probabilistic case, we
adapt this idea and deal with the equation

D > Powpgee({L} U Act x Eval(D)).

Recall the definitions of the category CONT'| of continuous domains and strict and d-
continuous functions (see pages 308 and 311) and of the locally d-continous functors
Eval : CONT, — CONT, which assigns to each continuous domain D the powerdomain
Eval(D) of evaluations on D (see page 314), Powpgose : CONT, — CONT, (see page
308) and F§" : CONT, — CONT, which assigns to each continuous domain D the
domain {1} U Act x D (see page 312). We solve the above equation in the category
CONT, of continuous domains (alternatively, we could work with the larger category
DCPO; of decpo’s and strict and d-continuous functions). For this, we have to show the
local d-continuity of the associated functor Pow goqere 0 F523 o Eval.

Lemma 5.1.9 The functor Feony = Pow gogre 0 F§ 0 Eval : CONT, — CONT| is locally
d-continuous.

Proof: follows from the local d-continuity of Eval, F{% and Pow gogre. W
Notation 5.1.10 [The domain D] ID denotes the initial fived point of Feons.t*

In what follows, we deal with the isomorphism as an equality, i.e. if (ID, j) is the initial
fixed point of Feone then we suppose ID = Feoni(ID) and j = idp. Note that the partial

10Here, Pow goqre(-) denotes the Hoare powerdomain (cf. Section 12.1.1, page 308).
1By the results of [AbJu94] (see page 311), Fcont has an initial fixed point.
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order on ID is the inclusion. The bottom element | in ID is { L} where L denotes the
bottom element in {1} U Act x Eval(lD?. If (z;)icr is a directed family of elements in ID
then the least upper bound || z; is (U z;)“, the Scott-closure of |J z; in { L }UAct x Eval (D).
If A, B are finite subsets of { L} U Act x Eval(ID) then the Scott-closure A% = A | and
A C B if and only if A C; B where C;, denotes the lower preorder.'?

The desired internal full abstraction result for ID states that (in some sense) the inherent
order on ID (i.e. the inclusion) “reflects” the simulation preorder. For this, we show that
IP (together with the preorder Ly, ) can be embedded into ID via a function ¢pp : IP — ID
such that 7 Cgy 7" iff ¢p(7) C wp(T'). Thus, the subspace 1p(IP) of ID represents the
simulation equivalence classes of probabilistic processes. The basic lemma for the proof of
this full abstraction result is Theorem 5.1.12 which asserts a general connection between
Distr(D) and Ewval(D) that hold for any dcpo D: Distr(D) equipped with the weight-
function-based preorder <, (as defined in Notation 5.1.11) is a subspace of Fval(D); in
particular, Theorem 5.1.12 yields that <y, is a partial order on Distr(D).

Notation 5.1.11 [The partial order =g,,| Let D be a partially ordered set (with par-
tial order C) and p, p' € Distr(D). Then, p <gm p' iff there exists a weight function for
(w, 1) with respect to C.13

The following theorem shows that, for each dcpo D, the set Distr(D) equipped with the
order <4, can be viewed as a subspace of Eval(D). More precisely, we show that the
function Distr(D) — Ewal(D), pu — E,, is order-preserving. Thus, each distribution g
can be identified with the evaluation F,.!*

Theorem 5.1.12 If D is a dcpo then =gy, is a partial order on Distr(D). Moreover, for
all p, p' € Distr(D), p =sm i ff E, T E,.

Proof:  see Section 5.3, Theorem 5.3.2 (page 105) and Corollary 5.3.4 (page 109). m

Remark 5.1.13 [Incompleteness of Distr(D)] In general, Distr(D) is not complete.
Consider the dcpo D = {0,1}* of all (finite or infinite) words built from 0 and 1
equipped with the prefix ordering. Let uj be the distribution with

(z) = 1/2F . if x is a word of length k
HEWE) =3 0 . otherwise.

It is easy to see that (u)r>1 is a monotone sequence in Distr(D) which does not have an
upper bound in Distr(D). In order to see that uy Cgn pgr1 consider the distribution
weight on D x D with weight(z, z0) = weight(x,z1) = 1/2¥1 if z is a word of length k
and weight(z,y) = 0 in all other cases. m

Using Theorem 5.1.12 we can show the following connection between P and DD.
Theorem 5.1.14 There exists a unique function vp : IP — ID such that
cl
ZD(T) = {(aa EDistr(zD)(u)) . Tihu} .
12Recall that that the lower preorder is given by A Ty B iff for all z € A there exists y € B such
that z C y. Here, C denotes the order on {1} U Act x Eval(ID).

3Note that <g, = =< (with the notations of Section 2.2, page 30).
14Recall that E, is given by E,(U) = u[U], see page 313.
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Moreover, for all T, T' € P, T Cgm T' iff in(T) C wp(T7).

Proof:  see Section 5.3, Theorem 5.3.10 (page 111). m

The final semantics of Section 5.1.1 (page 93) yields a semantics on ID which is fully
abstract with respect to the simulation preorder in the following sense. If P, P’ are
probabilistic processes then P Cg,, P’ iff ip([P]) € tp([P']) (Lemma 5.1.5, page 92,
and Theorem 5.1.14). Thus, the element vp([P]) can be considered as the simulation
equivalence class of P.

Example 5.1.15 We consider the processes P and P’ of Example 5.1.8 (cf. Figure 3.6,
page 57). P and P’ are represented in ID by

w([P]) = {(a,BE)} = {L}U{(e,E): Ec Bz},
w([P]) = {(eE)}" = {L}U{(e,E): EcE}.

Here,yzug,y’:u%,Ep:{Eﬂq:pgqgl} where a, fip
Ly is is the unique distribution on ID with p,(Llp) =p

and 1, ({ (b, E}MD)}d) = 1—p. The picture on the right p l—p
shows the “maximal transitions” of z, = {(a, E,, )}
For each z € ID, each element (a, E,) € x can be viewed b

as a “transition” r—"su. Maximality of a transition
r—25;, means that, whenever z—2+v then v <gm 1. ®

We refer the interested reader to Section 5.3.2 (page 114 ff) where we investigate some
domain-theoretic properties of the domain ID and show the domain-theoretic differences
between ID and the corresponding domain for non-probabilistic processes.

5.1.3 The semantic domain M

In the non-probabilistic case, a complete ultrametric space M that is internally fully
abstract with respect to bisimulation is obtained by solving the recursive domain equation

M = Pow ompy(Act x M%)

(see [dBaZu82, GoRo83, dBaMe88, RuTu93, Bai97]). The subscript 1/2 denotes that the
distance on M is multiplied with the factor 1/2 and Pow .om,(-) denotes the collection of
compact subsets of (-) (see page 311). We adapt this idea to the probabilistic case and

solve the equation
M = Powomp(Act x Eval(M)%).

Recall the notations for ultrametric spaces (Section 12.1.2, page 310 ff) and the method
by Rutten & Turi [RuTu93| for solving recursive domain equations in the category CUM
of complete ultrametric spaces and non-expansive functions (Section 12.1.3, page 312).
First, we show that the probabilistic powerdomain Eval(-) of evaluations can be considered
as an endofunctor on CUM which is locally non-expansive in the sense of [RuTu93]. It is
easy to see that for each distribution p on M:

p(z) = inf { E,(U) :2 €U € Opens(M) } = inf { E,(B) :x € B € Balls(M) }
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where E, is given by E,(U) = u[U] (see page 313)."" By the above, whenever p, p' €
Distr(M) with E, = E, then u = p'. Hence, the set Distr(M) of distributions on M
can be considered as a subspace of Fval(M). We suppose FEval(M) to be endowed with
the distance

d(E1,E;) = inf { p>0 : Ey(B)=Ey(B) V B € Balls,(M) }.

Theorem 5.1.16 If M is a complete ultrametric space then Eval(M) is a complete ul-
trametric space. In this case, Eval(M) is the completion of Distr(M) (considered as a
subspace of Eval(M)).

Proof:  see Section 5.3 Theorem 5.3.22 (page 120) and Theorem 5.3.23 (page 122). m

The ultrametric d on Eval(M) can be characterized as follows: d(E;, E3) < r iff E1(B) =
Ey(B) for all B € U,, Balls,(M) iff E;(U) = Ey(U) for all p-sets U where p > r.
Whenever f : M — M' is a non-expansive function between ultrametric spaces M and
M' and B is an open ball in M’ with radius p then f~!(B) is a p-set. From this, whenever
E,, E, are evaluations on Fval(M) then

d(Bval(f)(Er), Bval(f)(E2)) < d(En, Es),
i.e. Eval(f) is non-expansive. Hence, Fval can be considered as an endofunctor of CUM.
Lemma 5.1.17 The functor Eval : CUM — CUM 1is locally non-expansive.
Proof: easy verification. m

Remark 5.1.18 [Incompleteness of Distr(M)] Similarly to Remark 5.1.13 (page 95)
the set {0,1}* equipped with the natural distance

d(w,y) = inf {oaln) £ yln] )

(where z[n] denotes the n-th prefix of z) yields an example for a complete metric space
M where Distr(M) is not complete (i.e. Distr(M) as a subspace of Eval(M) is not
closed). Consider the sequence (u) which is defined as in Remark 5.1.13 (page 95).
Then, d(uy, ;) < 1/2% for all k > 4. Thus, (u) is a Cauchy sequence in Distr(M) which
does not have a limit in Distr(M).'* m

Recall the definitions of the functors Powym, : CUM — CUM which assigns to each
complete ultrametric space M the set Pow com,(M) of compact subsets of M (see page
312) and F§¥* with F{u' (M) = Act x M, where the subscript 5 means that the distance

on M is multiplied with the factor 1/2 (see page 312).

15Recall that for each ultrametric space M, we deal with the topology of open balls, i.e. Opens(M) is
the set of all subsets U of M such that, for each x € M, there is some open ball B with z € B C U (see
page 310).

16The limit of (ui) in Eval(M) is the unique evaluation E on M such that for all open balls B,
E(B) =1/2™if B = B(z,1/2") for some finite word z of the length n, and E(B) = 0 in all other cases
(i.e. those cases where B = {z} for some finite word «). This evaluation E is not of the form E, for some
u € Distr(M).
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Lemma 5.1.19 The functor Foum = Powcomp © Fiup' © Bval : CUM — CUM s locally
contracting.

Notation 5.1.20 [The domain IM] Let IM denote the unique fized point of Feym. '

As in the case of ID, we deal with the isomorphism as an equality, i.e. if (M, j) is the
unique fixed point of Feym, then we suppose IM = Fey (IM)) and j = idpy.

Theorem 5.1.21 P is a dense subspace of IM. More precisely, there exists a unique
function ipy - IP — IM such that for all T € IP,

wi(T) = {(a, Epistr(uns) () T—=u}.
This function gy is injective and vpr(IP) is a dense subspace of IM .

Proof:  see Section 5.3, Theorem 5.3.27 (page 124). m

By Lemma 5.1.5 (page 92) and Theorem 5.1.21, IM is fully abstract with respect to
bisimulation in the following sense. If P, P’ are probabilistic processes then P ~ P’ iff

w([P]) = enae ([P'])-

Example 5.1.22 We consider the processes P and P’ of Example 5.1.8 (cf. Figure 3.6,
page 57); see also Example 5.1.15, page 96. P and P’ are represented in M by

wi([P]) = {(a, Ev)} and uu([P]) = {(a, Ev)}
where v({(b, E,3)}) = 1/3, v(0) = 2/3 and V/({(b, E,0)}) = v'(0) = 1/2. m

Remark 5.1.23 [The “distance” between processes| Theorem 5.1.21 (page 98) yields
a “distance” for probabilistic processes which generalizes the one that is obtained from
the approach of deBakker & Zucker [dBaZu82| for non-probabilistic processes: For P, P’
to be probabilistic processes, the “distance” between P and P’ is given by

d(P,P') = dp (una([P]), 20 ([P'])) -

Roughly speaking, the distance between two processes P and P’ is 1/2" if n is the maximal
number such that the n-cuts of the unwindings of P and P’ are bisimilar. For instance,
the processes P and P’ on Figure 5.1 (page 99) have the distance 1/2 as their 1-cuts are
bisimilar.'® Kwiatkowska & Norman [KwNo096, Norm97| deal with a different metric which
is not based on n-cuts. For instance, in the approach of [KwNo096, Norm97] the processes
P,, shown on the left of Figure 5.2 (page 99) “converge” to the process P (shown on the
right of Figure 5.2) while in our setting the sequence (P,) (more precisely, the induced
sequence (1ps([Pyr])) in M) is not a Cauchy sequence. m

17"The existence of a unique fixed point of F,, is ensured by the results of [RuTu93] (see page 312).
18Note that in the 1-cut, the states ¢, t', u and u’ are viewed to be bisimilar as we ignore the b-labelled
transitions.
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Figure 5.2: Two processes with distance 1

5.1.4 Denotational semantics on M and ID

This section shows how to establish denotational semantics for the process algebra PCCS
(see Section 4.1, page 74 ff) on IM and ID and the desired full abstraction results.

Denotational semantics in the metric and partial order approach: We assume the
reader to be familiar with the Scott-Strachey approach to establish denotational semantics
in the partial order approach and the standard procedure to give denotational semantics
in the metric approach [Stoy77, Niva79, dBaZu82]. Here, we only give a brief summary.
We refer to [BMC94, dBdV96] for a full treatment. The domain X of a denotational
semantics D for a process algebra PA (like CCS or a probabilistic calculus like PCCS)
is equipped with a set SemOp of semantic operators that reflect the operators of PA in
the following sense. If op is an n-ary operator symbol (like the binary operator symbol +
for modelling non-deterministic choice or the 1-ary (action-)prefix operator s — a.s) and
opx the corresponding semantic operator on X then

D[ op(P1,...,Pn) ] = opx (D[P1],...,D[Pn])

for all PA programs Pi,...,P,. Moreover, for any declaration decl, the meanings of a
procedure name (process variable) Z and the body of the procedure decl(Z) are the same.
That is, for any fixed declaration decl, the function s — D[(decl, s)] is a homomorphism
from the word algebra (Stmt, Op) to (X, SemOp) such that the meaning of process variable
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Z is given by decl(Z), i.e. D[(decl, Z)] = D[{decl, decl(Z))]. It is known (see, for instance,
[BMC94]) that function D satisfies these conditions iff, for any fixed declaration decl, the
function Stmt — X, s — D[(decl,s)], is a fized point of the operator Fye : (Stmt —
X) — (Stmt — X), defined by

Fdecz(f)(Op(Sl,---,Sn)) = 0px (Fdecl(f)(sl),---,Fdecl(f)(sn))

for each operator op of PA and, for each process variable Z, Fu(f)(Z) = f(decl(Z)).
Given this function Fy., the denotational semantics of PA — regardless of whether we
follow the partial order or metric approach — is obtained by D[(decl, P)] = faect(P)
where fgee @ Stmt — X is a certain fixed point of Fy.. In the partial order approach it is
guaranteed — by Tarski’s fixpoint theorem — that F..; has a least fixed point, provided that
Fieq is d-continuous on the function space Stmt — X (which is the case if all semantic
operators are d-continuous). In the metric approach it is guaranteed — by Banach’s
fixpoint theorem — that Fy.; has a unique fixed point, provided that Fj.. is contracting.
In order to guarantee that Fy.. is contracting it is sufficient that the semantic operators
are non-exrpansive and contracting in certain arguments. For the latter, one has to shrink
the domain of D to guarded programs, i.e. those programs (decl,s) such that, for all
procedures (process variables) Z, Z'  each recursive procedure call of Z' in decl(Z) is
preceeded by at least one action.

Guarded PCCS: The formal definition of guardedness for the process algebra PCCS is
as follows. Guarded PCCS statements are built from the following production system.

g == nil ‘ a.(E [pz]sz> ‘ g1+ g2 ‘ 91 || 92 ‘ g\ L ‘ glf]
iel

where s; are arbitrary PCCS statements. A declaration decl is called guarded iff decl(Z)
is guarded for all Z € ProcVar. GPCCS the subset of guarded programs, i.e. all programs
(decl, s) where decl is a guarded declaration.

Semantic operators on ID and IM: We give a denotational semantics for GPCCS on
M, which is fully abstract with respect to bisimulation equivalence, and a denotational
semantics for PCCS on ID, which is fully abstract with respect to the simulation preorder.
For this, we need non-expansive/contracting semantic operators on IM and d-continuous
semantic operators on ID. In the sequel, X = IM or X = ID. We use the closue notations
for subsets of Act x Eval(IM) and subsets of { | } U Act x Eval(ID) where we put A = A if
A C Act x Eval(IM) and where, for ) # A C {1 }UAct x Eval(ID), A° is the Scott-closure
of A and 0 = {1}.

e The process nil is modelled by () in IM and by Lp = {L} in D.

e Nondeterministic choice on IM and D is modelled by set-theoretic union.

e Action-guarded probabilistic choice: Let a € Act and (p;);cr be a countable family of
real numbers p; > 0 with >;c; p; = 1. Let (z;);c; be a family in X. We put

a. <Z [pz]a:1> ={(a, E,)}* where u € Distr(X) is given by u(z) = > p;.
el zEZIx
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We define semantic operators for modelling restriction, relabelling and parallelism as fixed
points of suitable operators. This reflects the recursive nature of restriction, relabelling
and parallelism (cf. Milner’s expansion law [Miln89] for parallelism).

e Restriction: Let L C Act with L = L. We define F{¥ : (X — X) — (X — X) by:

Fy (=) = {(a,Bval(f)(E)) : (a,E) €, a ¢ L}
e Relabelling: Let ¢ be a relabelling function. F;* : (X — X) — (X — X)) is given by

Fi(f)(@) = { (a), Bval(f)(E)) : (a,B) €z }.

e Parallel composition: We use the following notations. If f: X x X — X is a function
and o, Yo € X then we define f(zo,"), f(-,40) : X — X by f(20,")(y) = f(0,y) and
f(v0)(x) = f(z,yp). We define FHX (XXX —=X)= (X xX = X) by

FX(f)(@y) = (X)) UF(f)(e,y) UFS()(ey)°

where
FX(f)(z,y) = { (a, Bval(f(-,9))(E)) : (a,E) € },

Fy (f)(@,y) = { (a, Eval(f(z,))(E)) : (a,E) €y},
FX (f)(z,y) = {(r, Eval(f)(E, * Es)) : (a, El) z, (@, Ey) € y for some a # 7}.

syn
In Section 5.3, Lemma 5.3.12 (page 113) and Lemma 5.3.29 (page 125) we show: The
operators F}”, F/” and F|” are d-continuous and have unique fixed points. These are
d-continuous. The operators FM FM and FM are contracting and their unique fixed

points are non-expansive. Thus, the unique ﬁxed points of the operators F;X, FX and
FHX yield non-expansive, resp. d-continuous, semantic operators z — z[{], z — z \ L,
(z,y) — z||ly on ID and IM for modelling relabelling, restriction and parallelism. Clearly,
the union is d-continuous as an operator on ID, and non-expansive when considered as
an operator on M. The operator ® is contracting on M and d-continuous on ID. More
precisely, if (x;);cr, (¢})icr are countable families in M then

1

d < a. (Z [pi]z; ) , a. <Z [pi]z; ) ) < - -max{d(z;,z}) i€ I}

iel icl 2

If (z;)icr is a family in ID such that z; = []X; where X is a directed subset of ID then
icl i€l

Denotational semantics on ID and IM: As before, we assume that X = ID or X = IM.
Let decl be a declaration where we suppose that decl is guarded when dealing with
X = M. We define the operator Fx , : (Stmt — X) — (Stmt — X) as follows:

Faa(£)(nil) = 0,  Fiu(f)(Z) = f(decl(Z))

FE0) (o (B0l ) ) = (B wirkme )

el i€l
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Fra(F)(s1452) = Fiu(f)(s1) U Fiy(f)(s2)
Fra(f)(s1 |l s2) = Faeu(£)(s1) || Feer(f)(52)

Fiea()(S\L) = Faea(H)S)\ L, Faea(£)(s[]) = Faea(£)(s)[C]

By the results of [BMC94], F2, is d-continuous, and hence has a least fixed point f2
FM is contracting and hence has a unique fixed point fM,. We obtain a denotational
semantics for PCCS on ID and for GPCCS on IM:

DP . PCCS — D, DM : GPCCS — M
are given by DX [(decl, s)] = fX.(s).

Theorem 5.1.24 The denotational semantics D and D™ are fully abstract with respect
to stmulation and bisimulation respectively. More precisely:

(a) If P, P' € PCCS then DP[P] = 1p([P]) and P Cam P’ iff DP[P] C DP[P].

(b) If P, P' € GPCCS then DM[P] = [P] and P ~ P' iff DM[P] = DM[P'].

Here, IP is considered as a subspace of M (Theorem 5.1.21, page 98) and ¢pp : IP — D is
as in Theorem 5.1.14, page 95.

Proof:  see Section 5.3, Theorem 5.3.34 (page 127) and Theorem 5.3.34 (page 127). m
Example 5.1.25 Let Py = (decly, so) be as in Example 4.1.3 on page 77, i.e.
so = s+ Z and decly(Z) = a.Z where s = a. ([ﬂ b.nil & [%] nil).
The denotational semantics D*[Py] is Uy where z and y are as follows.
e Case X = ID: y={(a,E,)} and p the unique distribution with
wLp) =2/3, plye) = 1/3, o = {(b, By )}
while z is the unique element in ID such that = = {(a, E,1)}<.*

e Case X = IM: y = {(a, E,)} and p the unique distribution with p(0) = 2/3, p(y) =
1/3, yp» = {(b, Ea)} and @ the unique element in M with = = {(a, En)}* m

Clearly, ID is more “abstract” than IM since simulation equivalence is coarser than bisim-
ulation equivalence. We obtain the following consistency result for D and DM 2t

Theorem 5.1.26 There exists a unique function f : IM — ID such that
f(z) = {(a, Bval(f)(z)) : (a, E) € z}
for all x € IM. This function f satisfies f ( DM[P] ) = DP[P] for all P € GPCCS.

Note that the notation = {(a, E,1)} only makes sense as we treat the isomorphism between
ID and Feont(ID) as an equality. The precise definition of z is as follows. We define z = | |z, where
To=1p, Tpy1 = {(a'vEu;n)}Cl'

*’Formally, z = limz,, where zo = 0, 2,41 = {(a, E,1_)}.

21For the notion “consistency” see [BMC97].
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5.1.5 A few remarks about probabilistic powerdomains

To construct the denotational models we have generalized to the probabilistic setting the
established catgorical methods for solving domain equations for non-probabilistic pro-
cesses. These generalized domain equations involved appropriately adjusted probabilistic
powerdomains of evaluations. The probabilistic powerdomain Fval(D) of evaluation for a
dcpo D is smooth in the sense that, for example, the probabilistic powerdomain Eval(D)
of a two-point space D is the real interval [0,1]. Thus, limits can be approximated by
approaching them arbitrarily close. On the other hand, in the ultrametric case we obtain
a discrete construction, in the sense that the two-point space lifted to the probabilistic
case gives the real interval [0, 1] with the discrete topology. In particular, it is not possible
to get arbitrarily close to a limit.??> Another difference between the metric and partial
order approach is the density of ips(IP) in IM that stands in contrast to Lemma 5.3.15
(page 116) which shows that 15 (IP) is not a basis of ID.

De Vink & Rutten [dViRu97] consider “continuous” reactive systems where each state s
and possible action a in s is associated with a probability measure for the possible next
states (rather than a distribution) and generalize the definition of bisimulation equivalence
a la Larsen & Skou [LaSk89] to continuous reactive systems. More precisely, [dViRu97]
solve the domain equation

M = Act— ({0} U ProbMeascs(M)%)

in CUM (also with the methods of [RuTu93]) and show that the resulting domain is
internally fully abstract with respect to the proposed notion of bisimulation. Here,
ProbMeas.s(M) denotes the collection of probability measures on the Borel o-field in-
duced by the opens on M with compact support which means probability measures that
vanish outside a compact set. The special symbol 0 is needed to model inaction. Clearly,
each evaluation F on an ultrametric space M can be extended to a probability measure
on the Borel o-field of M in a unique way; but, in general, the induced probability mea-
sure does not have a compact support. Vice versa, a probability measure with compact
support might fail the axiom of continuity. More precisely, if E is a probability measure
on the Borel o-field of an ultrametric space M then

E(UUZ> = sup E(U;)
iel '
for any directed countable family (U;);c; of opens in M while
E(UV}) # sup E(V;)
jeJ jeJ

for a directed uncountable family of opens V; in M is possible. Thus, Eval(M) and
ProbMeas.;(M) are non-comparable subsets of the space ProbMeas(M) of all probability

22We should emphasise though that the methodology we used to derive the ultrametric model IM is
consistent with the established methodology (in particular, the metric satisfies the intuitive property
d(z,y) < 2% iff z and y agree up to the n-th step, and we obtain full abstraction for bisimulation), and
that an attempt to obtain a “smooth” metric construction might mean having to go beyond the known
techniques, see [KwN096, Norm97].
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measures on the Borel o-field of M. Nevertheless, to obtain a denotational model that is
fully abstract with respect to bisimulation we could follow the approach of [dViRu97] and
work with the powerdomain ProbMeas.s(-) of probability measures with compact support
(rather than the probabilistic powerdomain Eval(-) of evaluations). That is, alternatively
we could deal with the equation

M = Powcmp (Act X ProbMeascs(M)%)

that can also be solved in CUM with the method of [RuTu93]. In that case, we would
have to shrink the semantics for PCCS on those programs that only use finite branching
action-guarded probabilistic choice a.([p1]s1®. .. D [p,|sn) rather than countable branching
action-guarded probabilistic choice a.( ®;c; [pi]s; )2

5.2 Denotational models: fully probabilistic case

We briefly summarize how the results of the previous section can be modified for the
fully probabilistic case, i.e. to obtain fully abstract denotational semantics for the process
calculus PSCCS (see Section 4.2, page 79 ff). As before, we assume Act to be a fixed
finite nonempty set of actions and use the symbol 0 to denote inaction. Let IP; denote
the collection of all bisimulation equivalence classes of fully probabilistic processes with
action labels in Act. Then, [Py is the final solution of the equation

X = {0} U Distr(Act x X)

in SET. From this, we obtain final semantics a la [RuTu93]. Using the evaluation functor
Eval on the categories CONT | and CUM, internally fully abstract semantic domains 1Dy
and IM s can be derived as follows. Applying the methods of [AbJu94, RuTu93| we define

e ID; as the initial solution of the equation D 2 Ewal ({L} U Act x D) in CONT | ,*
e IM s as the unique solution of the equation M = {0} U Ewval (Act X M%) in CUM.
The domain IP; can be “embedded” into ID; and IM ; in a similar way as IP is “embedded”
into ID and IM.* Using appropriate semantic operators on Dy and M — that can be
obtained in a similar way as we defined the semantic operators on ID and M — and

the standard procedures to give denotational semantics in the partial order and metric
approach we obtain denotational semantics

DPi . PSCCS — Dy and DM : GPSCCS — M

that are fully abstract with respect to simulation and bisimulation respectively.2® I.e.
P Cam P iff DP1[P] Ep, DP#[P'] and P ~ P' iff DM [P] = DMs[P].

23This is because the associated probability measure of a distribution with infinite support might have
a non-compact support.

?*Note that in Dy, inaction is modelled by the evaluation £, .

5 JP; can be viewed as a dense subspace of IM  (which yields a distance for fully probabilistic processes).
There is a function 2 : [Py — Dy such that 7 Cgyy, 7' iff +«(7) Cp, «(7'). In particular, +([P]) can
be viewed as a canonical representative for the simulation equivalence class of P. Here, [P] denotes the
bisimulaton equivalence class of the fully probabilistic process P.

26Here, GPSCCS denotes the set of guarded PSCCS programs which are defined in the obvious way.
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5.3 Proofs

5.3.1 The partial order <y, on Distr(D)

We give the proof for Theorem 5.1.12 (page 95) that states that =g, (in the sense of
Notation 5.1.11, page 95) is a partial order on distributions of a dcpo D and that the
function Distr(D) — Ewval(D), p — E, is an order-preserving embedding on the par-
tially ordered set Distr(D) into the dcpo Fwal(D). As a corollary we obtain Theorem
3.4.15 (page 59) and Theorem 3.4.19 (page 61) stating that simulation and bisimulation
equivalence coincide for reactive or fully probabilistic systems.

Lemma 5.3.1 Let D be a dcpo and p, p' € Distr(D) such that E, C E,;. Then, p[U] <
W'U] for all Gs-sets U2

Proof: Let U = ;>0 U; where U; € Opens(D). W.lo.g. Uy 2 Uy O ... (otherwise we
deal with U] = Uy N...NU;). Then, A; = D\ U; are closed sets with A; C Ay C ... Since
E, C E, we have pu[A;] > p/'[A;] for all i > 1. Let A =UA; = D\ U. It is sufficient
to show that u[A] > p/[A]. We suppose pu[A] < p/[A]. We define A = 2 (u/'[A] — p[A]).
Then, A > 0. There exists a finite subset X of A with p/'[X] > p/[A] — A. Since X is
finite there exists ¢ > 1 with X C A;. Thus,

plAi] < plA] < plAl+A = pA] - A < [X] < p[A]
Contradiction. =

Theorem 5.3.2 (cf. Theorem 5.1.12, page 95) Let D be a dcpo and p, p' € Distr(D).
Then7 % jsim ,U', Zﬁ Eu E Eu’-
Proof: For simplicity £ = E, and E' = E,,.

—>: Let p =gm ¢’ and weight : D x D — [0,1] be a weight function for (u,u') with
respect to the partial order C on D. For all U € Opens(D):

If 2 € U and y € D\ U then weight(z,y) = 0.

(This is because U is upward-closed and because of the third condition of weight func-
tions.) By the second condition of weight functions:

EU) = > w@) = >, > weight(z,y) = > > weight(z,y)

zcU zeU yeU yeU zeU
< ) > weight(x,y) = Y p'(y) = E'(U).
yeU zeD yeU

Hence, £ C E'.
<=: We assume E' C E'. For f: D x D — [0,1] be a function, we define us, p’; : D —

[0, 1] by:
pp(z) = > floy), wily) = X fl=z,).

yeD zeD
Let F be the set of functions f : D x D — [0,1] such that

2"Recall that Gs-sets in a topological space are countable intersections of opens.
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(1) f(z,y) # 0 for at most countably many (z,y) € D
(2) Forallz,y € D, ps(x) < p(x) and pi(y) < u()
(3) If f(z,y) # 0 then z C y.

We show that there is a function f € F such that puy = p and p} = /. (Then, this
function f is a weight function for (u,u') with respect to C. Hence, p <gm 1'.) For

f € F, we put
>, flzy)

zyeD
and
Xy = {zeD:p)>px)}, Yy = {yeD:p(y) > upy)}
It is easy to see that X; = 0 iff uy = p iff Yy = 0 iff p} = o' iff O(f) = 1. Thus, our
aim is to show the existence of a function f € F with ©(f) = 1. (Then, we may conclude
that f is a weight function for (p, ') and therefore p <gm 1'.)

If f € F then we define a f-path to be a finite sequence p'= (¢, Yo, - - ., ZTn, Yn) in D such
that n > 0 and

(i) f(xi+1,9) >0,i=0,1,...,n—1
(i) z; Cy,i=0,1,...,n
(iii) wo,...,®, and yp, ..., y, are pairwise distinct (but x; = y; is possible).

We define first(p) = xo, last(p) = y, and
Ry¢(x) = {last(p) : p'is a f-path with first(p) = x}.
(Intuitively, Ry(x) is the set of all y € D that can be reached from z via a f-path.)
Claim 1: Let f € F and # € X;. Then, Ry(z) NY; # 0.
Proof: Let A={z€ D:pu(z) >0V u(z) >0}, Z=A\ Rs(z) and
(N D\zl.

z€Z
As Z is countable and z | Scott-closed, U is a Gs-set. Thus, by Lemma 5.3.1 (page 105):

(*) WU} =z plU]
It is easy to see that ANU = ANRy(z).?® Thus, p[U] = p[Rs(z)] and p'[U] = p/'[Ry(z)].
Since z € Ry(z) (as (z,z) is a f-path) and z € X, we have

) wlUl = > wx) > X wa) = X X f(zw)

ZERf($) ZERf ) zERf(w) yeD

We suppose that Ry(x) NYy = 0. Then, p/'(y) = p}(y) for all y € Ry(x). Hence,
(%) WUl = X W = X o) = X Y flmw.

yeRs(x) yeRs(x) yERs(z) 2€D

If f(z,y) > 0 and (zo,¥0,.-.,%n,Yn) is a f-path with z ¢ {zo,v0,...,Zn,Yn} o =
z and y, = y then (xo,Y0,...,%n,Yn,2,2) is a f-path. If z = =x; for some i then
P = (®o,Y0,...,%;,x;) is a f-path with last(p) = z. If z = y; for some i then p =
(%0, Yo, - - -, Xi, y;) is a f-path with last(p) = z. Thus,

8For the inclusion AN Ry(z) C ANU we use the fact that Rs(z) is upward-closed.



0.3. PROOFS 107

if y € Ry(z) and f(z,y) > 0 then z € Ry(z).
Hence,
{(z,y) e DxD: f(z,y) >0,y € R¢g(x)} C {(z,y) € DxD: f(z,y) >0,z € Ry(x)}.
We obtain by (***) and (**):

W0l = Y Y few) £ Y X few) < )

yERy(x) z€D 2€R¢(x) yeD

This contradicts (*). Thus, Rs(z) NY; # 0. |

By Claim 1 we obtain: If f € F, ©(f) <1 then X; # (. Thus (by Claim 1), there exists
a f-path p with first(p) € X; and last(p) € Y.

Let p'= (@0, Yo, - -, Tn, Yn) be a f-path with zy =z € Xy and y, =y € Y;. We define
A(fam = min {M(x)_luf(x)a ,u,(y)_lulf(y)) f(xiJrl)yi) : 7;:0,...,77,—1}

and f[p]: D x D — [0,1] by

f(xzayz)+A(f7m : lf(xay)e{(xz)yz)lzoal))n}
f[ﬁ]('ray) = f(xiJrl)yi)_A(fam : if(l’,y)G{($i+1,yi)27;:0,1,...,71—1}
f(z,y) : otherwise.

Then, A(f,p) > 0, f[p] € F and

(D) e(fP) = o)+ Alf,p).
(IT) For each = € D there is at most one y € D with f(z,y) # f[p|(z,y).
(III) For each y € D there is at most one € D with f(z,y) # f[p|(z,y).

(V) [f(z,y) = fIP)(=, )| < A(f, D).

(IT) and (III) follow by condition (iii) of f-paths. By induction on i we define a sequence
(fi)i>o of functions f; € F as follows.

— Let fo be given by fo(z,y) =0 for all z, y € D.

— Now we suppose i@ > 1 and that fo,..., f;_1 are defined. If O(f;_;) = 1 then we set
fi = fi—1. Otherwise, we define

A; = sup { A(fi—1,p) : p'is a f-path with first(p) € Xy, , and last(p) € YfH}.

We choose some f;_i-path p; with
first(pi) € Xy, |, last(pi) € Yy, 1, A(fio1,05) > Ay — 1/2%
We define f; = f; 1[pi]-
Claim 2: lim f; exists and lim f; € F, O(lim f;) = 1.

Proof: By (I) we get 1 > O(f;) = Yi<j<i A(fj-1,P;). Thus, i A(fj-1,p;) is
convergent. Let € > 0 and i, > 1 such that

A(fj—l,ﬁfj) < € forallk>:¢> Te.

2

k
Jj=
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By (IV), for all z, y € D and k > i > i.:

|fk($’y)_fz($’y)| S Z |fj($’y)_fj—1(x’y)| S Z A(fj—l’ﬁ]') < €

j=i+1 j=i+1

Hence, (fi(z,y))i>o is a Cauchy sequence. Let f(z,y) = lim f;(z,y). Then:
(V) |f(w,y) - fZ(x)y” = kll)m |fk($,y) - fz(xay)| < efor all T,y €< D) €>0,12> 1.
We get by (II), (III) and (IV):

(VI)  ps(2) — py(2)] < D A(fj1,0;) < € foralle>0,i>4, z€D.

Jj=>t

(VII)  |uf(y) — wf(0)] < D A(fj—1,05) < € foralle>0,1>1d.,yeD.

Thus, ps(r) = limpg,(z) < p(r) and pf(y) = limp (y) < @'(y). Hence, f € F. We
show that O(f) = 1. We assume that ©(f) < 1. By Claim 1, there is some f-path
P = (%0, Y0,---,Yn, Tn) With g € Xy and y, € Y. Let € < 1/2- A(f,p). By (V) (and
using the fact that f(z;i1,y;) > A(f, D)),

filzjin,y;) > flzjq,y;) —€ >

for all i > i.. By (VI) and (VII) (and using the fact that p(zo) — ps(o), #'(Yn) — 1 (Yn) =
A(f,p)) we obtain:

N(%) - Mfi(ivo) M(mo) - Mf(ﬂfo) —€ : A(f,ﬁ),
1 (Yn) — s, (yn) > 1 (yn) — 1 (yn) — € -A(f, D).

Thus, 7 is a f;-path for all ¢ > i and A(f;,p) > 1/2- A(f,p). Let j > 1 such that
A(f,7) > 1/2/"1. Then, for all i > i,

>
>

1

1
Afip) > =-A(f, -
) > 2AGD >
Hence, A; > A(fi_1,p) > 1/27 for all i > i.. By definition of p;:

) 1 11 1
A(fic1,5) > A — % > % o > DYES)

for all ¢ > max{i.,j + 1}. Contradiction (as >; A(f; 1,p;) is convergent). |m

Lemma 5.3.3 Let D be a dcpo and p, p' € Distr(D) such that E,, = E,;. Then, pn = .

Proof: Suppose p(z) # p'(x) for some x € D. W.lo.g. p(r) < p'(z). Let A =
p'(x) — p(x). Then, A > 0. Let A=z |. Then, A is Scott-closed. Since 3,4 p(y) and
Yyea M'(y) are convergent there exists a finite subset Cy of A with z € Cp and

Yoouly) <A > Wy < A

yeA\Co yeA\Co
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Let K = pu[A\ Cy), K' = p/[A\ Cy), C =Cp\{z} and B = U{z]: z€ C }. Then,
K <4, K' < A and A and B are Scott-closed (as C is finite). Since E, = E, we get
plA] = p'[A] and p[B] = p/[B]. Since C C B we have u[C| = u[B] — p[B \ C] and
p'[Cl=p[B] — W/[B\C]. Since A = (A\ Cp)U{z}UC and u[B\ C] > 0 we get:

plA] = K +p(z) +pCl = K+ p(e) + p[B] - p[B\ C]

< K+pBl+p(r) < A+p[Bl+pu(z) = p[B]+p(z).
Since B\ C C A\ Cy we get p/[B\ C] < p'[A\ Cp] = K'. Hence,
WA = K'+p/(z) +4/[C] = K'+p/(z) + p'[B] - p'[B\C] > p/(z) + 1'[B].

Since p[B] = p'[B] we obtain u[A] < p[B]+p'(x) = W[B]+p(x) < wl[A]
Contradiction (as pu[A] = p'[A]). =

Corollary 5.3.4 For every partially ordered set D, < is a partial order on Distr(D).

Proof: By Remark 2.2.1 (page 30), =gm is a preorder on Distr(D). We show the
aniisymmetry of <gm. Let D be the ideal completion? of D._VVe consider D as a subspace
of D. For u to be a distribution on D, we define @ € Distr(D) as follows.

wlx) : ifzeD
o - {4

K 0 : otherwise.

Clearly, if u, p' € Distr(D) and p <gm ' then T <gm 7.
Let u, p' be distributions on D with p =<gm ¢’ and g’ <gm p. Then, T =<gm @ and

B =sm . As D is a dcpo we obtain by Theorem 5.3.2 (page 105): Ez C Ep and
Egz C Ey. Thus, Bz = Ep. By Lemma 5.3.3 (page 108): 77 = i’. Hence, p=p'. m

Lemma 5.3.5 Let R be a preorder on a set X and p, p' € Distr(X). If p =g u' and

@ =g p then p[A] = p'[A] for all equivalence classes A with respect to the kernel RN R™!
of R.

Proof: Let = = RNR ! and D = X/ = the quotient space endowed with the
partial order [z]= C [z']= iff (z,2') € R.3® Let f: X — D be the canonical projection,
i.e. f(z) = [z]z for all z € X. For pu € Distr(X), we define pup : D — [0, 1] by

po(lelz) = X w@).

z'elx]=

Then, pup([z]=) = p[[y]= |. It is easy to see that, if weight is a weight function for (u, 1)
with respect to < m (where p, p' € Distr(X)) then weighty, : D x D — [0, 1],
weightp(lolo, (o) = 3 3 weight(e', )
o' €lz]=y'elyl=
is a weight function for (up, ) with respect to C. Hence, if u, p’ € Distr(X), u <g 1’
and p' < p then pp =sm pp and pp =sim pp- By Corollary 5.3.4 (page 109), up = pp.
Thus, ulA] = up(A) = pp(A) = p/[A] forall Ace D=X/=.m

29For the definition of an ideal completion see e.g. [AbJu94] or any other standard book about domain
theory.
30[y]= denotes the equivalence class of y with respect to =.
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Theorem 5.3.6 (cf. Theorem 3.4.15, page 59) If (S, Act, Steps) is a reactive action-
labelled concurrent probabilistic system and s, s' € S then s ~gy §' tmplies s ~ s'.

Proof: We show that ~yg, is a bisimulation. Clearly, ~g, is an equivalence relation
on S. We assume S to be equipped with the preorder R =Cg,. Let s, s' € S, 8 ~gim §'
and s—su. There exist transitions s'—su' and s——pu" with u <z ¢’ and p' <g p". As
(S, Act, Steps) is reactive we have p = p”. By Lemma 5.3.5 (page 109), u[A] = p'[A] for
all A € S/ ~Ngim- B

Theorem 5.3.7 (cf. Theorem 3.4.19, page 61) Let (S, Act,P) be an action-labelled
fully probabilistic system and s, s' € S. Then, s ~gy s tmplies s ~ s

Proof: Clearly, if s ~gmn s and s is terminal then s’ is terminal and s ~ s'. Let
X = Act x S and let s, s’ be non-terminal states in S such that s ~g, s'. Let u,
p' € Distr(X) be given by u({a,t)) = P(s,a,t) and p'({a,t)) = P(s',a,t). We consider
the relation R = {(a,t),(a,t') : t Cgym t',a € Act}. Then, p =g ¢/ and ' <g p. By
Lemma 5.3.5 (page 109): If a € Act and C € S/ ~gm then

P(s,a,C) = /J[C’] = N,[Cl] = P(slaa) C)

where C' = {(a,t) : t € C'}. (Note that C' € X/(RN R™*).) We conclude that ~gy, is a
bisimulation. m

5.3.2 The domain ID

This section shows the connection between P and ID (Theorem 5.1.14, page 95) and the d-
continuity of the semantic operators for modelling restriction, relabelling and parallelism
and presents some domain-theoretic properties of ID.

Recall that ID denotes the initial fixed point of the functor Feons = Pow gogre © F 25 0 Eval :
CONT, — CONT, where we deal with the isomorphism as an equality (Notation 5.1.10,
page 94). The partial order on ID is the inclusion, the bottom element is L p = {L}. The
following is standard.

Notation 5.3.8 [The n-th projection proj’] The functions proj : ID — ID are de-
fined as follows. Let projP(x) = Lp for all z € ID and

pTOj,E_l = fcont (pro.h;D) .

Then, proj2,(z) = {(a, Eval(projP)(E)) : (a,E) € z}¢. (projP),>o is a monotone
sequence of strict and continuous functions on ID satisfying

e proj P o proji® = projP o proj? = proj® forall 0 <n < k

b I_anO pTOjf) = dp

o v C yiff projP(x) C projP(y) for all n > 0.

Recall that, for X to be a set, we suppose the set of functions X — ID to be endowed

with the partial order f; C fy iff fi(z) C fao(x) for all z € X. Then, X — D is a dcpo
(see Section 12.1.1, page 308). We often use the following fact.
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Lemma 5.3.9 Let X be a set. Each d-continuous operator F : (X — D) — (X — D)
with F(projP o f) = projP., o F(f) has a unique fized point.

Proof: The existence of a fixed point f follows by Tarski’s fixed point theorem. If f
and f' are fixed points of F' then it can be shown by induction on n that proj? o f =
projP o f'. Hence,

fle) = U projn’ (f(x)) = L projy’(f'(z)) = f'(2)

n>0 n>0

forallzelD. m

We denote the partial orders on Eval(ID) and on { L} U Act x Eval(ID) by C. Recall that
C, denotes the lower preorder on { L} U Act x Eval(ID), i.e. if A, B are finite nonempty
subsets of {1} U Act x Eval(ID) then A Cp B iff for all z € A there exists y € B such
that x C y. Moreover,

o A¢ C Bifandonlyif A C; B.

o A=A |={x:2 Cy for somey e A}.

Theorem 5.3.10 (cf. Theorem 5.1.14, page 95) There exists a unique function i :
P — ID such that

a cl
w(T) = {(a, EDistr(up)(n)) 7'—>u} .
Moreover, for all T, T' € IP: T Cgm T" tff en(T) € wp(T").

Proof: For simplicity, we write proj,, and 2 rather than proj? and 1p. Let F : (IP —
D) — (IP — D) be given by F(f)(T) = A;(T)¢ where

AT) = {(a, Epistr(py(w) - T——}

Note that — since 7 is finitely branching — A(7) is finite and hence F(f)(7T) = A¢(T) |
We have to show that F' has a unique fixed point ¢+ and that this function 2 satisfies:

Claim 1: The operator F' is d-continuous.

Proof: If f = |J;c; f; then we show that for each 7 € IP:

(1) A (T) Er Ag(T) (which implies F(f;)(T) € F(£)(T))
(2) Whenever y € ID with Ay, (7) C y for all ¢ € I then A¢(7) C y. This implies that
F(f)(T) C y for each upper bound y of (F'(f;)(T))ier-

Then, from (1) and (2),
LI F((T) = F(A(T).

il
We have Epigr(fyny = Bval(f)(n) = UEval(fi)(r) = UEDbistr(s)w) by Remark 12.1.3
(page 313) and Lemma 12.1.4 (page 314). Hence:

ad (1) If (a, E) € Ay,(T) then T—=pu for some distribution p with E = Epjse(f)(s)-
Then, E C Episy(s)u)- Hence, (a,E) T (a, Episr(s)w) € Ap(T).
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ad (2) f y € D, Ay (T) C yfor all i € I and (a,E) € Af(T) then E = Epjs(s)) for
some distribution p where T—-p. Then, (a, Epist(f.)w) € As(T) C y for all
¢ € I. Since

(a,E) = || (@, Epistr(£)(n))

i€l
in {L}U Act x Eval(ID) and y is lub-closed we get (a,E) € y. |

Definition: Let ¢ : IP — ID be the least fixed point of F' (Tarski’s fixed point theorem).
Then, «(T) = F()(T) = A/(T) . T € P then we put

An(T) = { (aaEDistr(projnfloz)(u)) . Tiﬁi}
Then, proj,(«(T)) = A.(T) J. Thus, proj,(«(T)) C proj,(«(T")) iff A, (T) T A(T).
Claim 2: For all 7, 7" € P, (T) Co(T") iff T Cgim T

Proof: Since all elements of P (viewed as action-labelled concurrent probabilistic pro-
cesses) are finitely branching (and hence image-finite) it is sufficient to show that

proj,. («(T)) C proj, ((T") iff T Z,, T

(Lemma 3.4.13, page 59). We prove this by induction on n. In the case n = 0 there is
nothing to show. In the induction step n = n+1 we suppose proj,,(«(T)) C proj, («(T"))
iff 7T C, T foral T, 7T € IP.

o Let T, T' € P, proj,,,(2(T)) C proj,.,(«(T")) and let T—p be a transition. Let
v = Distr(proj, o1)(u). Then, (a,E,) € Apni1(T) T An1(T"). Hence, there exists
(a,E'") € A1 (T') with E, T E'. By definition of A,,;(7") there exists a transition
T'-*su' with EB' = E,» and v/ = Distr(proj, o1)(¢'). By Theorem 5.3.2 (page 105),
vV <sim V. By Remark 2.2.3, u <p v, i/ <r V' where

R = {(Ti,proj,(«(Th)) : Ty € PP}.
Using Remark 2.2.1 (page 30) and Remark 2.2.2 (page 31) we obtain p <g u' where
R' = RoCoR™* = {(T,,T) : proj,(Th)) S proj,(o(TY)) }-

By induction hypothesis, R C C,,. Hence, p <, p'. Thus, T C,, T".

e Let 7,7 € P, T C,y1 T'. It suffices to show that A, (7)) Cr A,1(7T). Let
(a,E) € A,1(T). There exists a transition 7—-u such that £ = E, where v =
Distr(proj,, o 1)(u). Since T T,y T’ there exists a transition 7'—+p' with p <, u'.
Then, (a, E,) € Api1(T') where v/ = Distr(proj, o1)(p'). By Remark 2.2.3 (page 31),
p =g v, W' <g V' where R is as above. Using Remark 2.2.1 (page 30) and Remark
2.2.2 (page 31) we obtain v <gr V' where

R" = R0 C,oR = {(proj,(«(T1)), proj,,(«(T]))) : Ty E.. T}

By induction hypothesis we obtain v <, /. By Theorem 5.3.2 (page 105), E, C E,.
Thus, (a,E) = (a,E,) C (a,E,) € Api1(T"). |

Claim 3: If ¢/ : IP — ID is also a fixed point of F' then 7' = .

Proof: It is easy to see that F(proj, o f) = proj,,, o F(f) for all functions f : IP — ID.
Hence, by Lemma 5.3.9 (page 111), F" has a unique fixed point. Therefore, ¢/ =:. |m
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Lemma 5.3.11 (cf. Remark 3.4.11, page 57) Let (S, Act, Steps) be an action-labelled
concurrent probabilistic system and p, p' € Distr(S) such that u <g p' where R =
{(s,8") € S xS :sCqms'}. Then, for eacht € S:

(a) /J[ t isirn ] Z ,LLI[ t isirn ]
(b) If Supp(p) and Supp(p') are finite then p| ¢t Tsim | < #'[ t Tsim |-
Here, t Tsim={u € S : t Tgim u} and t lsim= {u € S : u Cgn, t}.

Proof: For s € S, we define Py = (S, Act, Steps, s) and z; = 1p([Ps]). Then, by
Theorem 5.3.10 (page 111) and Lemma 5.1.5 (page 92):

(*) s Coim " iff 2, C 2y,

For v to be a distribution on S, we define vp € Distr(ID) by vp(z) = v[U,] where
U,={ueS:z, =z} By (*):

(**) If v € Distr(S) then v[ t lgm | = vp[xed ], V[tTim] = vplze T ]

We fix some t € S and p, ' € Distr(S) with p <g g/, Clearly, up =sim 1. Let E = E,
and E' = E,. . Then, £ C E' (by Theorem 5.3.2, page 105). As z; | is Scott-closed we
get

pltdsm] = pplacl] = Bz )) > Bz ) = pploed] = /[t dsim |-
Now we assume that Supp(p) and Supp(p') are finite. Let A = Supp(p) U Supp(y'),
B={veA:tLgy v} and
U= (D\a{).

veB

Then, A and B are finite. Thus, U is the finite intersection of Scott-opens. Hence, U is
Scott-open. Clearly, z; 1 C U and UN{z, : v € A} C z; 1. Hence, Supp(up)NU C z; 1.
Thus, ,LLD[ ze T ] = E(U) By (**)7 /J[ t Tsim ] = E(U) Similarly, Supp(u') NUCa
and f'[ t tsm | = E'(U). As U is Scott-open and E C E' we obtain

plttem | = EU) < E'U) = p[t Tsim |-

Recall the definitions of the operators F’, F/” : (ID — D) — (ID — D) and F” :
(D x ID — D) — (ID x ID — ID) that were given on page 101.

Lemma 5.3.12 The operators F}°, F{° and F|P are d-continuous and have unique fized
points. These are d-continuous.

Proof:  Let F' € {F/”, F{°, FP}. Using the local d-continuity of Eval (Lemma 12.1.4,
page 314) it is easy to see that F' is locally d-continuous. Moreover,

F(projf of)= projﬂ_l o F(f).

Then, by Lemma 5.3.9 (page 111), F' has a unique fixed point f. f is d-continuous since F'
maps d-continuous functions to d-continuous functions and since the set of d-continuous
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function is lub-closed. Note that — by Tarski’s fixed point theorem — the unique (least)
fixed point of F' can be written as least upper bound of the sequence (F"(fy))n>0 where
fo(z) = Lp forall z € ID. Thus, by induction on n, all functions F*( fy) are d-continuous.
Hence, f = || F"(fy) is d-continuous. m

In the remainder of this section we investigate some domain-theoretic properties of the
domain ID. We use some basic notions of domain theory like SF'P domains or compactness
of elements that are not explained in that thesis but can be found e.g. in [AbJu94|. The
reader not familiar with (or not interested in) domain theory might skip the rest of that
section.

In the non-probabilistic case where a domain-theoretic model IDponprob for the simulation
preorder can be obtained from the equation D = Pow gogre ({ L} U Act x D)) which can
be solved in the category of SFP domains. The set Tree of finitely branching trees (the
final solution of X = Powg,(Act x X) in SET) can be “embedded” into Dyenprob Via a
function 2 : Tree — IDponprob similar to the way where [P is “embedded” into ID via p.
The images of finitely branching trees of finite height with respect to ¢ are the compact
elements of IDyonprob- In particular, the set o( Tree) is a basis of Dyonpron. Moreover, if the
underlying alphabet Act is finite then, for the n-th projection proj,, : Dyonprob — Dnonprob,
the elements of proj, (¢(Tree)) are compact and proj,(Dronprob) C ¢(Tree). (For further
details about the non-probabilistic case see [Bai97]). The situation is different in the
probabilistic case:

e The elements of projP(1p(IP)) are not compact (cf. Lemma 5.3.13, page 114).
e 1p([P) is not a basis of ID (cf. Lemma 5.3.15, page 116).
e If n > 2 then proj2 (D) € 1p(IP) (cf. Lemma 5.3.16, page 116).

Lemma 5.3.13 The elements of proj 2 (1p(IP)) \ proj®® (up (IP)), n > 2, are not compact.

Proof: Let n > 2 and z € projP(up(P)) \ projP (1p(IP)). Then, there exists an
element (a, E,) € x which is maximal in « and with p(y) > 0 for some y € D, y # {L}.
We choose N > 0 with 1/2V < u(y) and for n > N we put

u(z) A (L) 2 Ay
pn(z) = § p({Lh)+1/2" : ifz={l}
p(y) —1/2™ iz =y
Then, || E,, = E,. Hence, z = ||z, where z, = A, A, = (z\{(a,E,)})U{(a,E,,)}

but x [Z x, for all n > N. Thus, = is not compact. m
Lemma 5.3.14 Distr(ID) (as a subspace of Eval(ID)) is not a basis of Eval(ID).

Proof: We give an example for an evaluation E € Eval(ID) that cannot be written
as E = |JE,. Lety = {(b,E,)}* where up = pu} . For p € [0,1], let p, be as in
Example 5.1.15 (page 96), i.e. p, is the unique distribution on ID with u,(y) = p and
pp(Llp) =1—p. Let

Tp = {(G,E“p)}d, Up=ID\ 714

We define E € Eval(ID) by E(U) = sup{q: x4 € U} where sup0 =0. As z; , € U,
iff ¢ < p we have E(U,) =
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Claim 1: If u € Distr(ID), E,, C E then p(z) = 0for allz € D\ ({Lp}U{z,:p € [0,1]}).

Proof: First we observe that ID \ {z, : p € [0,1]} C D\ x; |= Up. As is Scott-open we
have u[Uy] < E(Up) = 0. Hence, pu(xz) =0 for all z € Uy. |

We suppose that E = ||,cp £y where M C Distr(ID) such that {E, : p € M} is

directed. (I.e. M is directed with respect to =<gn.) Then, for all 4 € M and p € [0, 1],
p = sup{p[Up]: p € Mj.

Claim 2: For all € > 0 there is some p € M such that p[U,] > p — € for all p € [0, 1].

Proof: For each p € [0, 1] we choose some p, with p,[U,] > p — € (axiom of choice). Let
X, be a finite subset of ID such that p,[ID \ X,| < €¢/2. There exists some ¢, > 0 with
Op < €/2and {z,: g€ |p—0pp+ 3, }NX, C {p} As|0,1] is compact there exists
P1y- -, P € [0, 1] such that

k
0,1] € U Ipi — &i,pi + 6.
i=1

where 0; = 0,,. For all ¢ €|p; — 0;,p; +6;[ and i =1,.. .k,
1
:upi[UQ] = Upi[Upi] > Pi— 9 € 2 g€
We choose some p € M with g, <gm p. Then, p[U,] > ¢ — € for all g € [0,1]. |

Let (un) be a sequence in M such that f11 <gm flo =sim - .. and p,[Up] > p — 1/2" for all
n > 1 and p € [0,1]. (The existence of such a sequence follows by Claim 2 and the fact
that M is directed with respect to =gim.)

Claim 3: lim,, o ptn(@1-p) = 0 for all p € [0, 1].

Proof: Let € > 0 and n > 1 such that 1/2" ! < e. For all ¢ € [0,1], ¢ > p, we have
z1-p € Uy \ Up and U, C U,. Hence, for all ¢ with p < ¢ <p+1/2",

1
q = palUd = palUp] + pn(z1p) > p— 57 +n(215) = g— + fin(T1-p).

m 2n71
Thus, pn(z1-,) < 1/2"1 <e. |
Claim 4: lim, ,o pn(Lp) = 0.

Proof: We suppose that there is some ¢ > 0 with p,(Lp) > € for infinitely many n. Let
(tn, ) be a subsequence of (p,,) with g, (Lp) > 0 for all k£ > 1. We choose some k > 1
where 1/2™ < e. Since Lp ¢ U; we get

- S 0] € 1 (L) <1
Contradiction. |
Let X = U,>1{z € D : pp(x) > 0}. By Claim 1, X C {Lp} U {z, : p € [0,1]}. Thus,
L= i ¥ ) = X Jim () = 0
veX veX

by Claim 3 and 4. Contradiction. m
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Lemma 5.3.15 1 ([P) is not a basis of ID.

Proof: ~ We consider the element y = {(a, F)}* of ID where E is as in Lemma 5.3.14
(page 114). We suppose that y can be written in the form y = [J X for some directed
subset X of 1p(IP). Then, y is the Scott closure of U,cx « in { L} U Act x Eval(ID). Since
X C ap(IP) each element z of X is of the form {(a, E,z),. .., (a, By )} where vf are
distributions with E,= C E. Let M = {vf :i=1,...,7,,¢ € X}. It is easy to see that
M is directed and E = |[{E, : p € M} which is impossible as shown in Lemma 5.3.14
(page 114). m

Lemma 5.3.16 If n > 2 then projP(ID) ¢ ip(IP).

Proof: Consider ¢ = A where A = {(a,E,,) : n > 1} and u, is the unique
distribution on ID with p,(ys) = 1/n and p,(y.) =1 —1/n.

Here, y, = {(b, Eﬁ‘iD)}d’ ve = {(c, EﬂiD)}d' The elements (a, E,,), n > 1 are pairwise

incomparable. Hence, z cannot be written in the form r = X(= X |) where X is finite.
Therefore, x ¢ 1p(IP), but = = projL(z) € projL(ID). m

Note that Lemma 5.3.16 does not hold for n = 1. We have:
projlp(]D) ={lp}U{(,E,):ac Act} C 1p(IP)

where = p .

5.3.3 The metric probabilistic powerdomains of evaluations

This section presents the proof of Theorem 5.1.16 (page 97) stating that, for any complete
ultrametric space M, the probabilistic powerdomain Eval(M) of evaluations on M is the
completion of Distr(M). Recall that the distance on Eval(M) is given by

d(Ey, By) = inf { p>0 : E(B)=Ey(B) ¥ B € Balls,(M) }.

Lemma 5.3.17 Let M be an ultrametric space. Every monempty open subset U of M
can be written as disjoint union of open balls. If U is a p-set then U can be written as
disjoint union of open balls with radius p.

Proof: Let U be a nonempty open subset of M. If x € U then we put

p(z) = sup {r >0: B(z,r) CU}.
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Let = be the following equivalence relation on U: = = y iff p(z) = p(y). Let V be a
subset of U such that V N [z]= consists exactly of one element (axiom of choice). Then,
U can be written as disjoint union of the open balls B(z, p(z)), x € V. In the case where
U is a p-set we deal with the equivalence relation z =, y iff d(z,y) < p instead of =. m

Lemma 5.3.18 Let M be an ultrametric space and E an evaluation on M. Then, for
each open subset U of M, whenever U = ;c; B; where (B;)icr is a family of pairwise
disjoint open balls then for each € > 0 there exists a finite subset J of I with

E(U) — e < > E(By)

jEJ

Proof: If J C I is finite then we put B; = U;c; B;. Then, E(B;) = X,c; E(B;).
Let € > 0. We show that there exists a finite subset J of I with E(B;) > E(U) —e. Let K
be the set of finite subsets of I. Then, the family (By) ek is directed and U;cx By = U.
Hence, E(U) = sup,cx E(By). In particular, there exists a finite subset J of I with
E(By) > E({U) —¢€ m

Immediately by Lemma 5.3.18 we get:

Corollary 5.3.19 FEach evaluation on an ultrametric space is uniquely determined by its
value on the open balls.

Lemma 5.3.20 Let M be an ultrametric space, E an evaluation on M and 0 < r < 1.
Then, the set of open balls B = B(z,r) for some x € M with E(B) # 0 is countable.
Le. there exists a countable subset N of M such that E(B(x,r)) # 0 implies d(z,y) < r
for some y € N.

Proof: Since M = Uper B where I is the set of open balls B = B(z,r) for some
¢ € M and since BN B' = 0 for all B, B' € I, B # B' we get by Lemma 5.3.18 (page
117): There exists finite subsets I,, of I with

Wlog Iy CI; CIL, C... (otherwise we deal with I = [yUI;U...UI, instead of I,).
Let J = U I,. Then, J is countable. Let B € I\ J. We suppose E(B) > 0. Let n be a
natural number with 1/2" < E(B). Then,

1
1 = E(M) > EBB) + . EB) > E®B) +1 - — > 1.
Bcl, 2
Contradiction. Hence, E(B) =0forall Be I\ J. m

In the next lemma we give sufficient — and by Lemma 5.3.18 on page 117 — necessary
conditions for the extension of a given function F': Balls(M) — [0, 1] to an evaluation.
Lemma 5.3.21 Let M be an ultrametric space and F : Balls(M) — [0,1] a function

which satisfies:

1. F(M)=1
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2. If By,...,B, are pairwise disjoint open balls which are contained in some open ball
B then

3. Whenever B is an open ball and B = U;c; B; where (B;)cr is a family of pairwise
disjoint open balls then for each € > 0 there exists a finite subset J of I with

FB) -« < Y F(B)
JjeJ
Then, there exists a unique evaluation E on M with E(B) = F(B) for all B € Balls(M).

Proof: By Corollary 5.3.19 (page 117) there exists at most one evaluation E on M
which extends F'. We define E as follows:

E(U) = sup { S F(B) : I€I(U) }

Bel

where Z(U) denotes the collection of all finite sets consisting of pairwise disjoint open balls
B C U. By Lemma 5.3.17 (page 116), Z(U) is nonempty whenever U # (). Whenever
I € Z(M) we put Ff = Y pc; F(B). We show that E is an evaluation: we have
E(M) =1since I = {M} € Z(M) and F(M) = 1. The monotonicity of E is clear since
whenever U C V then Z(U) C Z(V). Let U, V C M be nonempty opens. We show that

E(UNV)+EUUV)=EU)+E(V).

Step 1: We show that E(UNV)+ E(UUV) < E(U)+ E(V). Let € > 0. We show
that there exists Iy € Z(U) and Iy € Z(V) with

E(UUV)+E(UNV)—¢ < Fy, +Fy,.

(Then, we may conclude that E(U)+ E(V) > E(UUV)+ E({UNV) — ¢ for all e > 0.
Hence, E(U) + E(V) > E(UUV) + E(UNV).)

Let J€ Z(UUV), K e Z(UNV) with F; > E(UUV)—%-G and Fx > E(UNV)—
Then,

1
46.

(*) Fy+Fx > E(UUV)+EUNV)-1L.¢

Claim: Each ball B € J can be written as disjoint union of open balls C satisfying C' C U
orC CV.
Proof: Let B € J. For each « € B we put:

r(z) = sup {r >0: B(z,7r) CBNU} : ifze BNU,
| sup{r>0:B(z,r) CBNV} : ifze BN (V\U).

Then, r(z) > 0 for all z € B. We put B, = B(x,r(z)). Then, either B, CU or B, C V.
Let X be the set of elements + € BN U with B, C B, for some y € BN (V \U). We
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can deal with the set of balls C' = B, where z € V or x € U \ X. (Note that for all z,
ye BN(VU(U\ X)) either B, = B, or B,NB, =10.) |

Let |J| be the cardinality of J and let B € J. By assumption there exists a finite set Ip
consisting of pairwise disjoint open balls C' C U or C' C V with
F(B)— -t .c < F
_ . 6
/.

B

Let J' be the set of all balls C' € Iz, B € J. Then, J' is finite and

e <) Y F(O).

BeJ' Celp

FJ—%-e: Y F(B) -

BeJ'

N |

We put:

J, = {BeJ :BCU}, J, = J\J,,

Ky = {C'eK : CNnB=0VY BeJ,},

Ky = K\Ky, Iy = J;UKy, Iy = J,UKy.
Then, Iy € Z(U). We show Iy € Z(V). It is clear that all balls B € Iy are contained
in V and that the balls of J{, (and the balls of Ky ) are pairwise disjoint. Suppose there
are balls B € J{, and C € Ky with BN C # (. Then, either B C C or C C B. The
first case is impossible since B Z U (by definition of Ji,) and C' C U N V. The second
case is impossible since then C' N B’ # () for some B € J|; and hence either B’ C C' C B

or C C BN B' (which contradict the assumption that the balls B, B’ are disjoint). We
obtain

Fi,+F, = Y, > F(C) + Fg

BelJ' Celp

1
> FJ—i-e + Fx > EUUV)+EUNV) — e

Step 2: We show that E(UNV)+ E(UUV) > EU)+ E(V). Let € > 0 and let
Iy € Z(U), Iy € Z(V) such that

1 1
FIU > E(U)_QE’ FIV Z E(V)—gf

Then, K = {BNC:B¢€ Iy, C e I,,BNC # (0} is a finite set of disjoint open balls
which are contained in U N V. Let J be the set consisting of the following balls:

- BUC where Be Iy, Cely, BNC #0

- Be Iy where BNC =0 for all C € Iy
- Be Iy where BNC =0 for all B € Iy

J is a finite set of pairwise disjoint open balls contained in U U V. (Note that whenever
B, C are open balls with BN C # () then either B C C or C' C B.) It is easy to see that
FK +FJ = FIU +FIV‘ Hence,

E(UUV)+EUNV) > Fx+F; = Fi,+F, > E(U)+E(V)—¢
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for all € > 0. Therefore, E(UUV)+EUNV) > EU)+ E(V).

Step 3: We show that E is continuous. Let U be a nonempty open set and let (U;);cr be
a directed family of open sets with U = |JU;. Since U; C U we have E(U;) < E(U) and
therefore sup E(U;) < E(U). For each z € U and i € I we put r;(z) =0 if z ¢ U; and

ri(z) = sup {r >0: B(z,r) C U;}

if v € U;. Let r(z) = supy; ri(z). Then, ri(z) > 0 and B, = B(z,r(z)) C U.
We define an equivalence relation = on U by x = y iff B, = B,. It is easy to see that
¢ # yiff B,N B, = 0 and that B, is the equivalence class of z. For each equivalence
class A, we define By = B, and r4 = r(x), where z is a representative of A. We choose
a real number py with 0 < pg4 < r4. Then, U is the disjoint union of the balls B4 where
A ranges over all equivalence classes. Let C4 be the set of all balls B(z, pa) where z € A.
B, is the disjoint union of the balls C' € C4. For each ball C' € C4 there exists ¢ € I and
x € C such that pa < r;(xz) < ra. (Here, we use the fact that x = y implies r;(z) = r;(y)
for all i € I.) Then, C C B(z,ri(x)) C U;. Hence, U is the disjoint union of the balls
C € C4 where A ranges over the equivalence classes. By definition of E there exists a
finite set J of open balls where each ball C' € J is contained in some of the sets U; and
which satisfies:

EU)—¢ < ¥ F(C)

Since (U;);er is directed and since J is finite there exists an index i € I with C' C U; for
all C' € J. Then, Ugey C C Us. Thus, E(U;) > Yoe, F(C) > E(U) —e. m

Theorem 5.3.22 (cf. Theorem 5.1.16, page 97) If M is an ultrametric space then
Eval(M) is an ultrametric space. If M is complete then also Eval(M) is complete.

Proof: It is clear that the distance d on Ewal(M) is a pseudo-ultrametric. If
d(E4, E5) = 0 we have to show that E;(U) = E»(U) for all opens U. Since d(E4, E2) =0
we have Ey(B) = Ey(B) for all B € Balls(M). U can be written as disjoint union of open
balls: U = U;e; B;. The family of sets Uy = U;c; B; where J is a finite subset of [ is
directed. For each finite subset J we have:

icJ icJ
Since U = U; Uy we get Ey(U) = sup; Ey(U;) = sup; Ex(U;) = E3(U). We
conclude that Eval(M) is an ultrametric space.

Now we suppose M to be complete. We show that Eval(M) is complete. Let (E,),>o be
a Cauchy sequence of evaluations on M. W.l.o.g. d(E,, Ex) < 1/2N*l forall0 < N < n.
For each open ball B, (E,(B))n.>0 is a Cauchy sequence. Note that the sequence (E,(B))
is eventually constant as, for B € Balls,(M), E,(B) = En(B) for all n > N where
1/2N < p. We define a function F : Balls(M) — |0, 1] satisfying the conditions of Lemma
5.3.21 (page 117) as follows:
F(B) = Jm E.(B)
Then, F(B) = E,(B) for all n > N and B € Balls 1 (M). We show that F' satisfies the

oN

conditions of Lemma 5.3.21 (page 117).
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1. Tt is clear that F(M) = 1.

2. Let B be an open ball and By, ..., B, be disjoint open balls with B;U...UB,, C B.
We choose some p > 0 such that B, B; € Balls,(M), i =1,...,n, and some natural
number N with 1/2¥ < p. Then,

3. Let B € Balls,(M) and (B;);cr a family of disjoint open balls B; with U B; = B. Let
€ > 0. We choose a natural number N with 1/2¥ < p. Then, F(B) = E,(B) for all
n > N. Because of Lemma 5.3.18 (page 117) there exist finite subsets I}, of I with

S BB) > F(B) - -

il

We put I,, = IyUIyn,,U...UI,. Then, I, are finite subsets of I with Iy C In41 C ...

and 1
Akn = Z En(Bz) > Z En(BZ) > F(B)——'t’
icl icll 2
k n
for all K > n. Since ag,, < apy1n < ... < E,(B) = F(B) the limit limy o ag,
exists. With
a, = lim ag,
k— o0 ’

we have: a,, > a,, > F(B)— % -€. Since I}, is finite we may choose some p;, > 0 such
that B; € Balls,, (M) for all ¢ € I;. For all n > N with 1/2" < py, E,(B;) = F(B;)
for all ¢+ € Ij. Thus,

i€l i€l
Then, Ay < Apn < ... < F(B) (since (B;)ier, is a finite family of pairwise
disjoint open balls in B). Hence, limy_,o, A} exists, i.e.

Y F(B;) where K = |J I,

€K n>N

is convergent. Moreover,

* €.

1
Z F(B;) = lim lim az, = lim lim qa, = nh_)nolo ay, > F(B)—§

n—00 n—00
K k—o00 k—o0

Hence, there exists a finite subset J of K with },;c; F(B;) > F(B) —e.

We conclude that F' satisfies the conditions of Lemma 5.3.21 (page 117). Hence, there
exists a unique evaluation E on M which extends F. Then, E(B) = F(B) = Ey(B) for
all B € Balls,(M) where p > 1/2V. Therefore, d(E, Ex) <1/2Y and E =limE,. m

Recall that, for M to be a complete ultrametric space, the function Distr(M) — Eval(M),
p— E,, is injective. Thus, Distr(M) can be viewed as a subspace of Eval(M).
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Theorem 5.3.23 (cf. Theorem 5.1.16, page 97) Let M be a complete ultrametric
space. Then, Eval(M) is the completion of Distr(M).

Proof: We have to show that {E, : u € Distr(M)} is a dense subspace of Eval(M).
Let E € Ewval(M). For all n > 0, there exists a countable subset N, of M such that
E(B(z,1/2"™)) # 0 implies d(z,y) < 1/2™ for some y € N,, (Lemma 5.3.20, page 117). For
each ball B € Ballsy/n (M), we choose an element g € B and put

() = E(B) : if y=xp for some B € Ballsy/on (M)
Hnl¥) =Y 0 : otherwise.

Then, p, is a distribution on M and d(E,,,E) < 1/2". Hence, E=1mE,, . =

5.3.4 The domain IM

This section gives the proof of Theorem 5.1.21 (page 98) that states that IP can be viewed
as a subspace of IM and shows that the semantic operators for modelling restriction,
relabelling and parallelism are non-expansive.

Recall that IM denotes the unique fixed point of the functor Feym = Pow gogre 0 F 4o 0 Eval :
CUM — CUM where we deal with the isomorphism as an equality (Notation 5.1.20, page
98). The following is standard.

Notation 5.3.24 [The n-th projection proj] The functions proj2* : M — IM are
defined as follows. Let proj : IM — IM, proj™(z) = 0 for all x € IM and

projg\ﬁ[rl = Feum (projﬁ”).

Then, proj2i,(z) = {(a, Eval(proj™)(E)) : (a, E) € z}. We have
projyp" o proji = proji! © proj M, = proj !
forall 0 <n <k and
z = lim projf(z)

for all z € IM. The distance on IM is given by
i 1 . .
d(z,y) = inf { g ¢ Profa’ (z) = projy’ (v) } :

Let f: M — IM be a function. Then,

e f is non-expansive iff proj™ o f = proj™ o f o proj™ for all n > 1.

e f is contracting iff projM o f = proj™ o f o proj™, for all n > 1.

In particular, every function f : M — IM with proj o f = foproj™, foralln > 1is
contracting.

Recall that, for X to be a set, the set of functions X — IM is supposed to be equipped

with the distance d(fi, fa) = sup,ex d(fi(x), fo(z)). Then, X — IM is a complete
ultrametric space (cf. Section 12.1.2, page 310). We often use the following fact.
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Lemma 5.3.25 Let X be a set. Every operator F: (X — M) — (X — IM) with

F (proji* o f) = projii, o F(f)
1s contracting and hence has a unique fized point.

Proof: It is easy to see that F' is contracting and hence has a unique fixed point
(Banach’s fixed point theorem). m

Lemma 5.3.26 For alln > 1 and x € M, proj™(z) is a finite set consisting of pairs
(a, E,) where a € Act and p € Distr(IM) such that Supp(p) C proj™ , (IM).

Proof: For simplicity, proj, = proj.

Claim 1: If E € Eval(IM) then Ewal(proj,_,)(E) = E, for some distribution p €
Distr(IM) with Supp(u) C proj,_,(IM).
Proof: IM can be written as disjoint union of the open balls B(z,1/2"7%), z € proj,_,(IM).

By Lemma 5.3.20 (page 117), there exists a countable subset N of proj,_,(IM) with
E( B(z,1/2"2) ) # 0 implies z € N. For all opens U,

BEval(proj, +)(E)(U) = E(proj,'y(U)) = 3> E(B(xz,1/2" 7)) = p[U]

zeNNU
where p € Distr(IM) is given by u(z) =0if x ¢ N, u(z) = E(B(z,1/2" %)) if x € N. |
Claim 2: If E, E' € Eval(IM) and d( Eval(proj,_,)(E), Ewval(proj,_,)(E')) < 1/2"1

then
Bval(proj, 1)(E) = Eval(proj, ,)(E").

Proof: Because of Claim 1 it suffices to show that d(E,, E,) < 1/2"! implies p =
p' where p, p' € Distr(IM) such that Supp(p), Supp(p') C proj,_(DM). Let z €
proj,_1(IM). Then, B(x,1/2"2) N proj,_,(IM) = {z}. Hence,

wle) = p[B(z,1/2" %)) = W[B(z,1/2" %)] = p'(x)
for all = € proj,,_,(IM). Therefore, u = p'. |

Claim 3: proj,(z) is a finite set consisting of pairs (a, E,) where p € Distr(IM) with
Supp(p) € proj,_(IM).

Proof: The elements of proj,,(z) are of the form (a, E,) where p € Distr(IM) such that
Supp(u) C proj,_, (M) (see Claim 1). Since proj,(z) is compact (as a subset of Act x
Eval(IM)) and since proj,(z) € Ugeproj () B(E,1/2") there exists a finite subset = of
proj,(z) with
proj,(z) C |J B(&1/27).
¢eE

Note that B(&, p) is an open ball in Act x Eval(]M)%. We show that proj, (z) = Z. Let
(a,E,) € proj,(x). There exists £ € E with d(, (a, E,)) < 1/2". £ is of the form (b, E,)
where v € Distr(IM) with Supp(v) C proj,_,(IM). Then, a =b and d(E,, E,) < 1/2" 1.
Claim 2 yields u = v. Therefore, £ = (a, E,) € E. Hence, proj,(z) = = is finite. |m
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Theorem 5.3.27 (cf. Theorem 5.1.21, page 98) P is a dense subspace of IM. More
precisely, there exists a unique function ips : IP — IM such that for all T € IP,

w(T) = {(aaEDistv’(ZM)(u)) : TLW}-
This function gy is injective and vpr(IP) is a dense subspace of IM.

Proof:  We shortly write proj,, and ¢ instead of proj™ and vp;. Let F : (IP — IM) —
(P — M) be given by F(f)(T) = {(a, Epistr(s)()) : T——>p}. Note that — since T is
finitely branching — F/(f)(7) is finite and hence compact. We have to show that F' has
a unique fixed point ¢ and that this function  is injective and «(/P) a dense subspace of
IM. It is easy to see that F(proj, o f) = proj,., o F(f) for all functions f : IP — IM.
Hence, F is contracting (Lemma 5.3.25, page 123).

Definition: Let 2 be the unique fixed point of F' (Banach’s fixed point theorem).
Claim 1: ¢ is injective.

Proof: Because of Lemma 3.4.8 (page 56) it suffices to show that «(7) = (7") implies
T ~pn T for all n > 0. Since T, 7' are finitely branching (and therefore image-finite) we
get T ~ T'. Hence, T = T' (Corollary 5.1.6, page 93).

We show by induction on n that proj,(«(7)) = proj,(:(T")) iff T ~, T'. In the basis of
induction (n = 0) there is nothing to show. In the induction step n = n + 1 we suppose
that, for all 71, 7{ € P, proj,(«(T1)) = proj,,(«(T])) iff Ty ~, T/

1. Let proj,.,(«(T)) = proj,.1(2(T")) and T—=u. Then, (a, E,) € proj,.,(«(T)) where
v = Distr(proj, o1)(p). Since (a,E,) € proj,.,(¢(T")) there exists a transition
T'—>p' with v = Distr(proj, o)(i'). Let A€ IP/ ~,, T, € A and = = proj,, (2«(T7)).
By induction hypothesis,

A=A{T/ € IP:x = proj,(u(T{))}

Hence, A =1 (proj,*(x)). Thus, u[A] = v(z) = p/[A]. By symmetry, T ~,.1 T'.

2. Let T ~py1 T'. By symmetry it suffices to show that proj, ., (+(7)) € proj, 1 (:(T")).
Let (a,E) € proj,,1(«(T)). There is a transition T—=u with E = Epjsr(proj, on)(u)-
Since T ~y,;1 T there exists a transition 7'—+u' with p[A] = p'[A] for all A € P/ ~,.
We show

Distr(proj,, o 1)(u) = Distr(proj, o1)(u').
Let z € IM and A = v Y(proj,'(x)). By induction hypothesis, A € P/ ~,. Thus,
Distr(proj, o1)(p)(z) = plA] = w'[A] = Distr(proj, o 1)(u')(x). ]
Claim 2: «([P) is a dense subspace of IM.

Proof: Since x = lim proj,, () for all x € IM the set U proj,,(M) is a dense subspace of M.
Hence, it suffices to show that proj, (M) C +([P) for all n > 0. We use induction on n.
The case n = 0 is clear. In the induction step n = n + 1 we suppose proj,,(IM) C +(IP).
Since ¢ is injective there exists a unique function 7 : M — IP such that jo1 = idp. Let = €
proj, .1 (IM). By Lemma 5.3.26 (page 123), x is of the form = = {(a;, E,;) 1 i =1,...,k}
where p; € Distr(IM) such that Supp(u;) C proj,(IM). Thus, Supp(p;) C o(IP) which
yields
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(*) Distr(1o9) () =pi, 1 =1,... k.

Let X = {(ai,ED,-st,,(])(M)) ce=1,..., k} and T = e }(X) where e : IP — Powg,(Act x
Distr(IP)) is the bijection such that (IP,e) is the final coalgebra of Powg, o Fact o Distr
(Theorem 5.1.7, page 93). By Remark 12.1.3 (page 313) and (*):

Eval(z)(ED,»str(J)(M)) = EDistT(zo])(ui) = EM, 1= 1, ceey k.

Hence, +(7) = {(a, Bval(+)(E)) : (a,FE) € X} = {(ai, Ey;) : ¢ = 1,...,k} = x. Thus,
z €(P). m

Remark 5.3.28 In Claim 2 in the proof of Theorem 5.3.27 (page 124) we saw that
proj™ (M) C 1 (IP). This should be contrasted with the domain-theoretic setting where
projP(ID) Z 1p(IP) (cf. Lemma 5.3.16, page 116). m

Recall the definitions of the operators F, FM : (M — M) — (M — M) and F{™
(M xIM — M) — (IM x M — IM) (see page 101).

Lemma 5.3.29 The operators FM, FM and ﬂfM are contracting and the unique fized
points are non-erpansive.

Proof:  Let F € {FM, F{ FM}. Tt is easy to see that F(projio f) = proj2i, o F(f).
Hence, by Lemma 5.3.25 (page 123), F' has a unique fixed point f. To see that f non-
-expansive we observe that /' maps non-expansive functions to non-expansive functions.
Since the set of non-expansive functions M — IM is a closed subspace of the complete
metric space of all functions M — IM, the unique fixed point f is non-expansive. ®m

Remark 5.3.30 In the metric approach — where Eval(M) is a completion of Distr(M)
(Theorem 5.3.23, page 122) — the product of evaluations E; x Ey (defined as in Section
12.1.4, page 314) can be defined without using the result of Heckmann [Heck95]; namely,
as the canonical extension of the non-expansive operator

Distr(M) x Distr(M) — Distr(M x M), (u1, g2) — p1 * .

(For the definition of p; * g see Section 2.2, page 30.) An alternative definition of the
product (which leads to the same operator) uses Lemma 5.3.21 (page 117): if E,, E, are
evaluations on M then E; x E5 denotes the unique evaluation on M x M such that, for
all open balls B, B' of M, (Ey * E»)(B x B') = Ei(B)-Ey(B')3' nm

5.3.5 Full abstraction

In this section we give the proof of the full abstraction result (Theorem 5.1.24, page
102) and show the “consistency” of the partial order and metric semantics on ID and IM
(Theorem 5.1.26, page 102).

Notation 5.3.31 [The elements [s]4] If s is a PCCS statement and decl a declara-
tion then [s]4e denotes the bisimulation equivalence class of the operational meaning of
the PCCS program (decl, s), i.e. of the probabilistic process O[(decl, s)].

31Note that the open balls of the product space M x M have the form B x B’ where B, B’ are open
balls of the same radius.
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The basic lemma for the full abstraction result (Theorem 5.1.24, page 102) is the following.
Recall that

e 1p : IP — ID is the unique function with 1p(T) = {(a, Epistr()()) : T — 1},
e 157 : [P — IM the unique function such that tp(7) = {(a, Epistrw)) : T — 1}

See Theorem 5.3.10 (page 111) and Theorem 5.3.27 (page 124).

Lemma 5.3.32 Let X = IM or X = ID. Then, for each declaration decl:

0. itns([nil]gect) = 0, wp([nil]gect) =

Loax ([ a ®icr [pilsi) Jae ) = a- (Bier [P] x ([si] dect) )
2. 1x([ 51+ 52 Jaear) = tx([S51]aect) U 1x([52]dect)

3. ax([ s1 |l s2 Jaeer) = wx([s1]aeat) || 2x([52] dect)

4. ax ([ slllaec) = x([s ]]decz)[ ]

5. 1x([ s\ L Jaeet) = 1x([5]aect) \ L

6. 1x([Z]aect)) = wx([ decl(Z) Jaeat )

Proof: 0., 1. and 2. are clear. 6. is clear since O[(decl, Z)] ~ O[(decl, decl(Z))].
Hence, by Lemma 5.1.5 (page 92), [Z] et = [ decl(Z) | aeer-

In what follows, we shortly write proj,, « rather than projX and 1x and [s] instead of
[s]aeci- As before, we use the closure notation A€ for subsets of Act x Eval(IM) and for
subsets of { L} U Act x Eval(ID). When dealing with ID, A¢ denotes the Scott-closure of
A (if A # 0) and 0¢ = 1 p, as before. When dealing with M, we put A = A. Then,

a cl
Z( [[8]] ) = {(a) EDistr(zo[[])(u)) : 3—>decl,u'}

for all s € Stmt. We show 3. By induction on n we show that

proj, ([ sills2 1)) = proj,(uls1]) ) || projn(o([s21) )

for all s1, s, € Stmt. Then, by the non-expansitivity/d-continuity of || and the fact that
x = lim proj,(z) in M and = = || proj,(z) in ID we obtain

W [salls2l ) = o([sa] ) [ o( [s2] ).
The basis of induction (n = 0) is clear as 0|0 =0 in M and Lp||Llp = Lp in D. In the
induction step n = n + 1 we suppose that
projn(([tllta]) ) = proju(a([ta]) ) [ proj,(a([t=]) )

for all t,, t, € Stmt. Let s1, s; € Stmt. Since Episp()u) = Eval(f)(E,) (Remark 12.1.3,
page 313) and E, .., = E,, * E,,, we have
W([s1lls2]) = {(a, Epistruor () : s1lls2—u}e
= {(7, Eistr(uol | (u1#2)) © S1—>dect Hi1, 82— dect o, @ F T}
U A{(@, Epistreol i)+ $1—dect 1}
U {(@, Epistrtofss| D)+ S2—dect #}°"
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We define functions f, g : Stmt x Stmt — X by
flti,ta) = proj,(([ta])) || projn(u([t2])),
g(ty,t2) = proj,(u([ts || t2])).

We have
proj,a(lsills2])) = U {(a BEy) : v e M}

acAct
where M® = MU MG if o # 7 and M™ = M] U MG U Mg,
M¢ = {Distr(g(-,s2))(1t) : 51— deet 11},
MS = {Distr(g(s1,) (1) : S2——>dect 1},
Msyn - {Dzstr(g)(ul * ,LL2) : slihlecl M, 82L>decl M2, 7& T}'
On the other hand,
projpsr(o[si]) ) || projua(o([se])) = U {(e,B)):venN®}

a€cAct
where N® = NP UMY if a # 7 and N7 = N7 UNE U Ny,
N = {Distr(£(,5) (1) - 51~ i},
N3 = {Distr(f(s1,-) (1) : $2—dect 11},
Nogn = {Distr(f) (1 * p2) © $1—>gect 41, 2% deet flz, O 7 T}.
The induction hypothesis yields f(t1,t2) = g(t1,t2) for all ¢1, to € Stmt. Thus, M§ = N},
M$§ = N and Mgy, = Nyym. We conclude:

projp( d[sills2]) ) = projoa(ellsid) ) |1 proja i (ells2]) ).
The proofs of 4. and 5. are similar to the proof of 3. m

Recall that f2 denotes the least fixed point of the d-continuous operator F2, (see Section

5.1.4, page 101). In the next lemma we show that — as in the metric case where fM is

the unique fixed point of FM — fD is ynique as a fixed point of F2 .

Lemma 5.3.33 Let decl be a declaration. Then, fP is the unique fized point of FL,.

Proof: It is easy to see that proj,, o FL2,(projP o f) = projP, o F2,(f). Hence,
if f, f' are fixed points of FZ, then (by induction on n) proj o f = projL o f'. Hence,

fs) = U proji(f(s)) = L proja’(f'(s)) = f'(s)

n>0 n>0

for all s € Stmt. Therefore f = f'. m

Theorem 5.3.34 (cf. Theorem 5.1.24, page 102) The denotational semantics DP
and D™ are fully abstract with respect to simulation and bisimulation respectively. More
precisely:

(a) If P, P' € PCCS then DP[P] = 1p([P]) and P Cam P’ iff DP[P] C DP[P].

(b) If P, P' € GPCCS then DM[P] = [P] and P ~ P' iff DM[P] = DM[P'].
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Here, [P is considered as a subspace of IM (Theorem 5.3.27, page 124) and upp : IP — ID
is as in Theorem 5.3.10, page 111.

Proof: Using Lemma 5.3.32 (page 126) it can be shown by structural induction on
the syntax of s € Stmt that Fy ;(1x o []aect)(5) = 1x ([8]4ect) - By the uniqueness of f¥
as a fixed point of F¥, (Lemma 5.3.33, page 127), we get fa., = 1x o [-]sect- Hence,

D¥[(decl,5)] = fiea(s) = ux([{decl,s)]).

Lemma 5.1.5 (page 92) yields P Cgn P iff DP[P] C DP[P'] and P ~ P' iff DM[P] =
DM[P']. m

Theorem 5.3.35 (cf. Theorem 5.1.26, page 102) There ezists a unique function f :
IM — D such that f(z) = {(a, Eval(f)(x)) : (a, E) € z}¢ for all x € IM. This function
f satisfies f ( DM[P] ) = DP[P] for all P € GPCCS.

Proof: We define a function f : M — ID as follows. We consider the function
F:(M — D) — (M — D), F(f)(z) = {(a, Bval(f)(z)) : (a,E) € z}.

It is easy to see that F is d-continuous and F(proj o f) = proj? o F(f). Thus, F
satisfies the conditions of Lemma 5.3.9 (page 111). Let f : M — ID be the unique fixed
point of F'. It is easy to see that f is a “homomorphism” with respect to the semantic
operators on IM and ID. Using the results of [BMC97] it can be shown that, for fixed
guarded declaration decl, f o fiZ, is a fixed point of F2,. By Lemma 5.3.33 (page 127),
I is the unique fixed point of F2 . Hence, fo fM = fD which yields the “consistency
result” f o DM — DD|GPCCS- |



Chapter 6
Deciding bisimilarity and similarity

Bisimulation and simulation relations have proved very useful for the design and ab-
straction. For mechanised purposes, the development of methods for showing that two
processes are bisimilar or related via simulation and the efficiency of such methods is a
crucial aspect. Several techniques for checking bisimulation equivalence for fully proba-
bilistic processes have been proposed; see [JoSm90, BBS92, LaSk92| for axiomatic meth-
ods and [HuTi92] for a decision procedure. The issue of axiomatizations for bisimulation
and simulation in probabilistic systems with non-determinism has been considered in
[HaJo90, Hans91, Yi94].! As far as the author knows, [Bai9] and the forthcoming work
[PSS98, BSV98| are the first attempts to formulate algorithmic methods that deal with
bisimulation and simulation for concurrent probabilistic processes. In this chapter we
present a revised version of [Bai96] where algorithms for deciding bisimulation equiva-
lence and for computing the simulation preorder in finite concurrent probabilistic systems
are proposed. Moreover, we show that a variant of the method for simulation is applicable
for fully probabilistic systems and the “satisfaction relation” of [JoLa91].

Deciding bisimulation equivalence: Huynh & Tian [HuTi92| presented an O(klogn)
algorithm for computing the bisimulation equivalence classes in finite fully probabilistic
systems where n is the number of states and & the number of non-zero entries in the
transition probability matrix (P(s,a,t))sq¢ The method of [HuTi92] is a modification of
the the partitioning/splitter-technique a la [KaSm83, PaTa87] which performs a sequence
of refinement steps that replace a given partition X by a finer one, eventually resulting in
the set of bisimulation equivalence classes. As in the non-probabilistic case, the underlying
refinement operation Refine(X) is based on a splitter of the current partition X'. This
partition /splitter-technique also works for reactive systems but fails for general concurrent
probabilistic systems. Our method for deciding bisimulation equivalence works — as in the
non-probabilistic or fully probabilistic case — with a partitioning technique but avoids the
use of splitters. It runs in time O(mn(log m+logn)) where m is the number of transitions
and n the number of states. In various applications, e.g. when the system arises from the
interleaving of [ “sequential” probabilistic systems, we may suppose that the number m of
transitions is polynomial in n. In these cases we obtain the time complexity O(mn logn).

Tt should be mentioned that [Yi94] deals with a variant of action-labelled stratified systems where
intervals of probabilities — rather than precise probabilities — are used. The underlying notion of a
simulation is different from the one proposed by [SeLy94].

129
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Computing the simulation preorder: The schema for computing the simulation pre-
order of a finite probabilistic system is the same as in the non-probabilistic case [HHK95].
We start with the relation R = S x S and successively remove those pairs (s, s’) from R
for which there is a step of s that cannot be “simulated” by a step of s’. In the probabilis-
tic case, the test whether a step “simulates” another one amounts deciding whether two
distributions u, u' are related via a weight function with respect to the current relation
R, i.e. whether u <g p' (see page 30). We show that the question whether p <p '
can be reduced to a mazimum flow problem in a suitable chosen network which yields an
O((mn®+m?n3)/logn)) algorithm for computing the simulation preorder when applying
the method of [CHM90] for solving the maximum flow problem.

Organization of that chapter: Section 6.1 presents an algorithm for deciding bisim-
ulation equivalence where we first recall the results by Huynh & Tian [HuTi92] for fully
probabilistic systems and then deal with concurrent probabilistic systems. Section 6.2
gives an algorithm for computing the simulation preorder where we first consider concur-
rent probabilistic systems (Section 6.2.2) and then the fully probabilistic case (Section
6.2.3). We also show how our method for computing the simulation preorder can be
modified for the “satisfaction relation” introduced by Jonsson & Larsen [JoLa91].

In this chapter, we need the definitions of bisimulation and simulation (see Section 3.4,
page 53 fI) where the latter uses the definition of weight functions for distributions (see
Section 2.2, page 30). Moreover, we often use the notations for partitions as explained
in Section 2.1 (page 29). For the computation of certain equivalence classes we propose
the use of ordered balanced trees. Our notations can be found in Section 12.2 (page 314).
Throughout this chapter, we deal with finite and action-labelled systems.

6.1 Computing the bisimulation equivalence classes

The main idea for computing the probabilistic bisimulation equivalence classes is the
use of a partitioning technique as proposed by Kanellakis & Smolka [KaSm83| (and its
improvement by Paige & Tarjan [PaTa87]) for the non-probabilistic case. We start with
the trivial partition X = {S} and then successively refine X by splitting the blocks B
of X into subblocks, eventually resulting in the bisimulation equivalence classes. This
schema is sketched in Figure 6.1 on page 131.

In the non-probabilistic case, the refinement operator Refine(X') depends on a “splitter” of
X. Intuitively, a splitter denotes a pair (a, C') consisting of an action a and a block C' € X
that prevents the induced equivalence Ry to fulfill the condition of a bisimulation; that is,
a splitter is a pair (a,C) € Act x X such that there are states s, s' € S that are identified

in X (i.e. s and s’ belong to the same block of X') and where s—+C while s’ 7L> C.2 For
(a,C) to be a splitter of X', the refinement operator Refine(X) = Refine(X, a,C) devides
each block B € X into the subblocks B, ¢y = {s € B : s—+C'} and B\ B(q,c) and returns
the partition

{B(a,c), B\ By : B € X}\ {0}

2Here, we write t—C' iff t—u for some u € C.
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Computing the bisimulation equivalence classes
Input: a finite (non-probabilistic or probabilistic) system with state space S
Output: the set S/ ~ of bisimulation equivalence classes
Method:
X = {5}
While X' can be refined do X := Refine(X);
Return X

Figure 6.1: Schema for computing the bisimulation equivalence classes

Clearly, if X is coarser than S/ ~ then s o s' for all s € By ) and s' € B\ B, c).
Hence, Refine(X,a,C) is again coarser than S/X and strict finer than X (provided that
(a,C) is a splitter of X'). Thus, after at most |S| refinement steps the current partition
coincides with S/ ~. This method can be implemented in time O(mlogn) where n is the
number of states and m the number of transitions (i.e. the size of —) [PaTa87| (see also
[Fern89)).

6.1.1 The fully probabilistic case

The partitioning/splitter method is adapted in [HuTi92] for fully probabilistic transition
systems, thus yielding an O(klogn) algorithm for deciding bisimilarity in fully proba-
bilistic transition systems where n is the number of states and k£ the number of tuples
(s,a,t) such that P(s,a,t) > 0. In the worst case, we have k = |Act| - n?. If we suppose
Act to be fixed then we obtain the time complexity O(n?logn) for deciding bisimulation
equivalence in fully probabilistic systems. Moreover, we saw in Theorem 3.4.19 (page
61) that simulation equivalence ~yg, and bisimulation equivalence ~ coincide for fully
probabilistic systems. Thus:

Theorem 6.1.1 (cf. [HuTi92]) In fully probabilistic systems, bisimulation and simula-
tion equivalence can be decided in time O(n?logn) and space O(n?) where n is the number
of states.

The basic idea is for the fully probabilistic case is to define a splitter of a partition X to
be a pair (a,C) € Act x X such that P(s,a,C) # P(s,a, C) for some states s, s’ that are
identified in X'. Then, the refinement operator according to the splitter (a, C') replaces
each block B € X by the subblocks B/ ~(, ¢) where s ~(,¢) s' iff P(s,a,C) = P(s',a,C).

6.1.2 The concurrent case
As mentioned in [HuTi92], the partitioning/splitter technique can easily be modified for re-

active systems (with the same time complexity O(n*logn)). In the general case, i.e. deal-
ing with concurrent probabilistic systems, the splitter technique fails (see Example 6.1.4,
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Computing the bisimulation equivalence classes in reactive systems
Input: a finite reactive system (S, Act, Steps)
Output: the set S/ ~ of bisimulation equivalence classes
Method:
X = {5}
While there exists a splitter (a,C) of X do X := Refine(X,a,C);
Return X.

Figure 6.2: Partioning/splitter technique

page 133). We propose a method that can be implemented in time O(mn(logm + logn))
where n is the number of states and m the number of transitions.

In what follows, we fix a finite set Act of actions and a finite action-labelled concurrent
probabilistic system (.S, Act, Steps).

Definition 6.1.2 [The splitter-based refinement operator| If X' is a partition of S
and a € Act, B, C' € X then

Refine(B,a,C) = B/~

where the equivalence relation >~ cy= J(a,c)N 31(’(:0) is the kernel of the relation J(, ¢y C
B x B which s given by:

s Ja,c) 8 iff whenever s——p then there exists s'—p' with p[C] = p/[C].

For X to be a partition of S, a splitter of X is a pair (a,C) € Act x X such that
Refine(B,a,C) # {B} for some B € X.

The method of [PaTa87] (or the method of [HuTi92] for fully probabilistic systems) mod-
ified for reactive systems is sketched in Figure 6.2 on page 132. For the implementation
of this method we propose the use of a queue ) of possible splitters, initially containing
the pairs (a, S), a € Act. As long as @ is nonempty, we take the first element (a,C) of @
and remove (a,C) from Q. For each B € X, we compute the probabilities

0 . if Steps,(s) =0
) @ , s€B.

{ plC] : if Steps,(s) = {u}

We construct an ordered balanced tree Tree(p q,c) for the values ps, s € B, with additional

labels v.states for each node v such that finally v.states = {s € B : v.key = p,}.> The
nodes in the final tree represent Refine(B,a,C'); more precisely,

bs =

Refine(B,a,C) = {v.states : v is a node in Treepq )}

If Refine(B,a,C) # {B} then for each B' € Refine(B, a,C) but one of the largest we add
the pairs (b, B'), b € Act, to the end of @.* Using an implementation similar to the one in

3See Section 12.2, page 314, for the notations that we use for ordered balanced trees.
By the largest blocks we mean those blocks B’ € Refine(B,a,C) where |B'| is maximal.
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Figure 6.3: s1 7 so, but s; and s, cannot be distinguished by splitters.

[PaTa87] we obtain the time complexity O(n*logn). For reactive systems, bisimulation
equivalence ~ and simulation equivalence ~gy,, are the same (Theorem 3.4.15, page 59).
Hence:

Theorem 6.1.3 In reactive systems, bisimulation and simulation equivalence can be de-
cided in time O(n®logn) and space O(n?) where n is the number of states.

Before we present our method for computing the bisimulation equivalence classes in ar-
bitrary finite action-labelled concurrent probabilistic systems we give an example which
explains why the splitter technique fails in the general case.

Example 6.1.4 We consider a system as shown in Figure 6.3 (page 133) where we sup-
pose that t; ~ ty, u; ~ w9, v; ~ vy, w; ~ wy and that £, u;, vy, w; are pairwise non-
bisimilar.® Then, s; % s,. On the other hand, s;, s cannot be distinguished by splitters.®
Thus, the algorithm for deciding bisimilarity based on the splitter technique would return
that s; and sy are bisimilar. m

For the general case, we maintain the schema sketched in Figure 6.1 (page 131) but use
a refinement operator that does not depend on a splitter. In each refinement step, we
replace each block B of the given partition A by the equivalence classes of B with respect
to the equivalence relation =y which identifies exactly those states s, ' € B such that for
each transition s——pu there exists a transition s'——u' with u[C] = p/[C] for all C € X.

Notation 6.1.5 [The vector u[X]| and the equivalence =y]| Let X be a partition of
S. plX] denotes the vector (u[B])pex. X is associated with the equivalence relation =y
on S that is given by:

s=x s iff {(a,pulX]):s—pt = {(a,p[X]):s'—p'}

Definition 6.1.6 [The refinement operator| We define

Refine(X) = |J B/=x.

BeX
Lemma 6.1.7 Let X be a partition of S which is coarser than S/ ~. Then:

(a) Refine(X) is a partition which is coarser than S/ ~.

>The outgoing transitions of the states t;, u;, v;, w; are omitted in the picture.
6T.e. 51 ~@,c) s2 for all actions b and all blocks C' of a partition X" of S that is coarser than S/ ~.
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(b) If Refine(X) = X then X = S/ ~.

Proof: easy verification. m

Lemma 6.1.7 ensures the total correctness of our schema for deciding bisimilarity sketched
in Figure 6.1 (page 131). We state our main result:

Theorem 6.1.8 In concurrent probabilistic systems, bistmulation equivalence can be de-
cided in time O(mn(logm-+logn)) and space O(mn) where n is the number of states and
m the number of transitions.

Remark 6.1.9 In many situations, m is polynomial in n. For example, when the system
arises from the interleaving of [ “sequential” probabilistic systems then m < [-n. In these
cases, the time complexity for deciding bisimulation equivalence is O(mnlogn). m

In the remainder of this section we decribe how to implement the algorithm sketched
in Figure 6.1 (page 131) for concurrent probabilistic systems to obtain the desired time
and space complexity where we use the refinement operator Refine(X’) of Definition 6.1.6
(page 133). The main idea for the implementation of the operator Refine(X) is first to
compute the set of “step classes” with respect to X from which the sets B/ =x, B € X,
can be derived.

Definition 6.1.10 [Step classes| Let X' be a partition, B € X and a € Act. Then,

Steps,(B) = |J Steps,(s).

seB

Two distributions u, p' € Steps,(B) are called X-equivalent (denoted p =x p') iff
pu[X] = p'[X]. A step class of B with respect to X is a pair (a,h) consisting of an action
a € Act and a function h : B — 2P%t(S) with h(s) C Steps,(s) for all s € B such that

U h(s) € Steps,(B)/=x .

seB

For B' € Refine(X), we define a step class of B' with respect to X to be a pair (a,h')
where a € Act and h' = h|g for some step class (a,h) of B with respect to X where
B denotes the unique block in X which contains B'. StepCl,(-) denotes the set of step
classes of (-) with respect to X.

Clearly, if B € X and s, s' € B then s =y s' iff, for each step class (a,h) of B with
respect to X', h(s) # 0 iff h(s') # 0. Let X be the current partition for which we want
to compute Refine(X) and let X4 be the partition in the previous refinement step.” For
each step class (a, h') of a subblock B" € Refine(X) of B (with respect to X') there is step
class (a, hoq) of B with respect to Xyy such that h'(s) C hyye(s) for all s € B'. More
precisely, the subblocks B’ € Refine(X') of B and their step classes with respect to X’ can
be derived from the step classes of B with respect to X, as follows. For (a, hyy) to be a
step class of B with respect to Xoq, let Cigp,,) be the set of all tuples (a, L, h) where

e ) ALCB

"I.e. we assume that the current partition X is Refine(Xyq)-
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o h: L — 2P5t(S) is a function with () # h(s) C heq(s) for all s € L
e there exists a real vector p = (pc)cexr such that
— p[X]=pforal ueh(s),selL
— If s € B\ L then h(s) N {p € Distr(S) : p[X] =p} = 0.
—If se L and p € hoqa(s) \ h(s) then u[X] # p.
For s, s' € B we have s =y ¢ iff
V(a, hoq) € StepCly,  (B) V(a,L,h) € Cap,y) [s€ Liff s" € L]

We reformulate this observation as follows. Let (aq, Ly, h1), . .., (as, Ly, h,) be an enumer-

ation of
U C(avhold) :
(a,hold)EStepClxold (B)

Let L} = Ly, L? = B\ L; and L? = L%* N L% N...N L if b= (by,...,b,) € {0,1}". Then,

B/ =y = {L:b{0,1}}\ {0},
Moreover, for the new subblock L(+%) (where b = (by,...,b,)) we have
StepCly(LOv~%)y = {(a; h}) :i=1,...,rb =1}

where hj : Lv-br) — 2Dsr(S) is given by hi(s) = hi(s). (Le. hj = hi| .00 is the
restriction of h; on the states of L(®1»b)) Clearly, for computing the sets L® and their
step classes, the tuples (a;, L;, h;) where L; = B and (a;, h;) € StepCl,(B) are not of

importance. Therefore, we divide the tuples (a;, L;, h;) into two classes:

e OldCly(B) denotes the set of tuples (a;, L;, h;) that represent an “old step class”
(i.e. Ly = B and (a4, h;) € StepCly  (B)).

: (a, how) € StepCly(B)}

old)

OldClLx(B) = {(a, B, o) € Cap

e NewCly(B) the set of tuples (a;, L;, h;) that represent a “new step class” (i.e. either
L; # B or (a;, h;) ¢ StepCl, (B)).

NewCly(B) = {(a,L,h) € Clapn,y) : (a, hota) € StepCly(B), (L, h) # (B, hoa) } -

For the test whether u[X] = p/[X] we use the following facts. Let u, p' € Distr(S) such
that pu[X,4] = p'[Xo] and B € X, Bog € Xiq.

(1) If B € X,y (i.e. B is a block that has not been refined in the last refinement step)
then p|B| = p/[B].

(2) If B,y is refined into the subblocks By, ..., By € X then

Because of (1), we only have to consider the “new” blocks, i.e. the blocks B € X \ X,.

Because of (2), for computing Refine(X), it suffices to consider for each block B, €

Xoa \ X all subblocks B € X of B,;; but one of the largest. These observations (1) and

(2) lead to the use of a set
New g X \ Xold

such that:
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Computing the bisimulation equivalence classes in concurrent probabilistic systems
Input: a finite action-labelled concurrent probabilistic system (.S, Act, Steps)
Output: the set S/ ~ of bisimulation equivalence classes
Method:
(0) compute X, Newini; and StepCly, — (B) for all B € X
(1) X := Xinit; New := Newpi;
(2) While New # () do begin
(2.1) New':=0 and X' := {;
(2.2) For all B € X do

(2.2.1) compute NewCly(B) and OldCly(B) with the method of Figure
6.6 (page 142);

(2.2.2) compute B/ =y, Newp and StepCl,(C) for C € B/ =4 with the
method explained on page 139;

! —
L. = B "= ==X
(2.2.3) New' := New U Newp and X' := X' U B/ =y;
(2.3) X := X'; New := New',
(3) Return X.

Figure 6.4: Algorithm for deciding bisimulation equivalence in concurrent systems

(*) If Bog € Xpa \ X (i.e. the refinement operation Refine(X,4) splits the block By
into two or more subblocks) then there exist £ > 1 and B, ..., By € New such that
— Bi,...,By, € By
- Bold\(BIU...UBk) GX\NG’LU
— |Boug \ (ByU...UBg)| > |Bi|,i=1,... k.

Then (by (1) and (2)), if u, g’ € Distr(S) such that pu[X,4] = p'[Xpa) then
p[X] = w'[X] iff p[C] = p/[C] for all C € New.

The algorithm for computing the bisimulation equivalence classes is shown in Figure 6.4,
page 136.

Initialization (step (0) in Figure 6.4 (page 136)): We skip the first refinement step
and start with the partition X;,; = S/ = where s = s iff act(s) = act(s').® X can
be computed with the following method. We choose with a fixed enumeration ay, ..., a

of Act and construct a binary tree Tree by successively inserting nodes and edges. Each
node v is labelled by

e its depth v.depth in Tree,
e a subset v.actions of Act,

e the names v.left and v.right of the left and right son of v in Tree.

8L.e. we deal with the initial partition Xj,;; = Refine({S}) rather than trivial partition {S}.
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In the case where v does not have a left (right) son v.left (v.right) is undefined (). Each
node v of depth k is a leaf and is additionally labelled by

e a subset v.states of S,
e a natural number v.counter that counts the number of elements in v.states.

Initially, Tree conmsists of its root vy where vo.depth = 0, vg.actions = 0, vy.left =
vo.right = L. Then, for each state s € S, we traverse the tree starting in the root
vg. If we have reached a node v with v.depth = ¢ < k then

o if Steps, (s) # 0 then
— if v.left # L then we go to v.left
— if v.left = L then we create a node w with w.depth = i+ 1, w.actions = v.actions U
{ai+1} and w.left = w.right = L, put v.left := w and go to w
o if Steps, (s) =0 then
— if v.right # 1 then we go to v.right
— if v.right = L then we create a node w with w.depth =i+ 1, w.actions = v.actions
and w.left = w.right = 1, put v.right := w and go to w.

In both cases, when creating a leaf w (i.e. when v.depth = i = k—1), we put w.states := ()
and w.counter := 0. If we have reached a leaf v (i.e. if v.depth = k) then we insert s into
v.states (i.e. we put v.states := v.states U{s}) and increment v.counter. Then, the leaves
of the final tree represent the blocks of X, i.e.

Xinit = {v.states : v is a leaf in Tree}.

Moreover, we use the components v.counter to select some of the largest initial blocks,
i.e. we choose some leaf v where v.counter is maximal and put

Newiniy = Xinat \ {v.states}.

The initial step classes are taken with respect to the “previous” partition Xjiviar = {S}
and are obtained by

StepCly, . (v.states) = {(a, Steps,|v.states) : @ € v.actions} .
Note that p =y, ..., #' for all u, p' € Distr(S).

Example 6.1.11 We consider the system of Figure 6.5 (page 138) and compute the
initial partition Xj,;. We use the ordering a; = a, as = b, ag = ¢ of Act and construct
the following tree.

Bl — {31’82)33)34}

\ /\ B2 - {tlat2’t3’t4}
B3 = {’LU}
B4 = {uhull)u2)u’27ul2,7v;v17v2;v3av4}

B By, Bz By
We obtain Xinit = {Bla BQ, B3, B4}, Newimt = {Bla BQ, Bg} and

StepCle-vm,(Bl) = {(CE, hl)} hl(si) = {,utla,uz}) 1= 17 2)

hi(s3) = {:U‘%g}’ hi(sa) = {pa}
StepClXtrivml(B2) = {(b, hz)} hz(t,) = {,U,,llh}, 1= ]., 2, 3,4:
StepCly,  (Bs) = {(c,hs)} ha(w) = {ul}
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W=
wlN

Figure 6.5:

and StepCly,  (By) =0. m

The refinement step (step (2) in Figure 6.4 (page 136)): As before, let X' =
Refine(X,;4) be the current partition and X, the partition of the previous refinement

step. Moreover, New is a proper subset of X \ X,y that satisfies condition (*) (see page
136).

Step (2.2.1) in Figure 6.4 (page 136): Let C, ..., C) be an enumeration of New. For
each B € X, we compute NewCly(B) and OldCly(B) with the method sketched in Figure
6.6 (page 142). We use a set @ of tuples (j,b,a, L, h) where 0 < j <1, b € {old, new},
a € Act, L C B and h: L — 2P%(5) is a function with h(s) C Steps,(s) such that:

o If b= old then L = B and (a, h) € StepCly , (B)

e Foralls, s’ € L and p € h(s), u' € h(s'), p[Ci] =p'[Ci], i =1,...,7.

The elements of () can be viewed as nodes of a forest (a collection of trees) where the
roots are the nodes of the form (0, old, a, B, hoiq) with (a, hoq) € StepCly, (B). The first
component j of a node (j,b,a, L, h) stands for the depth of that node. The sons of the
node (j,b,a, L, h) are of the form (j + 1,b',a,L' h') where L' C L and h'(s) C h(s) for
all s € L'. More precisely, if (j + 1,b;,a, L;, h;), i = 1,...,r, are the sons of (j,b,a, L, h)

then we have:
new : ifr > 2
b coifr =1,

Moreover, if H = Uyep, h(s) and H; = Ugep, hi(s), i = 1,...,7, then
() {H,....H} = H/=5" where p =5y iff p[Cj 1] = /[Cja].

The nodes on the path from the root to a node of the form (j, old, a, B, h) are the nodes
(i,0ld,a,B,h), i=0,1,...,5. The leaves are

— all nodes of the form (I,b,a, L, h) (i.e. all nodes of depth [ where [ = |New])
— all nodes (j,b,a, L, h) where |L| =1.°

%For these nodes, the possible splittings of the step classes of the set L are not of interest since we
have found a bisimulation equivalence class consisting of a single state.
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A leaf of the form (I, old, a, B, h) represents an element of OldCly(B) (because (a,h) €
StepCly . (B)). This case corresponds to step (1.7) where the ordered balanced tree T
constructed in step (1.2) consists of its root. Leaves of the form (j, new, a, L, h) stand for
“new” step classes.

Step (2.2.2) in Figure 6.4 (page 136): Having obtained the sets NewCly(B) and
OldCly(B), we derive B/ =y as described on page 135 where we only consider the tuples
(a, L,h) € NewClx(B) (rather than all tuples (a, L, h) € U(an,,,) Clashoa))- We choose an
enumeration (ay, Ly, hy), ..., (ar, Ly, h,) of NewCly(B) and construct a binary tree Treep
such that each leaf v of depth r is labelled by the set v.states = Ly N...N LY where
VU1 ... v, = v is the path from the root of Treep to v and

2

v L; . if v; is the left son of v;_;
| B\ L; : ifw; is the right son of v;_;.

The construction of this tree is similar to the initialization step. We start with the tree
consisting of its root. Then, for each state s € B, we traverse the tree starting in its root.
If we reached a node v of depth ¢ < r then we go to the left son v.left if s € L;;; and
to the right son v.right if s ¢ L;;; (possibly inserting the left or right son if necessary).
If he have reached a leaf (a node v of depth r) then we insert s into the set v.states.
Thus, B/ =x= {v.states : v is a leaf}. As in the initialization step, we use an auxiliary
component v.counter for the leaves such that v.counter = |v.states|. Finally, we choose
some leaf w in Treep where w.counter is maximal and define

Newp = {v.states : v is a leaf in Treeg, v # w}.

For all blocks C' € B/ =y, the step classes with respect to X (the set StepCl,(C)) are
the pairs (a, h|¢) where (a, L, h) € NewClx(B)U OldClx(B) for some L C B with C' C L.

Example 6.1.12 We consider the system of Figure 6.5 (page 138) and compute the
bisimulation equivalence classes. The initialization step yields

Xinit = {Bl,Bz, B3,B4}, New it = {Bl, B2,B3}
StepCly, . (B;) = {(as, hi)}, i = 1,2,3, where a1 = a, ay = b, a3 = ¢, hy(-) = Steps, (-)
and StepCly,  (Bg) = 0 (see Example 6.1.11 on page 137). Here,
Bl - {81) 82, 83, 84}) B2 = {tl)t27t37t4}) B3 = {’LU}, B4 =S5 \ (Bl U B2 U B3)

In the first refinement step, for each block B € New;;, we compute NewCly, ,(B) and
OldCly, ,(B) with the method explained in Figure 6.6 (page 142). Here, we assume the
enumeration B; = C, By = Cy, B3 = C3 of New;,;;. Let us consider the block B = B;.
In step (1.2) of Figure 6.6 (page 142), for the element (0, old, a, By, hy) of Q, we construct
an ordered balanced tree for the values

Py [Bi] = by [Bi] = pg, [Br] = pa[Bi] = pu[Bi] = pa[B1] = 0

which yields a tree consisting of its root. Thus, in step (1.4) of Figure 6.6 (page 142),
we insert the element (1, 0ld,a, By, h;) into @ which — again in step (1.2) — leads to the
construction of an ordered balanced tree for the values

pl [Ba] = pi,[Be) = 0, pf,[Bo] =1, pa[Bo] =3, pu[Bs] = po[Bs] = 3.
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This tree might be of the following form.

(o)

vo.key = 1/2 wy.states = {s1, 2} wp.steps(s;)
@ vi.key =0 wi.states = {s1,s2} wvi.steps(s;) = {py. }
%\ vo.key = 2/3 wq.states = {s4} va.steps(sy) = {14}
(s3) = {mt

v3.key =1 vs.states = {s3} v3.steps(s3) =

We get V! = {vy,v3} and V=2 = {wg,v;}. Thus, in step (1.4) of Figure 6.6 (page 142),
we add the elements

(2,new,a,{s1, s2},h11) and (2,new,a,{s, sz}, h12)

to @ where hy1(s;) = {pi} and hys(si) = {pg, }, ¢ = 1,2. In step (1.5) of Figure 6.6 (page
142), the tuples (a, {s4}, v2.steps) and (a, {ss}, vs.steps) are inserted into NewCly, ,(B1).
Then, again in step (1.2) of Figure 6.6 (page 142), for the elements (2, new, a, {s1, s2}, h1,1)
and (2, new,a, {s1,s2}, h12) of @ we construct ordered balanced trees for the values
p1[Bs) = p2[Bs] = 0 and py [Bs] = p,[Bs] = 0 respectively. In both cases, the re-
sulting tree consists of a single node; thus, in step (1.6) of Figure 6.6 (page 142), the
tuples (a, {s1, s2}, h11) and (a, {s1, s2}, h12) are inserted into NewCly, ,(B;). Hence, we
obtain OldCly, ,(B1) =0 and

nit

NewCleit(Bl) = {(a’ {31’ 52}’ hl,l)’ (a’ {Sla 52}’ h1,2)’ (a’ {33}’ hg)’ (a’ {34}’ hil)}

where hj(s3) = {ug,}, hy(ss) = {pa}. In step (2.2.2) of the main algorithm (Figure 6.4,
page 136), we apply the method described on page 139 and construct the tree Treep,
which is of the following form.

{s1,82} {ss}  {s4}
Thus, we obtain Bi/ =x,,, = {{s1, 52}, {53}, {s4}}, Newp, = {{ss},{s4}} and

StepCly. ({51,52}) = {(a,h11),(a,h12)}
StepCly.  ({si}) = {(a,h})}, i=3,4.
where hq 1, hy2, hi and h) are as above.

For the blocks B € {Bs, Bs, B;}, we obtain NewCly, ,(B;) = OldCly, ,(B4) = 0 and
OldClXim't (Bz) = {(b, Bz, St6p8b|32)}, OldCleit (B3) = {(C, Bg, St6p30|33)}.

In step (2.2.1) of the main algorithm (Figure 6.4, page 136), we apply the method of
Figure 6.6 (page 142) and obtain NewCly, ,(B;) = OldCly, ,(Bs) = 0 and

X

OldCly,,,(By) = {(b, By, Steps,|p,)}, OldClxy, ., (Bs) = {(c, Bs, Steps.|s;)}
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For all three blocks Bs, Bs, By, in step (2.2.2) of the main algorithm (Figure 6.4, page
136), the construction of the tree Treep, is skipped because NewCly, ,(B;) = (0. Hence,
we get Bi/ =x,,, = {Bi}, Newp, = 0 and StepCl,,  (B;) = StepCly . (B;),i=1,2. In

summary, the first refinement step yields the partition

X = Reﬁne(Xinit) = {{31,32},{33},{84}732,33734}

and New = {Bj, By, B3}. In the second refinement step, all trees constructed in step
(2.2.1) of the main algorithm of Figure 6.4 (i.e. in step (1.2) of method of Figure 6.6
(page 142)) consist of a single node. Thus, B/ =x = {B}, Newg =0 for all B € X. In
step (3), our algorithm returns X" as the set of bisimulation equivalence classes. m

Complexity: Let n = |S| be the number of states, m the number of transitions, i.e. m =
Y ecs |Steps(s)|. It is clear that our method can be implemented in space O(nm). Clearly,
the initialization (step (0) of Figure 6.4, page 136) takes O(n - |Act|) = O(n) time as,
for each state s € S, we traverse a tree of depth |Act|.'® In what follows, let N be the
total number of refinement steps (the number of executions of the loop in step (2) in
Figure 6.4) and let &; be the partition which we obtain in the (i + 1)-st refinement step,
ie. Xy = Xpnit Xij1 = Refine(X;), i=0,1,...,N—1, Xy = S/ ~. Let Cost{y,,) be the
cost for the executions of step (2.2.1) of the main algorithm (Figure 6.4, page 136) where
we range over all blocks B € &;, 1 =0,1,..., N —1 and let

N-1
Cost(a.21) = Z Costigz1)
i=0

be the total cost caused by step (2.2.1). Similarly, we define Cost(222) to be the total
cost that arises from the executions of step (2.2.2) of Figure 6.4 where we range over all
refinement steps. We show in Section 6.3 (Lemma 6.3.4 (page 155) and Lemma 6.3.6

(page 157)):
Costiz21) = O(mn(logm +1logn)), Costpzz = O(mn).

Thus, we obtain the time complexity O(mn(log m+logn)) for computing the bisimulation
equivalence classes.

10Recall that we assume Act to be fixed.
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Computing NewCly(B) and OldCly(B)

Input:
— a partition X and B e X
— an enumeration C, ..., C; of New

— StepCly  (B) (the step classes of B with respect to the previous partition)

Method:
(0) We set NewCly(B) :=0, OldClx(B) := 0 and

Q = {(0, old,a, B, hoig) : (a,hoyq) € StepClXold(B)};

(1) While @ # 0 do
(1.1) Choose some (j,b,a,L,h) € Q and set Q :=Q \ {(j,b,a,L,h)};
(1.2) Construct an ordered balanced tree T for p, = u[Cj1], p € h(s), s € L where
each node v is labelled by a record (v.key, v.states, v.steps) such that

— v.states = {s € B : v.key = p[C} 1] for some p € h(s)},
— v.steps is the function that assigns to each state s € v.states the set

v.steps(s) = {p € h(s): v.key = p[Cji1]};

We define:

V=2 := {v:wvnodein T with |v.states| > 2};
V! = {v:vnodein T with |v.states| = 1};

(1.3) If T consists of two or more nodes then b' := new else b’ := b;
(14) If j <l then Q@ :=QU {(] + 1,0, a,v.states, v.steps) : v € VZ2};
(1.5) If j <IAb = new then

NewCly(B) := NewCly(B) U {(a,v.states,v.steps) TV € Vl} ;
(1.6) If j =LA b = new then
NewCly(B) := NewCly(B) U {(a, v.states, v.steps) : v node in T'};

(1.7) If j =1 A b = old then OldClx(B) := {(a, B,v.steps)} where v is the root of
T;
(2) Return NewCly(B) and OldClx(B).

Figure 6.6:
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6.2 Computing the simulation preorder

We present an algorithm that computes the simulation preorder of a finite action-labelled
concurrent probabilistic system (S, Act, Steps). The schema of our algorithm is as in
the non-probabilistic case [HHK95]: We start with the trivial preorder R = S x S and
then successively remove those pairs (s, s') from R where s has a transition that cannot be
“simulated” by a transition of s’. This schema is sketched in Figure 6.7 (page 144). In the
non-probabilistic case, s Cg s’ iff for each transition s—-+t there is a transition s'—>+t' with
(t,t') € R. For (S, Act, Steps) to be an action-labelled concurrent probabilistic system
and s, s' € S, the relation Cp is given by: s Cp s' iff for each transition s—u there is a
transition s'—“>u' with p < p'.*' In the fully probabilistic case, s Cg s is defined as in
Definition 3.4.16 (page 60), i.e. s Cg s iff either s is terminal or P(s, ) <g P(s',-) where
R = {{a,t),{a,t")) : (t,t') € R,a € Act}.

For non-probabilistic systems, the schema of Figure 6.7 can be implemented in time
O(mn) [HHK95]. It seems to be hard to modify the method of [HHK95] for the probabilis-
tic case because it successively removes those pairs (s, s') of R where s is an a-predecessor
of some state ¢ (in the sense that there is a transition s——t) and s’ does not have an
a-successor in {t' : (¢,#') € R}. The problem in the probabilistic case is that the in-
duced predecessor /successor relations on states'? does not give enough information. Even
the probabilities for the a-successors/predecessors of the states do not contain the neces-
sary information for computing the simulation preorder since there might be non-similar
states that cannot be distinguished with these predecessor/successor relations (cf. Remark
3.4.11, page 57).

In the probabilistic case, we implement the schema of Figure 6.7 in such a way that the
test whether s Cg s’ is done with the help of a method for deciding whether u <g u' for
some distributions u, ' on a finite set X and a binary relation R on X. We show that
the question whether 1 <g p' can be reduced to a maximum flow problem in a suitable
chosen network.

We proceed in the following way. In Section 6.2.1, we explain how to test whether u <g 1’
via a maximum flow problem. Then, in Section 6.2.2 we describe our algorithm for
concurrent probabilistic systems while Section 6.2.3 deals with fully probabilistic systems.

6.2.1 The test whether u <p i/

We show that the question whether two distributions are related via a weight function
(i.e. whether © <g p') can be reduced to a maximum flow problem in a suitable chosen
network.

Networks and their maximum flow: We briefly recall the basic definitions of networks.
For further details about networks and maximum flow problems see e.g. [Even79]. A
network is a tuple N' = (N, E, L, T, c) where (N, E) is a finite directed graph (i.e. N is a
set of nodes, E C N x N a set of edges) with two specified nodes L (the source) and T
(the sink) and a capacity cap, i.e. a function cap : E — IR>, which assigns to each edge

"Here, <p is the weight-function-based relation defined as in Section 2.2, page 30.
12, g. in concurrent probabilistic systems, s is an a-predecessor of ¢ iff u(¢) > 0 for some u € Steps,(s)
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Computing the simulation preorder
Input: a finite (probabilistic or non-probabilistic) system with state space S
Output: the simulation preorder g, on S
Method:
R = Sx65;
While there exists (s,s’) € R with s Lg s’ do R:= R\ {(s,5")};
Return R.

Figure 6.7: General schema for computing the simulation preorder

(v,w) € E a non-negative real number cap(v,w). A flow function f for N is a function
which assigns to each edge e a real number f(e) such that:
- 0 < f(e) < cap(e) for all edges e.

— Let in(v) be the set of incoming edges to node v and out(v) the set of outgoing edges
from node v. Then, for each node v € N\ {L, T}:

> fleg = X [l

ecin(v) ecout(v)
The flow Flow(f) of f is given by
Flow(f) = Y fle) = > fle).

ecout(L) ecin(L)

The mazimum flow in N is the supremum (maximum) over the values Flow(f) where f
ranges over all flow functions in . Algorithms to compute the maximum flow are given

e.g. in [FoFu62, Dini70, MPM78, CHMO90|.

The test whether p =g u's Let S be a finite set, R a subset of S x S and let p,
p' € Distr(S). Let S = {t:t € S} where f are pairwise distinct “new” states (i.e. £ & S).
We choose new elements | and T not contained in SU S, L # T. We associate with

(u, ') the following network N (i, i1/, R). The nodes are the elements of SUS and L (the
source) and T (the sink), i.e. N = {1, T}USUS. The edges are

E = {(s,t):(s,t)e R} U {(L,s) : s€S}tU{(tT):teS}

Le. the underlying graph (N, E) is of the form
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where S = {si1,...,s,} and where the arrows between the nodes s; and the nodes 3;
describe the relation R in the sense that there is an arrow from s; to 5; iff (s;,s;) € R.
The capacities cap(e) € [0, 1] are given by:
cap(L, 5) = pu(s), cap(F, T) = (t), cap(s, ) = 1.
As in(L) =0 we get
Flow(f) = > f(Ls)

s€Supp(p)

for each flow function f in N (p, i', R).
Lemma 6.2.1 p <p u' iff the mazimum flow in N'(u, ', R) is 1.

Proof:  First we assume that u <g p'. For each flow function f in N (u, ', R):

Flow(f) = > f(L,s) < > cap(L,s) = > u(s) = 1.

seS SES sES

Let weight be a weight function for (u, x') with respect to R. We define a flow function
f as follows: f(L,s)=u(s), f(t,T)=p'(t) and f(s,t) = weight(s,t). Then,
Fow(f) = 5 f(Ls) = X als) = 1
s€Supp(p) s€Supp (1)

Hence, the maximum flow of N(p, i/, R) is 1.

Next, we assume that the maximum flow is 1. Let f be a flow function with Flow(f) = 1.
Since f(L,s) < cap(L,s) = u(s) and since

O f(L,s) = Flow(f) =1 = > u(s)

seS seS
we get f(L,s) = u(s) for all s € S. Similarly, we get f(¢, T) = p/(¢) for all t € S. Let
weight(s,t) = f(s,t) for all (s,t) € R and weight(s,t) = 0 if (s,t) ¢ R. Then,

S weight(s,t) = Y0 f(s,7) = f(Ls) = u(s)

tesS tesS

and similarly, > ,cq weight(s,t) = p'(t). Hence, weight is a weight function for (u, u')
with respect to R. Thus, p <g ¢'. m

Lemma 6.2.1 (page 145) yields a method for deciding whether y <g p'. We construct
the network N (u, ¢/, R) and compute the maximum flow with well-known methods (see
Figure 6.8, page 146).

Example 6.2.2 Let S = {t,u}, R = {(¢,t), (u,u), (u,t)} and p, ' € Distr(S) with

pt) =35, plw) =3, p(t)=p(u) =3
The associated network A (u, ¢, R) is of the following form.

N
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Test whether p <g p'
Input: a nonempty finite set S, distributions p, ' € Distr(S) and R C S x S
Output: “Yes” if u <g p', “No” otherwise.
Method:
compute the maximum flow F' of the network N (u, ¢/, R);

if F < 1 then return “No” else return “Yes”.

Figure 6.8: Test whether u <pg p'

The flow function f with

f(—l—’t) :f(t’z) = %a f(—l—’u): %a f(u’z) = %a f(u’ﬂ) :f(ﬂ’—l—) :f(f’—l—) :%
yields the maximum flow Flow(f) = 1. Thus, u <z p'. m

To our knowledge, the best known algorithm for computing the maximum flow in a
network is those of [CHM90] which has time and space complexity O(n?®/logn) and
O(n?) respectively where n is the number of nodes in the network. Hence:

Lemma 6.2.3 The test whether p <r @' can be done in time O(n®/logn) and space
O(n?) where n = |S)|.

Remark 6.2.4 Another possibility for testing whether u < ' is to consider the follow-
ing linear inequality system with the variables x4, (s,t) € R:

> wyy = p(s) forallse S

> wyy = p(s) forallte S

sES
(s,t)eR
and z,; > 0 for all (s,t) € R. Then, p < p' iff the system above has a solution. In
that case, the solution (z,;)(secr yields a weight function for (u, ') with respect to R.
The above system has |R| = O(n?) variables and |R| + 2|S| = O(n?) equations. To our
knowledge, there is no method for solving inequality systems of this type that beat the
time complexity O(n?/logn). m

6.2.2 The concurrent case
In the sequel, (S, Act, Steps) is a finite action-labelled concurrent probabilistic system. If
R is a binary relation on S and s, s' € S then

s Cg s' iff whenever s—%+u then there is some s'—u' with u <g .

The algorithm for computing the simulation preorder is sketched in Figure 6.9 (page
148). We first compute the set R = {(s,s') € S x S : act(s) C act(s'),s # s'}. If
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R = {(s,s") : s # s'} then all states are similar and we are done. In what follows, we
suppose that R does not contain all pairs (s, s'), s # s'. We organize R as a queue () where
the ordering in the initial queue is arbitrary. We use the usual operators Front(Q) which
yields the first element of @, Remove(Q) which removes the first element of () (both under
the assumption that @ is not empty) and Add(Q,z) which adds z at the end of Q). For
(s5,5") € Rand (a,u) € Steps(s), we use a set Sim 4 ,)(s") of distributions u' € Steps,(s’)
that are still candidates to match the transition s—=pu, i.e. 4 Zg p' is not yet detected.
Initially, we deal with Sim (4 4 (s") = Steps,(s'). A distribution p' € Steps,(s') is removed
from Sim(sq,)(s') just in the moment where 4 Ar p' is detected. Then, u Zg g in all
following iterations. We represent the set Sim s ,,)(s') as a list consisting of (pointers to)
elements of Steps,(s’). For these lists Simsq,,)(s"), we use the operations First(-) which
yields the first element of (-) and Nezt(-) which removes the first element of (-), i.e. the
list pointer is shifted to the second element.

In what follows, we refer to R as the set of pairs (s, s’) that are contained in ). By an
iteration, we mean the execution of steps (1) and (2) (including the substeps (2.1)-(2.6)).
We say a pair (s,s’) is investigated in some iteration if it is those element of @ that is
chosen in the else-branch of step (1).

Initially, we define last to be the last element of ). In all iterations, last is either undefined
(last = L) or the left most element (s,s’) of @ such that — after the last investigation
of (s,s') — no element (¢,t') is removed from . Hence, if we investigate (s, s’) where
(s,s') = last and obtain s Cg s’ then we have t Cg t' for all pairs (¢,¢') € R. Thus,
R is the simulation preorder (cf. step (2.3)). If s Zg s’ for the element (s,s’) which is
investigated then we set last = L (step (2.5)) and “wait” for the next pair (¢,¢') in @
which we do not remove from @ (step (2.4.2)).
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Computing the simulation preorder
Input: a finite action-labelled concurrent probabilistic system (.S, Act, Steps)

Output: the simulation preorder gy,

Method:
(0) [Initialization]
(0.1) @ :=0;
(0.2) For all (s,s") € S x S with s # s’ and act(s) C act(s’) do
(0.2.1) Add(Q, (s,5"));
(0.2.2) last := (s,s');
(0.2.3) For all (a, ) € Steps(s) do Simsq,)(s") := Steps,(s');

(1) If @ = 0 then go to (3) else begin (s, s") := Front(Q); Remove(Q); end,;
(2) For all (a, ) € Steps(s) do
(2.1) sim := false;
(2.2) While —sim and Sims q,)(s") # 0 do
(2.2.1) p' := First( Sim(sa,u(s) );
(2.2.2) If p <k ' then sim := true else Next( Sim(sau)(s') );
(2.3) If sim and last = (s, s') then go to (3);
(2.4) If sim and last # (s, s') then
(2.4.1) Add(Q,(s,s"));
(2.4.2) If last = L then last := (s, s);
(2.5) If —sim then last := L;
(2.6) go to (1);
(3) Return RU{(s,s) : s € S} where R is the set of pairs that are contained in Q.

Figure 6.9: Algorithm for computing the simulation preorder
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Example 6.2.5 We apply our algorithm for computing the simulation preorder (Figure
6.9, page 148) to the system shown in Figure 6.10 (page 149). In the initialization step
(step (0)) we obtain the queue @ containing the pairs

— (84, 8), (si,0), (v,8:), (v,0'), 4,5 =1,2, 0% j, v, v' € {vy,v,w}, vF#

- (u,u), u, u' € U, u+#u

= (t1,t2), (t2,t1)

— (u,t1), (u,8;), (u,v), u € U, v € {v,v,w}, i =1,2.

Here, U = {u},ul : k =0,...,4,h = 0,1,2} denotes the set of terminal states. The pairs

=

Figure 6.10:

(82,51), (si,w), (w,v5), (s;,v5), ¢, § = 1,2, are removed during their first investigation.
For instance:

e For the pair (w,v;) the algorithm computes the maximum flow of the network
3
o
o @—@

é @/

8

which is 5/8. Thus, there is no transition of v; that can “simulate” the transition

w—"sv.
e For the pair (s, s1) the algorithm tries to find a transition of s; which can “simulate”

the transition s;——ui. As p Ag pg, for all p € Steps,(s1) = {uig,uil,u} the pair
(s2,s1) is removed from R.

The first investigation of (s1, s2) yields
Sim(slaavullbo)(sz) = {M%Z’ul-Z}
1

Sim(syau)(52) = {15,y Sim(sam(s2) = {pg,}
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as ft A fiy, and pg, Ar fy,-

We suppose that initially the pair (¢o,¢;) is the last element of @ (i.e. last = (ts,t;) after
the initialization step). Then, the first investigation of (3, t1) yields ¢t Zg t1 (as (w,vy)
is already removed from @Q). After the removement of (t3,t;) we have x Cg y for all
(z,y) € R. Hence, if (z,y) is the element of ) which is investigated immediately after the
removement of (¢2,¢1) then the algorithm sets last = (z,y) after the (second) investigation
of (z,y). After investigating all remaining elements of () once more, we reach again the
pair (z,y) = last. Thus, the condition of step (2.3) is fulfilled and the algorithm returns
the simulation preorder which consists of the following pairs.

— (81,52), (t1,t2)
- (viasj)) (U),Sj), (Ui)w)a ia .] - 1a2

— (u,z), u e U, x € {s1, $2,t1,t2, 01,02, w}

and all pairs (z,z), z€ S. m

Complexity: Let n = |S| be the number of states and m the number of transitions,
ie. m =Y ,c5|Steps(s)|. For s € S and a € Act, let my; = |Steps(s)|, ma,s = |Stepsa(s)|.
(Then, m = Y ,cgms.)

We suppose a representation of (.S, Act, Steps) which contains for each state s € S and each
action a € Act a pointer to a list whose elements represent the distributions p € Steps,(s).
Then, the initialization step (i.e. the computation of the initial set R, the sets Sim 4, ¢
and last) takes O(n? - |Act|) = O(n?) time. We suppose that step (2.2.2) is executed N-
times. Then, the time complexity of our algorithm is O(V - n®/logn) if the test whether
p =g p' is done by computing the maximum flow in N (g, 4/, R) with the algorithm of
[CHM90]|. We show that N < mn® + m?.13

If in step (2.3) the condition sim A last = (s, s) is fulfilled, i.e. ¢t Cg ¢’ for all (¢,t') € R,
then we reach step (3) where the algorithm halts. Hence, at most after n? iterations
either some pair (s, s') is removed from R or the algorithms halts. Thus, each pair (s, s)
is investigated at most n’-times. For each pair (s,s’) and (a,u) € Steps(s), there are
at most m, y unsuccessful attempts to find p' € Steps,(s') with p <g p' (since as soon
as 1 Ag ' is detected p' is removed from Sim(, 4 ,)). Ranging over all iterations where
(s,s') is investigated and for fixed (a,u) € Steps(s), step (2.2.2) is executed at most

N(svav#vsl)_times where N(s,a”u,s’) = n’+ Mg,s' We obtain
N < Z Z Z Z Nisaps) < Z Z (n® +m) = mn®+m?
s€S acAct pcSteps,(s) s'€S s€S (a,u)ESteps(s)

The space complexity is O(mn + n?) as the representation of the transition relation takes
O(mn) space, the representation of R (i.e. the queue Q) O(n?) space. For each of the
lists Sim(,q,u)(s") we need O(mg) space. Summing up over all s', a, s, we need

(’)(Z > ma,s:) = O(mn)

seES acAct s'eS

space for the representation of the lists Sim s q,)(s'). We obtain:

13Intuitively, the number of unsuccessful tests whether 4 <p p' is bounded by m? while mn? is an

upper bound for the number of successful tests whether u <g u'.
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Theorem 6.2.6 In concurrent probabilistic systems, the simulation preorder can be com-
puted in time O((mn® + m?n?)/logn) and space O(mn + n?) where n is the number of
states and m the number of transitions.

The following remark (Remark 6.2.7) shows that each algorithm for computing the simu-
lation preorder which is based on the schema sketched in Figure 6.7 (page 144) and which
tests whether s Cy s’ via the condition

(*) Vs——pIs'—p: p2p

has to test whether u <g ' for Q(m?) pairs (u, ¢').1* Thus, for the worst case complexity
the number of unsuccessful tests whether p <g g’ in step (2.2.2) cannot be reduced.
However, it might be possible to improve the algorithm, e.g. by replacing (*) by a simpler
condition or by reducing the number of successful tests in step (2.2.2).

Remark 6.2.7 Let (S, Act, Steps) be an action-labelled concurrent probabilistic system

where S = {sq,...,sp} U{s,s'}, 8; Cgm s; iff ¢ < j and |Steps(s;)] < 1,i=0,...,k"

Moreover, we suppose that there is some action a such that:

- Steps,(s) = Steps,(s') =0 for all b # a

- If € Steps,(s), 1’ € Steps,(s') then there is no weight function for (i, 1') with respect
to the simulation preorder Cg;,.

Then, for all pairs (i, u') € Steps,(s) x Steps,(s') we have to test whether u < u'. Since
m = mg + mg + k we get for fixed k: Q(m, - my) = Q(m?). Thus, the number of tests
whether u < p' is Q(m?). m

Dealing with a reactiv system, we have N5 4,5 < n* and N < |Act|-n* (where N is the
number of tests whether y <g u') We obtain:

Theorem 6.2.8 In reactive systems, the simulation preorder can be computed in time
O(n"/logn) and space O(n?) where n is the number of states.

6.2.3 The fully probabilistic case

In what follows, we fix a finite action-labelled fully probabilistic system (S, Act, P). Recall
that s Cg s iff either s is terminal or P(s, ) =g P(s',) where

R' = {{(a,t),{a,t") : (t,t') € R,a € Act}
(see Definition 3.4.16, page 60). For s, s' € S and R C S x S we define N (s, s’, R) to be
the network (N, E, cap) where

N = {L, T} U Act x (SUS), S={t:teS}
E = {(L,{(a,t),({(a,®), T):t € S,a € Act} U {((a,t),(a,n)) : (t,u) € R}
cap(L,{(a,t)) = P(s,a,t), cap({a,t), T) = P(s',a,t), cap({a,t),{a,w)) = 1.

14Here, Q(-) denotes asymptotic lower bounds.
15E.g. Steps(so) = 0 and Steps(s;) = {(a,u;)} where u;(so) = 1/i and p;(s;) =1 —1/i.
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Similarly to Lemma 6.2.1 (page 145) it can be shown that
s Cg s iff either s is terminal or the maximum flow in NV (s, s’, R) is 1.

Thus, the simulation preorder of a fully probabilistic system can be computed by the
following method. We start with the preorder

R = {(s,s') € S x §":if ¢ is terminal then s is terminal}.

As long as there is a pair (s,s’) € R where s Zr s’ we remove (s,s') from R.!® This
method can be implemented similar to the one proposed in Section 6.2 (Figure 6.9, page
148). The time complexity is as in the reactive case. We obtain:

Theorem 6.2.9 In fully probabilistic systems, the simulation preorder of can be computed
in time O(n"/logn) and space O(n?) where n is the number of states.

In many applications, one wants only to give lower and upper bounds on the preoba-
bilities of an acceptable system behaviour rather than the exact probabilities. Jonsson
& Larsen [JoLa9l] define a notion of “satisfaction relation” that relates the states of a
given fully probabilistic system and the states of a fully probabilistic specification system
which prescribes intervals of allowed probabilities. Note that in contrast to [JoLa91l] we
deal with action-labelled systems while [JoLa91| deals with systems where the states are
labelled by atomic propositions. We modify the definitions of [JoLa91] as follows.

Definition 6.2.10 [Action-labelled fully probabilistic specification systems] An
action-labelled fully probabilistic specification system is a tuple (S, Act, P) where S is a
finite set of states, Act a finite set of actions and P : S x Act x S — 2/% is a function
such that, for all 3, t € S and a € Act, P(3,a,t) is a closed interval contained in [0, 1].

Definition 6.2.11 [The satisfaction relation sat] Let (S, Act,P) be a finite action-
labelled fully probabilistic system and (S, Act, P) an action-labelled fully probabilistic spec-
ification system. If RC Sx S and s € S, 3 € S then we define the relation satp C S x S
as follows: s satg S iff either s is terminal or there exsits a weight function for (s,3) with
respect to R, i.e. a function weight : S x Act x S — [0,1] such that for all a € Act and
te S, tesS:

1. If weight(t,a,t) > 0 then (t,t) € R.
2.

> weight(t,a,u) = P(s,a,t), Y. weight(u,a,t) € P(5,a,i).

acs ues

A satisfaction relation for (S, Act,P) and (S, Act,P) is a binary relation R C S x S
such that s satg 5 for all (s,5) € R. We write s sat s' iff (s,3) is contained in some
satisfaction relation for (S, Act,P) and (S, Act, P).

The relation sat C S x S can be computed similar to the way in which we compute the
simulation preorder Ty, of a fully probabilistic system; the only difference being the use
of networks with lower and upper bounds, see e.g. [Even79]. We start with the relation
R = S x S and successively remove those pairs (s,5) from R where —(s satr 3). For

16The test s Zr s’ can be done by computing the maximum flow in A/ (s, s’, R).
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the test whether s satp 5 we compute the maximum flow in the network A (s,s, R) =
(N, E, cap,, cap,) where cap;, cap, are functions that assign to each edge e € E the lower
bound cap;(e) and upper bound cap,(e) of the possible flow through e and where

N = {L, T} U Act x (S¥?S)

E = {(L{a,t),((a,m), T):te S, ac Act,uec S} U {({(a,t),(a,w)): (t,w) € R}

cap;(L, {(a,t)) = cap({a,t),(a,w)) = 0, cap,({(a,t), T) = min P(5,a,t)
cap, (L, (a,t)) = P(s,a,t), cap,({a,t),T) = max P(5,a,t),

cap,({a,t), (a,w)) = 1.

Similarly to Lemma 6.2.1 (page 145), s satg § iff either s is terminal or the maximum
flow in M (s,s, R) is 1. The problem of finding the maximum flow in a network with lower
and upper bounds can be reduced to the computation of the maximum flow in a “usual”
network of the same asymptotic size (see e.g. [Even79]). Hence:

Theorem 6.2.12 For a finite action-labelled fully probabilistic system (S, Act,P) and
a finite action-labelled fully probabilistic specification system (S, Act,P), the satisfaction
relation sat C Sx S can be computed in time O((n+n)7/log(n+n)) and space O((n+n)?)
where n = |S| and m = |S|.

6.3 Proofs

This section completes the proof of Theorem 6.1.8 (page 134) by showing that the total
cost Cost(z2.1) of step (2.2.1) and Cost(z2.2) of step (2.2.2) in the algorithm for comuting
the bisimulation equivalence classes with the method sketched in Figure 6.4 (page 136)
are O(mn(logm + logn)) and O(mn) respectively.

Lemma 6.3.1 Let X be a nonempty finite set and (Xy, ..., X,) a sequence of partitions
on X such that X; is finer than X;_1, i =1,...,r. Then,

1A < 20X] - 1)

i=0
where X = X;\ X; 1, i=0,...,7, and X | = {X}.
Proof: Let Kx be the set of finite sequences X = (Xy, ..., X,) of partitions of X such

that » > 0 and A& is finer than X;_;, i = 0,...,r. If X = (&p,..., &) € Kx then we
define K% = Y, |X/| where X/ = X, \ Xj_1,i=0,...,7. We set

We show by induction on |X| that Kx < 2(]X| —1). The case |X| = 1 is clear. Let
|X| > 2. By induction hypothesis, Kg < 2|B| — 2 for all nonempty proper subsets B
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of X. Clearly, for each sequence X = (X,...,X,) € Kx: If X =0,i=0,...,r, then
K+ = 0. Otherwise we may suppose w.l.o.g. that Xj # 0. If r = 0 then

Ky = |&] < [X] < 2(]X[-1).
Now we assume that X # 0 and r > 1. Then,

(") X IBI<IX], |xl=2

Bex|

For B € X! let X = (XE ... XB) where X8 = {C € X;: C C B}. Then, X € Kp

r

and X} = Upeay (XP\ X2,),i=1,...,r. By induction hypothesis,
Kus < Kp < 2|B| -2,
Hence, by (*):

Ky = |X] + Y Kz < |X| +2- ) [B] — 214

BeXg BeX]
< 2X| - |AG) < 2AX| -2
Thus, Kx < 2(|X|—1). m

Lemma 6.3.2 Let X be a nonempty finite set and (Xp, ..., X,) a sequence of partitions on
X such that X; is finer than X;_1, it =1,...,r. Let X_; = {X}. For eachi € {0,...,r},
let Y; be a proper subset of X; \ X; 1 such that:

(*) For each C € X;_1 \ &; there is some A € X;\ Y; with A C C, and |B| < |A| for all
B e Y; with BCC.

Then,
> il < 2(X[=1) and . > |B] < |X|log|X|.
i=0

i=0 BeY;
Proof: By Lemma 6.3.1 (page 153):

> Wil = DI\ Xy < 2(|X]-1).

We show by induction on |X| that each element x € X is contained in gy, B for at
most log | X| indices i € {0,...,r}. This yields

S Y B =Y Y 1< XloglX| = [X]log|X]

i=0 BeY; zeX icl(x) zeX

where I(z) ={0<i<r:z € B for some B € );}.

We have to show that |I(z)| < log|X| for all € X. First we observe that (*) yields
|B| < |X|/2forall B € YyU...UY,. If |X| = 1 then there is nothing to show since Y; = ()
for all ¢. Let |X| > 2 and € X. We may suppose that I(z) # 0, i.e. z € U; Upey, B.
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Let ¢ be the smallest index > 0 such that € B for some B € Y; (i.e. i = minI(x)). By
induction hypothesis,

{i+1,...,7}nI(z)] < log|B].
Since |B| < | X|/2 we get |I(z)| < 1+1log|B| = log(2|B|) < log|X| =

As before, we assume (S, Act, Steps) to be a finite action-labelled concurrent proba-
bilistic system. n = |S| denotes the number of states, m the number of transitions,
ie. m = Y,cq|Steps(s)|. For a € Act, m, is the number of a-transitions, i.e. m, =
>ses |Steps,(s)|. (Then, m = > ,c 4es ma.) Recall that we assume Act to be fixed. Hence,
we treat |Act| as a constant.

Let Xy = Xjnit, X1, - . ., X be the sequence of partitions that are obtained by our algorithm
(Figure 6.4, page 136). Le.

Xo = Xinit, Xi = Refine(X; 1),i=0,...,N—1,and Xy =5/ ~

where X 1 = Xyivia = {S}. Let New; denote the set New in the (i + 1)-st refinement
step. I.e. Newy = New;,; and

New; = |J Newp, i=1,...,N—1.
BeX;_1

Let Ci,. .., C’lz be the enumeration of New; and let C, ..., C; be the sequence

co,...,CP

lo?

1 1 1 2
Ch,...,CL.CL,....C

PR

N-1 N-1
., CoNt ¢

IN_1-

Lemma 6.3.3 We have l < 2(n —1) and

l
> |Gl < nlogn.

i=1

Proof: We consider the set X = S and the partitions Xy = X, X1,..., Xn of X.
Then, New; is a proper subset of X; \ X; ; such that for each C' € X; ; \ &; there is some
A€ X;\ New; with A C C and |B| < |A]| for all B € New; where B C C (cf. condition
(*) on page 136). Lemma 6.3.2 (page 154) yields:

N-1
Il = Y |New;| < 2(n—1)
i—0

and
l N-1
Y. ICI = > > IB| < nlogn
=1 i=0 BeENew;

(where we deal with ); = New;.) m

Lemma 6.3.4 Ranging over all refinement steps, the executions of step (2.2.1) in Figure
6.4 on page 136 (i.e. the computations of NewCl,.(-) and OldCl.(-) with the method of
Figure 6.6, page 142) take O(mn(logm + logn)) time.
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Proof: It suffices to show that, ranging over all blocks B € Ay U ... U &Xn_1, the
construction of the ordered balanced trees in step (1.2) of Figure 6.6 (page 142) takes
O(mn(logm + logn)) time.

For each 7 € {1,...,1}, we have to compute the probabilities u[C;], u € U, ; Steps,(s). For
fixed i and p, the computation of u[C;] takes O(|C;|) time. Summing up over all distribu-
tions p, for fixed ¢, the computation of the values u[C;] takes O(|C;|m) time. Summing
up over all blocks C; and using Lemma 6.3.3 (page 155), we get the time complexity
O(mnlogn) for the computation of the values u[Ci], i = 1,...,1, p € U, ; Steps,(s).

For each i € {1,...,l}, we construct an ordered balanced tree for the values p[C;], p € H
and H is of the form H = U, h(s) for some tuple (a, L, h). In that case, we speak about
the (i, H)-execution of step (1.2) in Figure 6.6 (page 142). Let Ezec(i) be the set of all
sets H for which there exists an (i, H)-execution of step (1.2) in Figure 6.6. Then:

- If Hl, H2 € Ea:ec(z) then Hl = H2 or Hl N H2 = (Z)
— For fixed i and H, there is at most one (i, H)-execution.

Let T(;,m) be the ordered balanced tree which is constructed in the (i, H)-execution. If
|T(i,m)| denotes the number of nodes in T; i) then the (i, H)-execution causes the cost
O(K(z,H)) where

Kimy = |Hlog (|Tjim| +1)

(and where the cost for computing the values u[C;], u € H, are neglected). The total cost
of all executions of step (1.2) in Figure 6.6 are O(K) where

l l
K=Y Y K=Y Y [Hlog(|Toml+1).

=1 HeEFEwec(i) =1 HecFEzec(i)

We show that K < 2nmlogm. Ezec(i+1) consists of pairwise disjoint sets H' C Distr(S),
each of them contained in some H € FEzec(i) (cf. condition (**) on page 138). For i <[

we define
Split(i, H) = {H' : H' € Ezec(i +1),H' C H}.

Then, Ezec(i + 1) = Ugepgec(s) Split(i, H). Hence,

(D) K= > Kun

HeEzec(1)

where KEI,H) = Kgpgyand, fori=1,2,...,1 -1,

H'eSplit(i,H)

By induction on ¢ we show that
() Kl g < (i+1)|H|log(|H|+1) forall H € Erec(l - i).
In the basis of induction (¢ = 0) we have |T(; i)| < |H|. Hence,
Kim < |H[log(|H|+1).

Induction step: Let 1 < i <[ —1, H € Ezec(l —¢) and Split(l —i,H) = {Hy,...,H,}.
By induction hypothesis,
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KEl—i—I—l,Hj) < i |H]| 10g(|H]| + 1)’ .] = 1? - T
Since |Hy|+ ...+ [H,| < |H| and |Tj_; 1| < |H| we get
Ky om < |H|log(|Tymim|+1) + i-> |Hj|log(|H;|+1)
j=1

< |H|log(|H|+1) + i-|H|log(|H|+1) = (i+1)|H|log(|H|+1).
Since Ezec(1) = {U,cs Steps,(s) : a € Act}\ {0} we get

Y H =Y Y [Steps(s)] = m.

HeEzec(1) acAct se€S
Hence, by (I) and (II):
K= Y Kyg < Y [-|HlloglH| < Imlogm.
HeFEzec(1) HecFEzec(1)

By Lemma 6.3.3 (page 155), we have [ < 2n. Therefore,
K < Imlogm < 2nmlogm.

Thus, we get the time complexity O(mnlogm) for the constructions of the trees in step
(1.2) in Figure 6.6 (page 142) where we neglect the cost for computing the values u[C}].
Adding the cost for the computations of the values u[C;] we obtain the time complexity
O(mn(logm + logn)) for all executions of step (2.2.1) in the main algorithm. m

Lemma 6.3.5 N1
> > |NewCly,| < 2(m-—1).

=0 BEXi

Proof:  Let M; = Y pcx, |NewCly,(B)|. Then, M; = Y c et |Ha,i| where

Haei = { U Rh(s) : B € X;,(a, L, h) € NewCly,(B) }
seL

We consider the set X, = U,cg Steps,(s) of all a-labelled transitions in (S, Act, Steps).

The sets H,; can be extended to partitions X,; of X, such that X, ; is finer than &, ;

and H,; € Xy \ X1 (cf. condition (**) on page 138). Thus,

N-1 N-1 N-1
Myo= 3 > [Hail < > 1A
=0 acAct =0 ac€Act i=0
< X|-1) < Y 2ma—1) = 2(m—1)
acAct

by Lemma 6.3.1 (page 153). Here, X, ; = X,; \ Xo; 1. ®

Lemma 6.3.6 Summing up over all refinement steps, the executions of step (2.2.2) in
Figure 6.4 on page 136 (the computations of B/ =x with the method decsribed on page
139) take O(nm) time.
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Proof: We define K; = max{|NewCly,(B)|: B € X;}. In the (i + 1)-st refinement
step (i.e. in the computation of X;;; = Refine(X;)), step (2.2.2) causes the cost O(n - K;)
since, for each state s € S, we traverse a binary tree of height < K;. By Lemma 6.3.5

(page 157):
N-1 N-1
Y K < Y > [NewCly| < 2(m—1).
i=0

i=0 BEX;

Thus, step (2.2.2) causes the cost O(nm). m



Chapter 7

Weak bisimulation for fully
probabilistic processes

In the non-probabilistic case, weak [Miln80, Park81, Miln89] or branching [vGIWe89]
bisimulation equivalence are fundamental for verification methods that exploit abstraction
from internal computation as — being compositional with respect to parallel composition
and other operators — they make it possible to replace components by equivalent ones that
are minimized with respect to their internal behaviour. Clearly, also in the probabilistic
setting, appropriate notions of weak equivalence together with efficient decision procedures
are highly desirable. Testing equivalences for fully probabilistic systems that abstract
from internal computations are proposed by Ivan and Linda Christoff [Chri90a, Chri90b,
ChCh91, Chri93] (who also present polynomial time decision procedures) and Cleaveland
et al [CSZ92, YCDS94]. For the latter, the authors present a proof technique but do
not investigate the decidability. Segala & Lynch [SeLy94] introduce notions of weak
and branching bisimulation for concurrent probabilistic systems that appear as natural
extensions of weak and branching equivalences for non-probabilistic systems. Recent work
shows that weak [PSS98] and branching [BSV98| bisimulation equivalence are decidable for
finite concurrent probabilistic systems. This chapter (whose main results are developed
in team work with Holger Hermanns [BaHe97]) proposes notions of weak bisimulation
and branching bisimulation in the fully probabilistic setting and presents a polynomial
decision procedure.

Weak bisimulation in non-probabilistic systems: The weak bisimulation equiva-
lence classes of a finite (non-probabilistic) labelled transition system (S, Act, —) can
be computed as the (strong) bisimulation equivalence classes of the induced system
(S, (Act \ {7}) U {e},=). Here, the “double arrow relation”

— C Sx ((Act\ {r)U{e}) x S

is defined with the help of the transitive, reflexive closure (—)* of internal transitions.!
Thus, the problem of deciding weak bisimulation equivalence is reduced to the compu-
tation of the transitive, reflexive closure (—)* of the internal transitions and deciding

'For the empty word &, the transition relation == agrees with (—=)* (i.e. s == ¢ asserts that ¢ is

(63 T

reachable from s via internal actions) while == = (—=)* 2 (—)*.

159
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(strong) bisimulation equivalence in a finite system. Using the transitive closure operation
from [CoWi87] and the partitioning/splitter technique by [PaTa87| the time complexity for
deciding weak bisimulation equivalence is O(n*3) where n is the number of states. Groote
& Vaandrager [GroVa90] propose an algorithm for computing the branching bisimulation
equivalence classes of a non-probabilistic system which works with a variant of the parti-
tioning/splitter technique & la [PaTa87] that uses both transition relations — and =
and runs in time O(nm) where n is the number of states and m the number of transitions
(i.e. the size of —).

Weak bisimulation in fully probabilistic systems: This chapter introduces notions
of weak bisimulation and branching bisimulation for fully probabilistic systems. The
basic idea is to replace Milner’s “double arrow relation” s == t by the probabilities to
reach state ¢ from s via a sequence of transitions labelled by a trace of the form 7*a7*.
In contrast to the non-probabilistic case where branching bisimulation is strictly finer
than weak bisimulation, weak and branching bisimulation equivalence coincide for finite
fully probabilistic systems. The proposed notion of weak (or branching) bisimulation
equivalence is decidable for finite systems. We present an algorithm to compute the weak
bisimulation equivalence classes with a modification of the partitioning/splitter technique
a la [KaSm83, PaTa87]. The time complexity of our method is cubic in the number of
states; thus, it meets the worst case complexity for deciding branching bisimulation in the
non-probabilistic case [GroVa90] (where, in the worst case, O(m) = O(n?)). Moreover,
weak bisimulation is shown to be a congruence with respect to the operators of PLSCCS
(see Section 4.3, page 83 ff) with the exception of the probabilistic choice operator.?
Therefore, weak bisimulation is applicable for mechanised compositional verification of
probabilistic systems that work with the lazy product P; ® P, as parallel composition.

Organization of that chapter: Section 7.1 introduces weak and branching bisimula-
tions. In Section 7.2 we present our algorithm for deciding weak bisimulation equivalence.
Section 7.3 discusses the connection between weak (and branching) bisimulation equiv-
alence and other equivalences for fully probabilistic systems. The congruence result is
established in Section 7.4. Most of the proofs for the results of this chapter are given
in the appendix (Section 7.5). The proofs use the regularity of certain matrices (with
columns and rows for each state of the underlying system). Thus, the main results are
only established for finite systems. It is an open question whether our results carry over
to arbitrary fully probabilistic systems (with possibly infinitely many states).

This chapter makes use of the notations for partitions as explained in Section 2.1 (page
29) and for ordered balanced trees (see Section 12.2, page 314). Moreover, we often use
the probabilities Prob(s, £2,t) for s to reach a C-state via a path whose trace belong to (2
(see Section 3.3.1, page 49). Throughout this chapter, we deal with action-labelled fully
probabilistic systems.

2The fact that weak (and branching) bisimulation equivalence are not preserved by probabilistic choice
is not surprising as already in the non-probabilistic case, weak and branching bisimulation equivalence
fail to be congruences with respect to non-deterministic choice.
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7.1 Weak and branching bisimulation

In this section we define weak and branching bisimulation for fully probabilistic systems.
While in the non-probabilistic case branching bisimulation equivalence is strictly finer than
weak bisimulation equivalence, these two relations coincide for finite fully probabilistic
systems (Theorem 7.1.10, page 163).

7.1.1 Weak bisimulation

For the definition of weak bisimulation, we replace Milner’s “double arrow” relation ==
= (—)* (where s == t states that s can move to ¢ via internal steps) by the probability
Prob(s, 7*,t) to reach state ¢t from s via internal actions. Similarly, for a € Act \ {7}, we
deal with the probabilities Prob(s, 7*a7*,t) rather than Milner’s weak transition relations
= = (D) 5 (D)8

Definition 7.1.1 [Weak bisimulation] A weak bisimulation on an action-labelled fully
probabilistic system (S, Act,P) is an equivalence relation R on S such that for all (s,s') €
R and all equivalence classes C € S/R:

(1) Prob(s,7*,C) = Prob(s',7*,C)
(2) Prob(s,mat*,C) = Prob(s',m™ar*,C) for all a € Act \ {7}.

Two states s, s' are called weakly bisimilar (denoted by s ~ s') iff (s,s') € R for some
weak bisimulation R.

Remark 7.1.2 Note that Prob(s,7,C) = 1 if s € C. Hence, condition (1) is always
fulfilled for the equivalence class C of s and s’ with respect to R. m

In Section 7.5.1 (Lemma 7.5.16, page 185) we show that, for finite systems, =~ is a weak
bisimulation. Two fully probabilistic processes P = (S, Act, P, s;i), P' = (S, Act, P', s’ .,)
are said to be weakly bisimilar iff their initial states s;,;; and s, ., are weakly bisimilar in

the composed system which is defined as explained in Section 3.5 (page 61).

Example 7.1.3 We consider the simple communication protocol of Example 3.3.2 (page
48) and the fully probabilistic system for the sender shown in Figure 3.2 on page 48.

Using weak bisimulation equivalence as

the underlying implementation relation the

sender can be verified against the specifica- ack?, 1
tion given by the fully probabilistic process

shown on the right.

send!, 1

For this, we have to show that the initial states s;,; and s}, are weakly bisimilar.
Let R be the equivalence on S = {Sinit, Sdets Swaits Siosts Sinit» Swaiz 5 Such that S/R =
{Cr,Cw} where C; = {sinit, Sipi} 15 the equivalence class of the initial states and Cy =
{Sdets Swait, Siosts Shyair ; the equivalence class of the other states. For s; € Ct and sy € Cw,

3See Section 3.3.1, page 49, for the definition of Prob(s, £2,t).
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we have:
Prob(s;,m™,Cy) =1, Prob(sw,7*,Cr) = 0,
Prob(s;, 7", Cw) = 0, Prob(sw, 7, Cw) = 1,
Prob(sr, 7 send! 7,C1) = 0, Prob(sw, 7" send! 7%,Cr) = 0,
Prob(sr, ™ ack? 7,Cy) =0, Prob(sw, " ack? 7*,Cr) = 1,
Prob(sy, 7 send! 7, Cy) = 1, Prob(sw,m send! 7, Cw) =0,
Prob(s;, 7 ack? 7*,Cy) =0, Prob(sw, ™ ack? 7*,Cw) = 0.

Hence, R is a weak bisimulation. In particular, the initial states s;,; of the sender and
st . of its specification are weakly bisimilar. m

In the non-probabilistic case, it holds for weakly bisimilar states s,s’ that if s "2 ¢
then s’ “=2* ' such that ¢ and #' are weakly bisimilar. Here, ==2* denotes (—)* %

T T Qg T

(—)*...(—)* — (—)*. This result carries over to finite fully probabilistic systems.

Theorem 7.1.4 Let (S, Act,P) be a finite action-labelled fully probabilistic system and
2 a reqular expression of the form T a T aoT* ... Ty or T T T ... T ay,*. Then:

If s =~ &' then Prob(s,§2,C) = Prob(s',§2,C) for all C € S/ =.

Proof:  see Section 7.5.1, Theorem 7.5.17 (page 186). m

7.1.2 Branching bisimulation

Van Glabbeek & Weijland [vGIWe89] introduce branching bisimulation which is strictly
finer than weak bisimulation. The basic idea of branching bisimulation is that in order
to simulate a step s — ¢ by an equivalent state s', s’ is allowed to perform arbitrary
many internal actions leading to a state s” which is still equivalent to s and s’ (i.e. the
intermediate states on the path from s’ to s” also fall in the equivalence class of s and s')
and then to perform « reaching a state t' which is equivalent to ¢. In the probabilistic
case, we require that for equivalent states s, s’, the probabilities for s and s’ to perform
internal actions inside the equivalence class of s and s’ and then to perform a visible
action a leading to state of a certain equivalence class C' are the same.

Notation 7.1.5 [The symbols a, a € Act] For a € Act, let

A:{a CafaFET

a4 e ifa=r.

Recall that ¢ denotes the empty word in Act*. Hence, 7*a = 7* if a = 7.

Notation 7.1.6 [The probabilities Probg(s,7*a,C)] Let (S, Act,P) be an action-la-
belled fully probabilistic system, R an equivalence relation on S, s € S, C C S and
a € Act. Then, Pathﬁd(s,r*a, C) denotes the set of fulpaths m € Pathp,(s) such that
there is some k > 0 with

e (s,m(i))eR,i=1,....,k—1,
o trace(r®)) € 7@,
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o m(k) e C.
Let Probg(s,m*a,C) = Prob(Pathf}zl(s,T*Ei, C)), Probg(s,7*a,t) = Prob((s,7*a, {t}).

Remark 7.1.7 For s € C, Pathg,(s) = Pathﬁl(s,T*,C). Hence, Probg(s,7*,C) = 1 if
selC. m

Example 7.1.8 For the relation R in Example 7.1.3, page 161, we have
Probg(s,7*ar*,C) = Prob(s,7"at",C)

for all states s and C' € {C[,Cw} and a € {7, send!, ack?}.

For the system shown on the right and the T, 3 \\a‘, 3
“identity relation” R (i.e. the equivalence re-

lation R with (z,y) € R iff # = y) we have
Probg(s, 7*(3,v) = 0 while Prob(s,73,v) = lﬂ, 1

1/2. m

Definition 7.1.9 [Branching bisimulation] Let (S, Act,P) be an action-labelled fully
probabilistic system. A branching bisimulation on (S, Act,P) is an equivalence relation

R on S such that for all (s,s') € R, C € S/R:

(1) Probg(s,m™,C) = Probg(s,7*,C)
(2) Probgr(s,m™a,C) = Probg(s,7™a,C) for all « € Act \ {7}.

Two states s, s' are called branching bisimilar (denoted s ~, s') iff (s,s') € R for some
branching bistmulation R.

In Section 7.5.1, Lemma 7.5.15 (page 185) we show that, for (S, Act,P) to be finite,
branching bisimulation equivalence /%, is a branching bisimulation. In contrast to the
non-probabilistic case, branching bisimulation equivalence and weak bisimulation equiva-
lence coincide for finite systems.

Theorem 7.1.10 Let (S, Act,P) be a finite action-labelled fully probabilistic system and
s,s€S. Then, s ~ s iff s =~y 5.

Proof:  see Section 7.5.1, Corollary 7.5.13 (page 184). m

The classical example for distinguishing weak and branching bisimulation equivalence is
the system shown in Figure 7.1 on page 164 (see [vGIWe89]). In the non-probabilistic
case, s and s’ are weakly but not branching bisimilar. If we add non-zero probabilities
(which turn the system of Figure 7.1 into a fully probabilistic system) then s and s’ are
no longer weakly bisimilar. This can be seen as follows. We assume s =~ s’. Then,
1 = Prob(s,m*at*,T) = Prob(s',7™at*,T) where T denotes the weak bisimulation
equivalence class of t. Clearly, v" % t as t can perform «y (since P(¢,y) > 0) while v" cannot
(since Prob(v",7*y) = 0). Hence, v" ¢ T and therefore P(s',a,t') = 1, P(s',,0") =
0. Contradiction (as we added non-zero probabilities to the non-probabilistic system of
Figure 7.1).
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Figure 7.1: Distinguishing weak and branching bisimulation in the non-probabilistic case

7.2 Decidability of weak bisimulation equivalence

In this section we develop an algorithm to compute the weak bisimulation equivalence
classes. The general idea of our algorithm is to use a partitioning/splitter-technique
similar to the ones proposed by Kanellakis & Smolka [KaSm83| resp. Paige & Tarjan
[PaTa87] for deciding strong bisimulation in the non-probabilistic case (cf. the schema
sketched in Section 6.1, Figure 6.1 on page 131). The algorithm starts with some “simple”
partition Xj,; that is coarser than ~ and then successively refines the given partition X’
with the help of a “splitter” of X, eventually resulting in the set of weak bisimulation
equivalence classes. The crucial point is the definition of a splitter. A possible candidate
for a “splitter” of a partition X is a pair (a,C) € Act x X that violates the condition for
X to be a weak bisimulation, i.e.

(*) Prob(s,7*ar*,C) # Prob(s',7*ar*,C) for some B € X and s, s’ € B.

One idea for a partioning/splitter-algorithm would be to refine & according to a splitter
in the sense of (*), i.e. to replace X by Refine'(X,a,C) = {B/ ~(c): B € X'} where

s ~gc) s iff Prob(s,7*ar*,C) = Prob(s',7*ar*, C).

The probabilities Prob(s, 7*ar*, C') can be computed by solving the linear equation system

z, = 1 ifa=7and seC

z, = 0 if Pathp, (s, 7*am*,C) =0

z, = Y P(s,1,t)-z + P(s,a,0)
tes

if Pathp,(s,7*am*,C) #0and a # 7V s ¢ C.

(cf. Proposition 3.3.4, page 49). The test whether Paths, (s, 7*ar*,C') = (0 can be done
by a reachability analysis of the underlying directed graph, e.g. with a depth first search
like method. Then, Q(n®*®) is an asymptotic lower bound for the time complexity of
this method.* Here, we present an alternative method that runs in time O(n®). The

“Here, n is the number of states. Note that in the worst case we need n refinement steps and in each
refinement step we have to solve a linear equation system with n variables and n equations (which takes
Q(n??) time with the method of [AHU74]).
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basic idea is to replace (*) by a condition that asserts that X violates the conditions of a
branching bisimulation. For this, we use an alternative definition of a splitter that is based
on an characterization of branching bisimulations which uses the conditional probabilities
Px(s,a,C) to reach a block C from a state s via an action a within one step under the
condition that the system does not make an internal move inside the block that contains s.
These conditional probabilities can be computed by simple arithmetic operations. Thus,
the use of this kind of splitters has the advantage that in the refinement steps we do not
have to solve linear equation systems.

7.2.1 The algorithm

In what follows, we fix a finite action-labelled fully probabilistic system (.S, Act, P) and
a partition X of S. We say that A" is a weak (branching) bisimulation iff the induced
equivalence relation Ry is a weak (branching) bisimulation.

Notation 7.2.1 [The set Si.., of terminal states| S;.., denotes the set of terminal
states (i.e. all states s € S where P(s,a,t) =0 for alla € Act andt € S).

Notation 7.2.2 [The set Sx] We define Sx = {s € S\ Siepm : P(s,7,[s]x) < 1}.°

Thus, Sx contains all states that, with non-zero probability, can either perform something
visible (in the case where P(s,7) < 1) or silently step into a different class (in the case
where P(s,7,t) > 0 for some ¢ ¢ [s]x).

Notation 7.2.3 [The conditional probabilities Px(s,a,t)] If s € Sy and (a,C) €
Act x X with (a,C) # (7, [s]x) then we define

P(s,a,C)
1-P(s,7,[s]lx)

Pxy(s,a,C) =

Px(s,a,C) is the conditional probability for s to reach C' via action a under the condition
that in state s the system does not make a 7-move inside the block [s]x of s (i.e. the
system either performs a visible action or makes a 7-move to another block). We get
the following alternative characterization of branching bisimulations that refers to the
conditional transition probabilities P y(-) rather than the values Probg,,(-).

Lemma 7.2.4 X is a branching bisimulation iff, for all B € X with BN Sy # 0:

(1) Px(s,a,C) =Px(s,a,C)
forall s, s € BN Sy and (a,C) € Act x X with (a,C) # (1, B).

(2) If so € B\ Sy then there exists a finite path o with

- first(o) = sy,

-o(i) e B\ Sy, 1=0,1,...,]0] — 1,

- last(oc) € BN Sx.
Moreover, if X is a branching bisimulation then for all B € X with BN Sy # 0 and
s € B:

Recall that [s]x denotes the unique block in X that contains s (cf. Section 2.1, page 29).




166 CHAPTER 7. WEAK BISIMULATION

e Probg, (s, 7,C) =Px(B,7,C) forallC € X
e Probg, (s, 7" a,C) =Pxy(B,a,C) for alla € Act \ {7} and C € X.

Here,

| Px(t,a,C) : if(a,C)# (1,B) andt € BN Sy
Px(B,a,C) = {1 . if(a.C) = (r.B).

Proof:  see Section 7.5.1, Lemma 7.5.9 (page 181). m

Remark 7.2.5 Let X be a branching bisimulation and B € X such that BN Sy = 0.
For all s € B, either s is terminal or P(s, 7, B) = 1. In either case, Probg, (s, 7*a,C') =0
and Probg, (s,7*,C) = 0if C € X \ {B}. Hence, if we put Px(B,7,B) = 1 and
Py(B,a,C) =0if (a,C) # (1, B). then we get

Probg, (s,7"a,C) = Px(B,a,C)
foralls € B,C' € X and a € Act. m

Example 7.2.6 Consider the system of Figure 7.2 (page 167) and the partition X =
{Bi, By, B3} where By = {sg,s,s'}, By = {t,t'} and Bs = {w,w’,v,v'}. We show that
all blocks of X satisfy the conditions of Lemma 7.2.4. We have Siepn, = {w,w’ v},
P(so, T, [so]lx) =1 and P(v', 7, [v']|x) = 1. Thus, Sy = {s,s,t,t'}.

e For the block By, we first consider the states s and s’. We have:

Px(s, T, Bg) == ng(SI, T, Bg) == %, Px(S, a, Bg) == ng(SI, a, B3) == %
and Px(s,a,C) = Px(s',a,C) = 0 for all (a,C) ¢ {(7,B2), (o, Bs)}. Hence, B;
satisfies condition (1). Second we show condition (2) for B;. For this, we have to
consider the state sy € By \ Sy. The finite path leading from sy to a state of B; N Sy
is given by sq — s.

e For the block By = {t,t'} we get: Px(t,03,Bs) = Px(t,3,Bs3) =1 and Px(t,a,C) =
Px(t',a,C) = 0 for all (a,C) # (B, B;). Hence, B, satisfies (1). As By N Sy =0, B>
fulfills condition (2).

e As B3N Sy = 0 for the block B; there is nothing to show.

Lemma 7.2.4 yields that & is a branching bisimulation. m
Remark 7.2.7 If X is a branching bisimulation, B € X and s, s' € BN Sy then

P(s, 1, B)
1—-P(s,7,B)

P(s', 7, B)
1-P(s',7,B)

”

is possible. For instance, for the states s and s’ in Example 7.2.6 (Figure 7.2 on page 167)
we have s &2, s but P(s, 7, B;)/(1-P(s,7,B1)) = 0 while P(s', 7, B,)/(1-P(s', 7, By)) =
1/2 (where By = {sg, s, '} is the branching bisimulation equivalence class of s and s'). m

Definition 7.2.8 [Splitter] A splitter of a partition X is a tuple (a,C) consisting of an
action a € Act and some C € X such that there ezists some B € X with (1, B) # (a,C)
and Py(s,a,C) # Px(s',a,C) for some states s, s' € BN Sy.
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Figure 7.2:

The main idea for refining a given partition X via a splitter (a,C) is to isolate in each
B € X with (7, B) # (a, C) those states s, s’ € BN Sy where Px(s,a,C) =Py(s',a,C).
By condition (2) of Lemma 7.2.4, each such equivalence class A of B N Sy has to be
enriched with exactly those states s € B\ Sy that can reach A via internal actions and
that cannot reach any other equivalence class A’ of B N Sy without passing A.

Notation 7.2.9 [The set Split(B,a,C)] Let (a,C) be a splitter of a partition X and
B € X such that (1, B) # (a,C). We define

Split(B,a,C) = (BN Sy)/ =x
where, for s, s' € BN Sy, s =x ' iff Px(s,a,C) =Px(s,a,C).

Notation 7.2.10 [The closure A] Let (a,C) be a splitter of a partition X and B € X
such that (1, B) # (a,C). If A € Split(B,a,C) then we define the closure A of A in X
with respect to (a,C) to be the largest set V- C B which contains A and such that for all
seV\A:

e P(s,7,3VUA) =1

o There exists a finite path o with
- first(o) = s,
-o(i)eV,i=0,1,...,|0| -1,
- last(o) € A.

Notation 7.2.11 [The residuum Res(B,a,C)]| Let X, a, B and C be as before. The
residuum of B with respect to (a,C) is given by

Res(B,a,C) = {B'}\ {0} where B' = B\ U A.

A€ Split(B,a,C)

Remark 7.2.12 Note that the residuum Res(B,a,C) is either empty (if all states s €
S\ Sy are contained in some closure A) or a singleton set consisting of all states s € B\ Sy
that do not belong to any closure A. If A € Split(B,a,C) then A consists of A and all
states s € B\ Sy such that

e last(o) € A for some o € X(s)
e Whenever 0 € X and last(o) € Sy then last(o) € A.

Here, Y (s) = {0 € Pathg,(s) : first(o) =s,0(i) € B\ Sy, i=0,1,...,]0| —1}. m
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Notation 7.2.13 [The refinement operator Refine(-)] Let X be a partition, (a,C) a
splitter of X. For B € X, we define:

e If (a,C) = (7, B) then Refine(B,a,C) = {B}.
e If (a,C) # (7, B) then

Refine(B,a,C) = {A: A€ Split(B,a,C)} U Res(B,a,C).
We define Refine(X,a,C) = Upgecx Refine(B,a,C).

Clearly, for each partition X which is coarser than S/ &4, and each splitter (a,C) of X,
the partition Refine(X,a,C) is coarser than S/ &, and strictly finer than X.

Our refinement operator preserves condition (2) of Lemma 7.2.4 (page 165). More pre-
cisely, if B € X such that BNSy = () and condition (2) of Lemma 7.2.4 is fulfilled then all
blocks A € Refine(B,a,C) fulfill condition (2). Moreover, if X is a partition that fulfills
condition (2) of Lemma 7.2.4 and that is coarser than S/ =%, and there is no splitter for
X then X = S/~ = S/ ~. These observations lead to the following algorithm. We
start with a “simple” partition X" that satisfies condition (2) of Lemma 7.2.4 and that is
coarser than =. Then — as long as X" can be refined (i.e. as long as there exists a splitter
for X') — we apply the refinement operator to X, eventually resulting in the partition
X = 5/~

As the initial partition has to fulfill condition (2) of Lemma 7.2.4 we cannot start with the
“trivial” partition X = {S} that identifies all states as it might violate condition (2). For
instance, for a system with two states, a terminal state ¢ and a state s with P(s, a,t) = 1,
the trivial partition Xy = {{s,t}} does not have a splitter. Hence, if we would start
with X then our algorithm would return that s and ¢ are weakly bisimilar which is
not the case. Our initial partition consists two blocks: the weak bisimulation equivalence
class of the terminal states and its complement. (Of course, if one of these blocks is empty
then we only start with one block.) To be precise, the weak bisimulation equivalence class
of the terminal states consists of all “divergent” states, i.e. all states that cannot reach a
state where a visible action can be performed with some non-zero probability.

Definition 7.2.14 [Divergent states| A state s is called divergent iff Paths,(s, 7" a) =
0 for all a € Act \ {7}. Let Div be the set of divergent states.

Note that Sie € Div. Our algorithm for computing the weak bisimulation equivalence
classes is sketched in Figure 7.3 on page 169.

Example 7.2.15 Partitioning the system from Example 7.2.6 (Figure 7.2, page 167)
proceeds as follows. The initial partition is X = {{so,s, s, t,t'},{w,w’,v,v'}}. Then,
Sy = {s,s,t,t'}. (a,{w,w',v,v'}) and (B, {so,s,s',t,t'}) are splitters of X'. For the
splitter (a, {w,w',v,v'}) we obtain

1

1
Px(s,a,{w,w',v,v'}) = 5 = 1 32— = Py, o, {w,w',v,v'})
3

and Px(t,a, {w,w',v,v'}) = 0 =Px(t,a,{w,w’,v,v'}). Hence, the split operator sepa-
rates s and §' from t and t'. More precisely, we get:

Split({so, s, s', t,t'}, a, {w,w',v,v'}) = {{s,s'},{t,t'}},

Split({w, w',v,v'}, a, {w,w',v,v'}) = {{w,w v,v'}}.
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Computing the weak bisimulation equivalence classes
Input: a finite action-labelled fully probabilistic system (.5, Act, P)
Output: the set S/ =~ of weak bisimulation equivalence classes
Method:
Compute the set Div of divergent states;
X :={Div, S\ Div} \ {0};
While X contains a splitter (a,C') do X := Refine(&X,a,C);
Return X

Figure 7.3: Schema for computing the weak bisimulation equivalence classes

The closure operator yields {s, s'} = {so, s,s'}. Hence, we get the partition
Refine(X, o, {w,w',v,v'}) = {{so,s,5'}, {t,t'}, {w,w',v,v'}}

for which no splitter exists. Thus, our algorithm returns Refine(X’, o, {w, w',v,v'}) as the
set of weak bisimulation equivalence classes. m

7.2.2 Time complexity

In what follows, n = |S|. We suppose that the alphabet Act is fixed (thus, we treat the
size |Act| as a constant).

Theorem 7.2.16 The algorithm of Figure 7.8 (page 169) can be implemented in time
O(n?®) and space O(n?).

Proof: Clearly, Div can be computed by a reachability analysis in the underlying
directed graph. We compute all states that can reach a state of {t € S : P(¢t,a) >
0 for some av € Act \ {7}}, e.g. by a depth first search. Thus, the computation of the
initial partition X needs O(n?) time and space.

Initialization of the refine step: Let X be the current partition. We compute the
values P(s,a,C) and Px(s,a,C) for each s € S, a € Act and C € X. The set Sy can
be derived from the probabilities Py (s, 7, C), s € C. For each pair (a,C) (where a € Act
and C € X) and A € X we compute

min(A,a,C) = Isréifrll Pxy(s,a,C), maz(A,a,C) = max Px(s,a,C).

Then, (a,C) is a splitter of X" iff min(A,a,C) < maz(A,a,C) for some A with (a,C) #
(1, A). If there is no splitter of X then X = S/ ~. Otherwise we choose some splitter
(a,C) of X.

Refinement step: For all B € X with (7, B) # (a, C') we compute the set Refine(B, a,C)
as follows. We construct an ordered binary tree Tree(B) by successively inserting the
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values Px(s,a,C), s € BN Sy. (See Section 12.2, page 314 for the notations that we
use for ordered balanced trees.) Each node v of Tree(B) is represented as a record with
components v.key and v.states. For each state s € BN Sy, we traverse the tree Tree(B)
starting in the root and we search for the value Py(s,a,C).

e If we reach a node v with v.key = Px(s,a,C) then we insert s into v.states.
e Otherwise, Py(s,a,C) is not yet represented in Tree(B) and we insert a node v with
v.key = Px(s,a,C) and v.states = {s}.

In the final tree, v.states is the set of states s € BN Sy with Px(s,a,C) = v.key. Thus,
the nodes of the final tree Tree(B) represent the sets A € Split(B,a,C). More precisely,

Split(B,a,C) = {v.states : v is a node in Tree(B)}.

We derive Refine(B, a,C) as follows. Let Gg be the directed graph (B, Ep) where (s,t) €
Ep iff P(t,7,5) > 0 and t € B\ Sx. We compute the sets A, A € Split(B,a,C), by the
following breadth first search like method. We use three kinds of labels for the states:

o label(s) = L iff s € B\ Sy and s is not yet visited.

o label(s) = A € Split(B,a,C) iff s is reachable in Gp from some state in A but there
is no other A" € Split(B,a,C) where a path from a state of A’ to s in Gp is already
detected.

o label(s) = x iff there are two sets A, A" € Split(B,a,C) such that s is reachable from
a state in A and from a state in A’. (In particular,, all successors of a *-labelled state
in G are also labelled by x.)

Initially, we define label(s) = A for all s € A and A € Split(B,a,C) and label(s) = L
for all s € B\ Sy. We use a queue () which initially contains the states s € A, A €
Split(B,a,C). While @ is not empty we take the first element s of @, remove s from @
and, if label(s) # * then, for all t € B\ Sy with (s,t) € Ep, we do:

(1) If label(t) = L then we add ¢ to @ and set label(t) = label(s).

(2) If label(t) € Split(B,a,C), label(t) # label(s), then we set label(u) = % for u =t and
all successors u of ¢t in Gg.%

Then, A = {s € B : label(s) = A}, Res(B,a,C) = {{s € B : label(s) € { L, *}}} \ {0}.

Complexity: It is clear that the method described above can be implemented in space
O(n?). We show that the time complexity of our method is O(n?). First, we observe that
there are at most n iterations of the refinement step. Thus, it suffices to show that each
refinement step takes time O(n?).

Clearly, for each iteration (i.e. each refinement step), the initialization requires O(n?)
time.” Ranging over all B, the construction of the trees Tree(B) (thus, the computation
of the sets Split(B, A, C)) takes O(nlogn) time if one uses some kind of ordered balanced
trees (see Section 12.2, page 314). We show that, ranging over all B € X, the sets A and

6For this, we might use a depth first search starting in ¢ to find all successors of t. States that are
already labelled by * are ignored.

"Note that, for each tuple (s, a,C), we have to calculate > iec P(s,a,t). Hence, for fixed a and ranging
over all s € S, C' € X, we get the time complexity O(n?). Since we suppose Act to be fixed, the values
P(s,a,C) can be computed in time O(n?).
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Res(B, a,C) can be derived in time O(n?): For fixed B € X, the directed graph Gp can
be constructed in time O(|B|?). Each state s € B is added to Q at most once.® Each state
t which is visited by a depth first search in step (2) is labelled by *. Thus, it can never be
visited in step (2) once again. As a consequence, each state causes time costs (at most)
of order 2n in the computation of Refine(B,a,C): as an element of @ and as a state with
label # « that is visited in step (2). Either case involves O(n) computations. Summing
up over all s € B, the computation of Refine(B,a,C) has time complexity O(|B|-n). So,
we obtain Refine(X,a,C) in time O(n?). =

7.3 Connection to other equivalences

In this section we discuss how the proposed notion of weak bisimulation equivalence relates
to other equivalences for fully probabilistic systems.

Clearly, weak bisimulation = is strictly coarser than (strong) bisimulation & la Larsen &
Skou [LaSk89] (Definition 3.4.3, page 54) which does not abstract from internal moves.
Formally, if (S, Act,P) is a fully probabilistic system and s, s’ are bisimilar states then
s and s’ are weakly bisimilar. Moreover, if the system is 7-free (i.e. P(¢,7) = 0 for all
states t) then weak bisimulation equivalence &~ and (strong) bisimulation equivalence ~
coincide.® Of course, we cannot expect ~ to be comparable with strong trace, failure or
ready equivalence in the sense of Jou & Smolka [JoSm90] as & abstracts from the internal
steps while the equivalences of [JoSm90] do not treat the 7-steps in a special way and
are strictly coarser than strong (and weak) bisimulation for 7-free systems. For instance,
the states s and s of the system below are strongly trace equivalent but not (strongly or
weakly) bisimilar.

a, 1

B, 1/ \y, 1

Vice versa, the states s and s’ of the system ({s,s,t},{r,a},P) where P(s,7,s') =
P(s',a,t) =1 and P(-) = 0 in all other cases are weakly bisimilar but not strong trace,
failure or ready equivalent in the sense of [JoSm90|. Dealing with the “weak” counterparts
of the equivalences proposed in [JoSm90]|, Theorem 7.1.4 (page 162) yields that, for finite
systems, =& is strictly finer than weak trace, failure or ready equivalence. Here, e.g. s, s
are called weakly trace equivalent iff

Prob(s, 7%y ... T oy 7) = Prob(s', T*a " ... T oy TY)

for all k > 0 and oy, ..., 04 € Act \ {7}.

Christoff [Chri90b, Chri90a] and Cleaveland et al [CSZ92] (see also [YCDS94]) introduce
testing equivalences for finite action-labelled fully probabilistic processes that relate two

8Note that only states with label L can be added to Q.
9Note that, for (S, Act,P) to be 7-free, Prob(s,7*at*,C) = P(s,a,C).
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processes in terms of the reliability in certain environments. While [Chri90b] deal with
deterministic environments [CSZ92] consider probabilistic testing scenarios. Both abstract
from internal computations. In the remainder of this section we discuss the relation
between these testing preorders and our notion of weak bisimulation. For this, we fix a
finite action-labelled fully probabilistic system (S, Act, P).

Testing equivalence a la Christoff: We show that weak bisimulation ~ is stronger than
the testing equivalences introduced by Christoff [Chri90b] (see also [Chri90a, ChCh91]).
[Chri90b] distinguishes fully probabilistic processes through the conditional probabilities
of certain deterministic testing scenarios. The several testing scenarios lead to the defini-
tions of probabilistic trace equivalence =, weak probabilistic testing equivalence =, and
strong probabilistic testing equivalence =g.. Asshown in [Chri90b], = O =, 2 =se. We
show that weak bisimulation equivalence ~ is stronger than strong probabilistic testing
equivalence =g, (and thus, it is also stronger than =, and =).

We briefly recall the definition of strong probabilistic testing equivalence. More precisely,
we use an equivalent characterization of =g, which is given in [ChCh91].

Notation 7.3.1 [The set Offerings] Let Offerings be the set of nonempty subsets of
Act \ {1} (the set of offerings) and Offerings™ the set of (finite) strings of offerings. € op
denotes the empty string of offerings.

For L, ..., Ly € Offerings and oy, ...,a, € Act \ {7}, Q(s,L;...Lg, 01 ...a,,t) denotes
the probability for performing the string 7" ... 7*a,. ending up in ¢t when offered a string
of Ly ... Ly. The formal definition of Q(-) is as follows.

Notation 7.3.2 [The values Q(s, L, &, C)] The function
Q : S x Offerings* x (Act \ {T})* x 2% — [0,1]

is defined as follows. Let s € S, C C S, L € Offerings, o € Act \ {7}, L € Offerings®,
a € (Act \ {T})*.
Q(S,Eoﬁ,d,C) =0 Zf&?é&"
~ B 1 : ifseC
Qs Lye,C0) = { 0 otherwise

Q(s,LL,aa,C) = Y Q(s,L,a,C)-Q(u, L, &,C)
uesS

Q(s,L,0,C) = 0 ifadl
If a € L then the values Q(s,L,a,C), s € S, C C S are the unique solution of the
following linear equation system.
1. Q(s,L,a,C) =0 if Prob(s,7™*a,C) = 0.
2. If Prob(s,7*a, C') > 0 then

P(s,a,C)
P(s,7)+P(s,L)

P(s,7,u)
Z P(s,7) +P(s, L)

uesS

Q(S,L,O&,C) - 'Q(S,L,O&,C).

Note that Prob(s,7*c«,C) > 0, a € L implies P(s,7) +P(s,L) > 0.
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Figure 7.4: s =4, s' but s & s

Notation 7.3.3 [The values Q(s,L,a)] If L € Offerings* and & € (Act \ {7})* then
we put Q(s,L,a&) = Q(s,L,&,S).

Definition 7.3.4 [The testing equivalence =, cf. [Chri90b, ChCh91]]
s =ge 8" iff Q(s,L,&) = Q(s', L, &) for all L € Offerings*, & € (Act \ {T})*.

Theorem 7.3.5 = is strictly finer than =e..

Proof: In Section 7.5.2, Theorem 7.5.19 (page 188), we show that =~ is finer than
=4e. TO see that =y . and = do not coincide consider the fully probabilistic system of
Figure 7.4 (page 173). Then, s =4, s’ as, for instance,

Q(s,{a,Bta) = 1 = 5 + 3-3 = Q' {o,B},0)
and Q(s,{a},a)=1=Q(s, {a},a). On the other hand,

Prob(s', 7", S) =3/4 > 1/2 = Prob(v', 7*a, S).

Hence, s’ 3¢ w'. Thus, Prob(s',7*, W) =1/2 > 0 = Prob(s,7*, W) where W is the weak
bisimulation equivalence class of w'. Thus, s % s'. m

[ChCh91] presents algorithms for deciding the three kinds of equivalences which are based
on solving linear equation systems and run in time O(n*) where n is the number of states
of the underlying system. In contrast to this, the use of weak (or branching) bisimulation
has the advantage that it allows the use of the conditional probabilities P »(-) which can be
computed by simple arithmetic operations (rather than solving linear equation systems).

Testing equivalences a la Cleaveland et al [CSZ92]: [CSZ92] (see also [YCDS94]
present quantitative extensions of the non-probabilistic testing preorders by de Nicola &
Hennessy [dNHe83, Henn88|. Given a test 7 — which is represented by a fully probabilis-
tic system equipped with a set of success states — the probability for a fully probabilistic
process P to pass the test T is defined as the probability measure of the set of “inter-
action sequences” leading to a success state. Intuitively, given a class of tests, two fully
probabilistic processes P, P’ are testing equivalent with respect to a certain class of tests
iff P and P’ pass all tests 7 of that class with the same probability. [CSZ92| consider
two classes of tests:

e The class Testsy of 7-free tests which yields the testing equivalence denoted by =j.

e The class Tests of all tests that do not contain “7-loops” which yields the testing
equivalence denoted by =.
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Figure 7.5: s = s’ but s % s’

The exact definition (more precisely, an alternative characterization) of =q is given in
Section 7.5.2 (page 188 ff) where we prove that =, is coarser than ~. For the precise
definition of = see [CSZ92] or [YCDS94].

Theorem 7.3.6
(a) = is strictly finer than =,.

(b) ~ and = are not comparable.

Proof: In Section 7.5.2, Theorem 7.5.27 (page 191), we show that =~ is finer than
=p. As shown in [YCDS94], the states s and s’ of the system shown in Figure 7.5 (page
174) are testing equivalent with respect to = (and hence, testing equivalent with respect
to =¢). On the other hand, s and s' are not weakly bisimilar as Prob(s, 7*a7r*,T) = 1
while Prob(s',7*a7r*,T) = 0 where T denotes the weak bisimulation equivalence class of
t. (Note that neither #] nor ¢} is weakly bisimilar to t.) The states so and sj of the system
shown below are weakly bisimilar while so # s;.

@T’l :@a’l :@ T,% a,%

For instance, the test 7 shown on the right distinguishes the states sp and sj. The
probability for sy to pass the test T is 3/4 while the probability for sj to pass 7 is 1/2. m

7.4 Compositionality

We establish the congruence result (Theorem 7.4.2, page 175) stating the compositional-
ity of weak bisimulation equivalence with respect to the operators of PLSCCS.'® More
precisely, we show that weak bisimulation equivalence = is a congruence with respect to
the PLSCCS operators action prefixing, restriction, relabelling, lazy product and guarded
probabilistic choice.

10Recall the syntax and semantics of the lazy synchronous calculus PLSCCS which was introduced in
Section 4.3 (page 83 ff).
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In what follows, we shrink our attention to finitary PLSCCS programs, i.e. programs P
where the associated fully probabilistic process O[P] is finite (or can be identified with a
finite process).

Notation 7.4.1 [Finitary PLSCCS programs| A PLSCCS program (decl, s) is called
finitary uff there are only finitely many statements t € Stmtqo that are reachable from s in
(Stmtg, Acty, P9!). A declaration decl : ProcVar — Stmtprsccs is called finitary iff, for
each Z € ProcVar, (decl, Z) is finitary.

If P is finitary then O[P] can be identified with the finite fully probabilistic process that
arises from O[P] by removing all statements ¢ € Stmto that are not reachable from the
initial state. Clearly, if decl is finitary then, for each statement s, (decl, s) is finitary.!' For
PLSCCS programs P, P', we define P ~ P’ iff O[P] ~ O[P']. For fixed declaration decl,
we define the relations ~9 for PLSCCS statements by s =% " iff (decl, s) ~ (decl, s').

Theorem 7.4.2 Weak bisimulation equivalence is preserved by the PLSCCS operators
action prefiring, restriction, relabelling and lazy product. More precisely, if decl is a
finitary declaration, then for all PLSCCS statements s, s', s;, s.:

(a) If s =% s then a.s =% a.s', s\ L ~% &'\ L and s[¢] ~ s'[¢].

(b) If s; =%l st i =1,2, then 81 ® 85 ~%! s ® s, and thus,

77

51 @ 5y =¥ 5@ s,
(c) Weak bisimulation equivalence is a congruence with respect to guarded probabilistic
choice, i.e. if s; =9 s i€ I, then

77
E [pi]as.s; ~%! E [pi]a;.s;.

el el

Proof: Part (a) is an easy verification. We show (b) and (c). More precisely, we
fix a finitary declaration decl, some finite subsets Si, Sy, of Stmtg that contain 0 and
that are closed with respect to the transition relation induced by P% (i.e. if t € S; and
Pdcl(t, a,u) > 0 then u € S;). We show that

! ! / decl 1 ,
R = {(81®82,81®82):Si,SiGSi,Si% “ si,z:1,2}

is a bisimulation (in the sense of Definition 3.4.3, page 54). Here, we put t®0 =0®¢ =0
and t ~dt 0 iff O[(decl, t)] ~ (Stmtg, Acty, P4 0). For subsets C; of S; and C, of S,
we define

Cl®02:{81®32231601,82602}.

Clearly, R is an equivalence relation on S; ® Ss. Each equivalence class C € S/R is of
the form C = C; ® C, where C; € S;/ ~% i =1,2. Let a € Act, C = C, ® Cy € S/R

11 A sufficient condition which guarantees that decl is finitary is the “simplicity” of decl in the sense
that, for all process variables Z, Z' € ProcVar, there is no occurrence of Z' in decl(Z) that is contained
in a substatement of the form ¢[¢], ¢\ L or t; ® ts.
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and (s,s’) € R where s = 51 ® s, ' = s} ® s), 5; &% s, i = 1,2. Then, by Theorem
7.1.4 (page 162) and Corollary 4.3.2 (page 84):

Pé*(s a,C) = > Prob™(sy, 7", C1) - Prob®(sy, 7z, Cs)

(a1,a2)€Syn,

= > Prob®™ (s}, % ay, Cy) - Prob™ (s, "y, Cy) = PU*(s a, C).

((!1 ,az)ESyna

Similarly, Corollary 4.3.3 (page 84) yields that P%(s,0,Cy) = P%(s' 0,Cp) where
Co = [0] is the equivalence class of 0 with respect to R. We conclude P%“ (s a,C) =
Picl(s' a,C) for all a € Acty and C € S/R. Hence, R is a bisimulation. In particular,
whenever (s,s’) € R then s ~% s'. This yields the claim of part (b). Part (c) can
be derived from Theorem 7.1.4 (page 162) and the fact that, for C' C Stmte and s =

®icr [pilaisi,
PT’Obded(S,T*aac) = Z pi-PT’ObdeCl(Si,T*a,C) + Z bj

iel; jeJ
where I, ={ic€l:a;,=7}and J={i€l:a;,=0a,5,€C}. m

Example 7.4.3 We consider the PLSCCS program Sender ® Receiver of Example 4.3.6
on page 86 which we verify against the specification

def
Spec = produce.consume.Spec.

Clearly, the operational semantics of Sender ® Receiver (shown in Figure 4.14 on page
88) and the operational semantics of Spec are weakly bisimilar. On the other hand, our
congruence result (part (b) of Theorem 7.4.2) allows us to use “modular verification”
(i.e. to verify the components Sender and Receiver separately) avoiding the construction
of O[Sender ® Receiver] and using

Sender_Spec def produce.deliver'wait.ack?.Sender_Spec

as the specification for the sender. Clearly, O[Sender| (shown in Figure 4.13 on page 87)
and O[Sender_Spec| are weakly bisimilar. Thus, by Theorem 7.4.2 (page 175):

Sender @ Recewver =~ Sender_Spec @ Receiver.

It is easy to see that Spec =~ Sender_Spec ® Receiver which yields that Sender ® Receiver
and Spec are weakly bisimilar (by the transitivity of ~). m

Of course, we cannot expect weak bisimulation equivalence to be a congruence for the
synchronous parallel composition of PSCCS as PSCCS does not treat the internal action
7 in any distinguished way. For example, if s; = a.nil, s| = T.a.nil and sy = 3.nil then
s1 X sy can make a a * S-move while s} X sy preforms 7% 3. Thus, if a % 3 # 7 % 3 then
s1 X s9 and s} X sy are not weakly bisimilar while s; and s} are. The counterexample that
demonstrates that weak bisimulation equivalence is not a congruence for the probabilistic
choice operator is almost the same as the counterexample in the non-probabilistic case
which shows that weak bisimulation equivalence is not preserved by non-deterministic
choice. Consider the PLSCCS statements s; = a.nil, s} = 7.a.nil, s = $.nil and
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1 1 / 1] o 1
s = [ifs @ [f]es = [ @ [}
Then, s; ~% 5] but s 2% ' as s reachs via internal actions the weak bisimulation

equivalence class C of s; = a.nil with probability 1/2 while s’ cannot move to a state
that is weakly bisimilar to s;. Formally, we have

Prob®™!(s,m*,C) = L > 0 = Prob™(s',7*,C)

where C' is the weak bisimulation equivalence class of s; and decl an arbitrary declaration.

7.5 Proofs

In this section we give the proofs of the main results of that chapter. In what follows,
we fix a finite action-labelled fully probabilistic system (S, Act, P). We use the following
notations: If R is an equivalence relation on S and (2 a regular expression such that
Prob(s, £2,C) = Prob(s',§2,C) for all (s,s') € R and C € S/R then we define for all
A € S/R: Prob(A, $2,C) = Prob(s, £2,C) where s € A. We simply write [s] to denote the
weak bisimulation equivalence class of s (i.e. [s] = [s]~).

7.5.1 Weak and branching bisimulation equivalence

In this section we give the proof of Theorem 7.1.10 (page 163) which states that ~ = =,
and the proof of Theorem 7.1.4 (page 162).

Definition 7.5.1 [Completeness of a weak bisimulation] Let R be a weak bisimula-
tion. R is called complete uff

e Whenever s € S, C € S/R and Prob(s,7*,C) =1 then s € C.

e If Div # () then Div € S/R.

Note that, if R is a complete weak bisimulation and A € S/R, A # Div, then ANDiv =)
(in particular, A does not contain terminal states) and there is a state s € A with
P(s,7,A) < 1. Thus, AN Sy # 0 where X = S/R is the induced partition.?

Lemma 7.5.2 s ~ s iff (s,s') € R for some complete weak bisimulation R.

Proof: It suffices to show that each weak bisimulation is contained in some complete
weak bisimulation. For R to be a weak bisimulation, we define J(R) to be the smallest
equivalence relation on S which contains R and such that:

o If Prob(s,7*,[s'|g) = 1 then (s,s') € J(R)

o If Div # () then (s,s") € J(R) for all s, s € Diwv.

Let Ry = R, Riyv1 = J(R;) and R' = UJ; R;. Tt is easy to see that R' is a complete weak
bisimulation. m

12Here, Sy is as in Notation 7.2.2, page 165.
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Notation 7.5.3 [The matrices A and A%] For R to be a complete weak bisimula-
tion, we define matrices Ar and AY as follows: Let Ay, ..., Ay, be an enumeration of those
equivalence classes A; € S/R which contain some state s; € S\ Sierm with P(s;, 7, A;) < 1.
(Then, {Ay,..., Ay} = S/R\ {Div}.) Let Ag be the following matriz:

Agr = ( Prob(A;, 7, Aj) )i<ij<k
We define Ay = Div. In the case where Ay = 0 we define Prob(Ay, 7*, Ag) =1 and
Prob(Ay, 7", A;) = Prob(A;, 7, Ap) =0
ifj=1. Let A = ( Prob(Ai, 7", 4;) Jo<ij<k-
Independent on whether or not Div = (), the matrix A% is of the form

*

1|
0
AY =
: Ap
0
Note that Sierm C Div = Ay. Hence, 4; N Sierm =0,5=1,... k.

Lemma 7.5.4 If R is a complete weak bisimulation then Agr and A% are regular. More-
over: For alll € {1,... k} and all by, ... b 1,b;11,...,b € [0,1], the equation system

k
93’1:0, Z.Ti'P’l’Ob(Ai,T*,Aj) = bj jIO,,k,]#l
=0

has at most one solution.

Proof:  Let Ay,..., A be as in Notation 7.5.3 (page 178). For each h € {1,...,k} we
fix some state sy € Ap with P(sy, 7, Ap) < 1. Let

1—e 0 0 ... 0
0 1—62 O O
C = (P(sp, 1, A) )1§h,z‘§k and E =
0 0 0 l—ek

where .
ej = Z P(sj, 7, A;) - Prob(A;, 7", A;).
i=1
We show that C- Ar + E = Ag. Let dp,; be the element of C- Ag + E in the h-th
row and j-th column.

e For j=1,... k we have:

k
dj;j = Z P(s;, 7, A;) - Prob(A;, 7", A;) + 1—e; = 1 = Prob(A;, 7", Aj).

=1
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e Forh,7=1,...,k and h # j:
k
PTOb(Ah,T*,Aj) = PTOb(Sh,T*,Aj) = Z P(Sh,T,Ai)'PTOb(Ai,T*,Aj) = dh,j-
i=1

Note that Prob(Ay, 7%, A;) =0 for all j > 1.

This yields C-Ar + E = Ag. Thus, E = (I-C)-Apg where I denotes the k x k-identity
matrix. Next we show that e; >0,7=1,...,k.

o If Prob(A;,, 7", A;) # 0 for some g € {1,...,k} \ {j} with P(s;, 7, A;;) > 0 then

P(sj, 7, Ai) + P(s;,7, Aiy) - Prob(Ai,, 7%, 4;) < P(sj,7) < 1

109

'Mw

i=1
G
since Prob(A;,, 7, Aj) < 1 because R is complete.
o If Prob(A;, 7", Aj) =0foralli e {1,... ,k}\ {j} with P(s;, 7, 4;) > 0 then
ej = P(s;,7,4;) Prob(4;, 7", 4;) = P(s;,7,4;) <1

Thus, in both cases, e; < 1. Hence, E is regular which yields the regularity of Ag. It is
clear that the regularity of A implies the regularity of the “full” matrix A%. Note that
AY (and thus the inverse matrix (Ag") ' of AY) are of the form:

1| * 1| §
0 0
1&0 = A 0\—1 _
v= A (Ar) |
0 0
Moreover, E- Az' =TI —C. Thus, (1—¢;)-a;; = 1—P(s;,7,4;) > 0 where (Az’) ! =
(a;,;)0<ij<1- Hence,

(*) aj,]->0,j:1,...,k.

Next we show that the equation system of above has at most one solution. Let
L = {(bg,...,blfl,t,bH,l,...,bk) it e R}

where IR denotes the set of real numbers. Let H = {(z,...,7;) € R : 2; = 0} and
L' ={y-(Ag")':y € L}. Then, HN L' is the set of solution of the equation system
under consideration. We show that either H N L' = () or H N L' consists of a single
point. First we observe that H and L (and thus L' and H N L) are affine spaces with
dim(H) = k and dim(L) = dim(L') = 1 where dim(X) denotes the dimension of X.
Hence, if H N L' # 0 then

e cither dim(H NL') =0 (iff H N L’ consists of a single point)
eordim(HNL)=1(iff L' C H).
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Therefore, it suffices to show that L' Z H. We suppose that L' C H. Then, there are real
vectors a, ¢ such that L' = {a+t-c:t¢t € R} where a = (aop,...,a;) and ¢ = (co, ..., cx)
with a; = ¢, = 0 and ¢ # 0. By definition of L' we have L = {x- A% : x € L'}. Hence,

k k
bj = > ai- Prob(A;, 7", Aj) + t- > c¢;- Prob(A;, 7, A;)

forall j=0,...,k, 7# l and t € IR. Thus,

k
> e+ Prob(A;, 7%, A;) =0 if j £

i=0
Hence,

k
c & Z ¢ - Prob(A;, 7, A;) # 0
i=0
(since, otherwise the rows of AY% would be linear dependent in contradiction to the reg-
ularity of A%). W.lo.g. ¢ = 1. Then, c is the I-th row of (Ag")"!. In particular,
0 = ¢; = a;;. But this contradicts the constraint a;; > 0 from (*). m

We show that =~ coincides with another kind of bisimulation equivalence that we call
right-branching bisimulation.

Notation 7.5.5 [Right-branching bisimulation] A right-branching bisimulation is
an equivalence relation R on S such that Prob(s,7*a,C) = Prob(s',7*a, C) for all (s,s") €
R, a € Act and all equivalence classes C € S/R. s &, s iff (s,8") € R for some right-
branching bisimulation R.

Lemma 7.5.6 s =, s implies s ~ s'. More precisely: Each right-branching bisimu-
lation 1s a weak bistmulation.

Proof: Let R be a right-branching bisimulation. We show that R is a weak bisimu-
lation. Let a € Act \ {7}, s € S and C € S/R. Then, for all B € S/R and s € B:

Prob(s,7*ar*,C) = > Prob(s,7*a,t) - Prob(t,7*,C)
tes
= Z Prob(B,T*a,A) . P?“Ob(A, T*,C).
AcS/R

Hence, if (s,s') € R then Prob(s,7*ar*,C) = Prob(s',7*ar*,C) for all C' € S/R and
a€ Act\{7}. =

Lemma 7.5.7 s ~ s implies s =, §'. More precisely: Each complete weak bisimu-
lation 1s a right-branching bisimulation.

Proof:  Let R be a complete weak bisimulation. We fix some a € Act \ {r} and show
that Prob(s,7*a, A) = Prob(s',7*a, A) for all s ~ s’ and all A € S/R. (Ranging over
all a, we obtain that R is a right-branching bisimulation. Thus, ~ C ~,,.)
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By the regularity of AY% (Lemma 7.5.4, page 178): Whenever we fix a real vector a (of
length k + 1) then the linear equation system x - A% = a has a unique solution. For s € S
and 7 =0,1,...,k we have:

Prob(s, 7" at*, A;) = > Prob(s,7*a,t) - Prob(t, 7", A;)

tesS

k
= Y Prob(s, 7" a, A;) - Prob(A;, 7%, A;).

1=0

Thus, for fixed {: For all states s € A;, the vector (Prob(s,7*a, A;))o<i<k is a solution of
the linear equation system x - A% = a where a = (a;)o<;j<x and a; = Prob(4;, T™*at*, A;).
By the regularity of A%: If (s,s') € R (i.e. s, s’ € A; for some ) then Prob(s, 7*a, 4;) =
Prob(s',m*a, A;), 1 =0,...,k. m

Lemma 7.5.8 s =4, s impliess =~ s'. More precisely: Each branching bisimulation
1 a weak bisimulation.

Proof: Let R be a branching bisimulation. It suffices to show that R is a right-
branching bisimulation (Lemma 7.5.6, page 180). For » > 1 and A, C € S/R, A # C, let
', be the set of tuples (Cy, ..., C,) such that

.CiGS/R,iIO,l,...,T,
e Cy=A,C, =C,
.Cz'?éCH_l,Z-:O,...,’I‘—]..

Then, for all s € A:
[e's) r—1
Prob(s,7*,C) = Z Z H Probr(C;, 7%, Cit1)
r=1 (Ci,...,Cr)er, =0
Hence, Prob(s,7*,C') = Prob(s',7*,C) for all s, s’ € A. Similarly,
Prob(s,7*a,C) = Prob(s', 7*a, C)
foralls, s € A,a€ Act\{r} and C € S/R. m

Lemma 7.5.9 (cf. Lemma 7.2.4, page 165) Let R be an equivalence relation on S.
Then, R is a branching bisimulation if and only if for all C € S/R, a € Act and (s,s') €
R:

(1) If P(s,7,[s]r), P(s',7,[s'|r) <1 and (a,C) # (7, [s]r) then

P(s,a,C) B P(s',a,C)
1- P(S’ T, [S]R) B 1- P(SI’ 7, [SI]R)'

(2) If P(s,7,[s|r) =1 then

o cither P(t,7,[tlr) =1 for all t € [s]g
e or there exists a finite path o starting in s with o(i) € [s]g, i = 1,...,|o| and
P(last(o),T,[s]r) < 1.
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In this case: If s € S with P(s, 7, [s]r) <1 then

P(s,a,C)

P?”ObR(S,T*a, C) == m

for all a € Act, C € S/R with (a,C) # (7,[s]r)-

Proof: Let T = Siepm U {t € S\ Sterm : P(t,7,[tlr) = 1} (i.e. T = S\ Sx where
X = S/R).

“if”: Let A€ S/R with A C T. Then, for all s € A:

Probp(s, ™a,C) = {1 cifa=7and C=A4

0 : otherwise

Then, Probg(t,7*a,C) = Probg(t',7*a,C) for all ¢, ' € A. Let A, C € S/R such that
A ¢ T. Then, the matrix I — C4 is regular where I is the |A| x | A|-identity matrix and
Ca = (P(s,7,t))steca- This can be seen as follows: If (I - C4)-x =0, x = (2;)sca, then
s = Y4ea P(s,7,t) -z for all s € A. If we suppose that x # 0 then we may assume
w.l.o.g. that z; > 0 for some s € A (otherwise we deal with —x rather than x). Let W
be the set of states s € A where z is maximal. Then, for all s € W, P(s,7,A) = 1 and
zs = xy if P(s,7,t) > 0. Thus, W C T and, if s € W then P(s,7,t) > 0 implies t € W.
Hence, there is no finite path o starting in s with o(i) € A, i = 0,1,...,|o| — 1, and
P(last(o), 7, A) < 1. This contradicts (2).

Let a € Act such that (a,C) # (1, A). Then,

Probg(s,7a@,C) = >_ P(s,7,t) - Probg(t,7a,C) + P(s,a,C).

tcA

Hence, the vector (Probg(s, 7*@, C'))sca solves the equation system (I—Cy4)-x = b where
b = (bs)sca and by = P(s,a,C). On the other hand, for all s € A:

(*) P(s,a,C) = = > P(s,1,t)-P(s,a,C) + P(s,a,C)(1 —P(s,7,A)).

teA
Let ¢ = P(s,a,C)/(1 —P(s,7,A)) where s € A\ T. (*) yields:

= Y P(s,1,t)-z + P(s,a,C) forallse A
teA

(Note that P(s,a,C) =0 and P(s, 7, A) = 1 for s € ANT'.) Hence, the vector x = (4)sca
where z; = x for all s € A solves the equation system (I — C,)-x = b. By the regularity
of I — C4 we get Probg(s,7*a,C) = x for all s € A. This yields that R is a branching
bisimulation and

N P(s,a,C

foralls € A\T.

“only if”: Let R be a branching bisimulation, A, C € S/R and a € Act such that
(a,C) # (7, A). Let
Tq,c = Probg(A,77a,C).
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Then, z,c = P(s,7,A) zoc + P(s,a,C) for all s € A. Hence, if s € ANT then

P(s,a,C)
1-P(s,7,A)

Lo, =

If se ANT and A Z T then z, ¢ # 0 for some pair (a,C) as above. Thus,
Probg(s,7*a,C) = x4c > 0.

Then, there exists a finite path o starting in s of length r» > 1 with trace(o’) € 7*q,
o'(iye A,i=0,1,...,r—1 and last(c') € C. Let o be the (r — 1)-th prefix of o’. Then,
o(i)e A,i=1,...,7 — 1 and P(last(o), 7, A) < 1 (since P(last(c),a,C) > 0). m

Proposition 7.5.10 s ~ s iff s =~ &
Proof:  follows by Lemma 7.5.6 (page 180) and Lemma 7.5.7 (page 180). m

Notation 7.5.11 [The conditional probabilities Pg(-)] Let R be an equivalence re-
lation on S.
Pp: S x Act x S —[0,1]

is given by: Pg(s,a,t) = 0 if P(s,7,[s|]g) = 1 or s € Sierm. For s € S\ Sierm with
P(s,7,[s|r) <1,

P(s,a,t)

Pr(s,a,t) = 1—-P(s,7,[s|r)

ifa# T orté|s|g.
and Pr(s,7,t) =0 if t € [s]g. For C C S, a € Act and s € S, let

Pr(s,a,C) = > Pg(s,a,t).

teC

Clearly, Pg(-) = Px(-) (defined as in Notation 7.2.3, page 165) for the induced partition
X =S/R.

Lemma 7.5.12 s ~ s’ implies s =y, s'. More precisely: Each complete weak bisimu-
lation s a branching bisimulation.

Proof: Let R be a complete weak bisimulation. It suffices to show that R fulfills the
conditions (1), (2) of Lemma 7.5.9 (page 181). Let T' = Sy, U{t € S : P(t, 7, [t|r) = 1}.

Condition (2): Let A € S/R, A # Div. There exists a € Act and C € S/R with
(1, A) # (a,C) such that Prob(A,7*a,C) # 0. Hence, for each s € T there is a finite path
o with trace(c) € 7*@ and last(c) € C. Let i be the smallest index such that o(i) ¢ T.
(Such an index i exists by definition of 7".) Then, ¢ > 1 and o(i) € A\ T. (Note that
o(i—1) € T implies 0(i) € A.)

Condition (1): Let Ay, ..., A; be as in Notation 7.5.3 (page 178). Let C € S/R, A; # C,

s € Aj. Then,
k

Prob(s,7*,C) = ZP(S,T, A;) - Prob(A;, 7, C).

1=0
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Note that Prob(C,7*,C) = 1. Now we suppose that s € A; \ T". Then,

Prob(s,*,C) ooOP(s, T, A)

— . Prob(A;, *

1—P(s, 7, 4j) ;1 P(s, 1, Aj) rob(A;, 7%, C)
b P(S T A) P(S T A)

e )1 1 P bAz * y 1y 5 P bA "
; [—P(s,m A,) rob(A;, 7, C) + 1= P(s,7, 4 rob(A;,7*,C)
i7j
k p N

= X Pals,7,Ai) - Prob(4;,7",C) + (5,7, 4) - Prob(s, ", C)

1-P(s,1,4,))

Here, we use the fact that Prob(s,7*,C) = Prob(A;, 7*,C). We obtain:

1 _ P(s,1,4)
1—P(8,T,Aj) ]_—P(S,T,Aj)

Prob(s,7*,C) = Prob(s,7*,C) - (

I
M=

PR(Sa T, AZ) ' PTOb(Aia T*’ C)

.
Wl
<l o

Thus, for each s € A; \ T, the vector (Pg(s, 7, A;))o<i<k solves the equation system
k
x; =0, > xi-Prob(A;,7,C) = Prob(A;,m,C).
i=0

Lemma 7.5.4 (page 178) yields Pg(s,7,C) = Pg(s',7,C) for all 5,5’ € Aj and C € S/R,
C # A;. Let
Pr(A;,7,C) =Pg(s,7,C) wheresec A;NT.

For all « € Act \ {7} and s € A;:
k
Prob(s, 7", C) = > P(s,1, A4;) - Prob(A;, 7, C) + P(s,a,C)
1=0
As before, we obtain for s € A; \ T

Prob(s,7™*a,C) = i Pr(s,7,A;) - Prob(A;, 7" a,C) + Pg(s,a,C).
=
Then, for all s € A;\ T, a € Act and C € S/R:
k
Prob(Aj, e, C) = > Pgr(A;,7,4) - Prob(A;, 7, C) + Pg(s,a,C)
7
We obtain Pg(s, o, C) = Pg(s',a,C) forall s, s’ € A;\T. m

Corollary 7.5.13 (cf. Theorem 7.1.10, page 163) s ~ s' iff s ~y, 5.
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Lemma 7.5.14 Let Ry, Ry be branching bisimulations. Then, R = (R; U Ry)* is a
branching bisimulation.

Proof: =~ We show that R fulfills the conditions (1) and (2) of Lemma 7.5.9 (page 181).
First we observe that for j € {1,2}, each equivalence class C' € S/R can be written as
C' = CoU...UC, where C; € S/R]

Condition (1): Let B, Cy,...,C, € S/R; such that C; N Cy, =0 if i # h. Let s, s' € Cp
with P(s,7,Cy), P(s',7,Cy) < 1and a € Act with a # 7if Cy = B and C' = CpU. . .UC,.
Then:

P(s,a,B)- (1 -P(s',7,C")) = P(s,a,B)- <1 — iP(s',r, Cz)>

1=0

, " PS,T,Ci
= P(S,G,B)' <1_P(3’Ta00)_21_;_)(8 T é’o)

= (1-P(s,7,Co)) - P(s,a,B)- (1 B Z 1 i)S(STTC%(J)>

=1

= P(s,a,B)- (1-P(s,7,C)) - (1 - Z 1 fs(;fé}))>

=1

(1-P(s,7, 00))>

= P(s,a,B)- (1 - > P(s,, CZ)> = P(s',a,B)- (1 —P(s,7,C"))
i=0

Now we assume that C' € S/R. Hence, for all B’ € S/R, a € Act such that a # 7 if

Co CB: If P(s,7,C"), P(s',7,C") < 1. then:

P(s,a,B") z’": P(s,a,B;) z’": P(s',a,B;) P(s,a,B)
1-P(s,7,C") = 1-P(s,1,C") N = 1-P(s,1,C") - 1-P(s,7,C")
if BB =ByU...U B,, where BiES/Rj and B;N B, =0 if i # h.

Condition (2): Let P(s, 7,[s|r) = 1. We may assume that P(s, 7, [s]g;) < 1,j = 1,2, and
that P(t,7,C") < 1 for some ¢t € C" where C' = [s]g. (In the case where P(s, 7, [s]g,) = 1
for some j we apply Lemma 7.5.9 (page 181) to R; and obtain the claim.) There is some
a € Act, B' € S/R with B" # C" if a = 7 and P(¢,a, B') > 0. By definition of R there is
a sequence s = s, S, ..., =t with (s;, 8;41) € RiUR», i =1,...,1. It can easily shown
by induction on i that Prob(s;, 7*a,B’) > 0,7 =0,...,l, Hence, there is a finite path o
with first(o) = s, 0(i) € C',i=0,1,...,|o| and P(last(c),7,C") < 1. m

Lemma 7.5.15 =, is a branching bisimulation.

Proof: Let Ry,..., R, be an enumeration of all branching bisimulations (on the fixed
fully probabilistic system (S, Act,P)). Let R = (U; R;)*. By induction on r and using
Lemma 7.5.14 (page 185), it can be shown that R is a branching bisimulation. Thus,
R C =4.. On the other hand, ~,, = U; R; (by definition of =s,.). Hence, ~;. C R.
Thus, ~. = R is a branching bisimulation. m

Lemma 7.5.16 =~ is a weak bistmulation.
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Proof:  Lemma 7.5.8 (page 181), Lemma 7.5.15 (page 185) and Corollary 7.5.13 (page
184) yield that ~ = =, is a weak bisimulation. m

Theorem 7.5.17 (cf. Theorem 7.1.4, page 162) If s ~ s'. then, for all C € S/ =,
k>1anday,...,on € Act \ {7}:

(a) Prob(s,m* a7 o™ ... T ay, C) = Prob(s', 7oy o™ ... T g, C)

(b) Prob(s, T™*aym* o™ ... T, C') = Prob(s', T* a1 m* ot ... T 7, C)
Proof: We prove part (a) by induction on k. In the basis of induction (k = 1) we
have to show that Prob(s, 7™*«a,C) = Prob(s', 7*a, C) for all visible actions v and all weak
bisimulation equivalence classes C. This follows immediately by Proposition 7.5.10 (page

183) and Lemma 7.5.16 (page 185). In the induction step k —1 = k we assume that
k>2 oq,...,ap € Act \ {7} and 2 = 7*ay7* ... 7*ay. Then,

e Prob(t,2,C) = Prob(t',2,C) forallt = ¢ and C € S/ ~
e Prob(s,m™ay, A) = Prob(s',7*a;, A) for all A € S/ ~

(induction hypothesis). Thus:

Prob(s, 7" a102,C) = > Prob(s, 7oy, A) - Prob(A, 2,0)
AeS/~

= Y Prob(s', 7" a1, A) - Prob(A,2,C) = Prob(s', 7% a1 12, C).
AeS/~

Here, we use the fact that Pathys,(u,7*a162,C) can be written as disjoint union of the
sets IT4(u), A € S/ =, where I1, is the set of fulpaths 7 such that

o trace(r®) € 77y,
° ﬂ(k) €A,
o m=n% oy where y € Pathy(r(k),2,0)

for some k > 0. Part (b) can be derived from (a):

Prob(s,2,C) = Y Prob(s, 7 a1 ... 7 oy, A) - Prob(A,7*,C)
AeS/~

= Y. Prob(s', Tt .. . T on, A) - Prob(A,7*,C') = Prob(s',2,C).
AeS/~

where 2 = 7o 7" ... T T W

7.5.2 = and the testing equivalences =, and =

We complete the proofs of Theorem 7.3.5 (page 173) and Theorem 7.3.6 (page 174) by
showing that ~ is finer than the testing equivalences = . and =.

Lemma 7.5.18 If A, Ce€ S/ ~,s, s € A, L C Act\ {r} and a € L then

Q(s,L,a,C) = Q(s',L,a,C).
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Proof: First we observe that, for all A, B € S/ ~ = S/ =, s, s’ € Awith P(s, 1, A),
P(s',7,A) <1land a € Act \ {7}:
P(s,7,S\A) + P(s,L)  P(s',7,S\A) + P(s',L)
1-P(s,T,A) B 1-P(s,1,A)

P(s,a,B) P(s',a,B)
1-P(s,7,A) 1-P(s,7,4)

In particular, P(s,7,S\ A) + P(s,L) =0iff P(s',7,S\ A) + P(s',L) =0. If A = Div
then we put P'(A,a,B) =0and r4 = 1. For A € S/ ~, A # Div, we define

, _ P(s,a,B) _ P(s,7,S\ A)+P(s, L)
Pi(4,0,B) = 1-P(s,7,A)’ A= 1-P(s,7,A)

where s € A such that P(s,7,4) < 1. Let (g4)acs/~ be the unique solution of the
following equation system.

1. ga=0if r4 =0 or Prob(A,7*a,C) = 0.
2. If r4 > 0 and Prob(A, 7", C') > 0 then

1
ga= — |P'(A4,aC) + > P(A7,B) gp
ra BeS/~
B#£A

The uniqueness of the equation system above is an easy verification. For all A € S/ ~
such that 74 > 0 and Prob(A, 7*a,C) > 0 and s € A with P(s, 7, A) > 0 we have:

P(s,7,S\ A)+P(s,L) >0

and

v

<1 _ P(s,1,4) ) - P(s5,7,8\A) +P(s,L)
P(s,7)+P(s,0)) ™ = 7 P(s,7) +P(s, L)

P A P(s, L 1
_ PErnS\ATPEL) L iy 0y > P(A,7,B) g

P(s,7)+P(s, L) Ta Bes)m
B#£A
1-P(s,1,A)
= | P'(A P (A 7. B)-
P+ PGy | T AT 2 P 0
BAA
1
= - P C P(A 7 B)-
P(s,7)+ P(s, L) (52, )+Bezsd:z 4,7 5)- a5
BAA
P(s,1,B)

_ P(s,a,C’) + Z
~ P(s,7) +P(s, L) il P(s,7)+P(s, L
BAA

)'QB-
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Thus,
P(s,a,C) P(s, 7, B)
P(s,7) +P(s, L) 2 P(s,7)+ P(s, L) B

BeS/~

qa =

For A € S/ ~ and s € A, let ¢, = g4 and r; = r4. Then, the vector (gs)scs solves the
following regular linear equation system. If Prob(s,7*a,C) = 0 or ry = 0 then ¢, = 0.
Otherwise,

P(s,a,C)
P(s,7)+P(s, L)

P(s,1,u)
2 P(s,7)+P(s, L) -

uesS

qgs =

It is easy to see that, if r; = 0 then Q(s, L, a, C') = 0. Thus, the vector (Q(s, L, a,C))secs
is also a solution of the equation system above. Hence,

s = Q(s,L,a,C) for all s € S.
We conclude: Q(s,L,a,C) =q4 =Q(s',L,a,C) forall s, s € A, Ac S/~. m

Theorem 7.5.19 (cf. Theorem 7.3.5, page 173) = is finer than =g.
Proof: As observed in [Chri90b], s =g, s' iff
Q(s,Ly...Ly,ay...ag) =Q(s', Ly ... Ly, aq ... )

for all Ly,..., L € Offerings and ay, ..., a4 € Act \ {r}. By induction on k& and using
Lemma 7.5.18 (page 186) we obtain that, if s &~ s’ then

Q(s,Ly...Lg,ar...0,C)=Q(s', Ly ... L,y ..oy, C)
for all C' € S/ ~. Summing up over all C' € S/ ~ we obtain
Q(s,L1...Lg,ay...a) =Q(s', Ly ... L,y ... az).
Hence, s =4, s'. ®
Notation 7.5.20 [The set Distro(X)] For X to be a set, let Distro(X) be the set con-
sisting of all distributions on X and the function p : X — [0,1] with p(x) = 0 for all

reX.

Notation 7.5.21 [Probabilistic traces] A probabilistic trace is a finite sequence

0 = <p1’a1><p2’a2> "'<pk’ak>

over Distro(Act\{7})x (Act\{7}). ep,1 denotes the empty probabilistic trace, ProbTraces
the collection of all probabilistic traces.

Notation 7.5.22 [The normalizator norm(s, p)] For p € Distro(Act\{7}) and s € S,
the normalizator of s and p s defined by

norm(s,p) = >, P(s,a)-pla) + P(s,7).
acAct\{r}
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[CSZ92, YCDS94] define the probabilities N (s, a, p,C) that from state s the state t is
reached via a finite path labelled by 7*a given that the environment is enabling actions
accordance with p. Here, we use a slightly different way to define N(-) (which yields the
same values).

Notation 7.5.23 [The values N(s,a, p,C)] Let
N : S x (Act \ {7}) x Distro(Act \ {1}) x 25 = [0, 1]

be defined as follows. The vector (N (s, a, p,C))scs is the unique solution of the following
linear equation system.:

1. If Prob(s,m™a,C) = 0 or norm(s,p) = 0 then N(s,a, p,C) = 0.

2. If Prob(s,7*a, C') > 0 and norm(s, p) > 0 then

P t
N(Saaapac) = ﬂ 'P(S,Ot,C) + Zﬂ ’ N(t,Oé,p,C).

norm(s, p) =5 norm(s, p)

Clearly, if p(a) = 0 for all @ then N(s,a, p,C) = 0 for all states s and C' C S.

Notation 7.5.24 [The values M(s,6)] Let M : S x ProbTraces — [0,1] be given by:
M(s,eprrr) =1 and

M(s,(p,a)8) = Y N(s,a,p,t)- M(t,0)

tes
Definition 7.5.25 [The testing equivalence =, cf. [CSZ92, YCDS94]]
s =¢ s iff M(s,0) = M(s',0) for all 8 € ProbTraces.

Lemma 7.5.26 If s ~ s’ then N(s,a,p,C) = N(s,a,p,C) for all a € Act \ {7},
p € Distro(Act \ {7} and C € S/ =~.

N(s',a,p,C) =0. Now we assume

Proof: If p(a) = 0 for all a then N(s,a,p,C) =
A # Div, we choose some s € A with

that p € Distr(Act \ {r}). For A € S/ =,
P(s,7,A) <1 and define

, _ P(s5,0,0)
P (A,(I,C) - 1— P(S,T, A) for ((I,C) 7£ (Ta A)a
P'(A,7) = Y P(ATC), P(Aa) = > P(A44qC).
chii: CceS/~

We define P'(Div,7) = 0 and P'(Div,a,C) =0 if (a,C) # (1, Div). For all A € S/ ~ we
define:
norm(A,p) = Y PlAa) pla) + P(A,7).
acAct\{r}

First we show that

(1) norm(A,p) = 0 implies Prob(s,7*a) = 0 for all s € A and a € Act \ {7} with
p(a) > 0.
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Let norm(A, p) =0 and a € Act \ {7} with p(a)) > 0. Then:
e P(A o, C)=0forallC e S/~
e P(A,7,C)=0forallC e S/=~,C+#A.

Hence, P(s,a) = 0 and P(s, 7, S\ A) = 0 for all s € A. In particular, Prob(s,7*, S\ A) =0
for all s € A. This yields Prob(s,7*a) = 0.

For A, C € S/ =, a € Act \ {7} and p € Distro(Act \ {7}), we define N(A,a,p,C)
as follows. The vector (N(A, o, p,C))acs/~ is the unique solution of the linear equation
system:

1. If norm(A, p) =0 then N(A, o, p,C) =0.
2. If norm(A, p) > 0 then

_ ,O(Oé) ! P,(A’ Ta t)
N(Aa «, p, C) - norm(A,p) P (A,Oé,C) + Bezs/z norm(A,p) N(B,Oé,p, C)
B#A

In what follows, we suppose «, p and C to be fixed. It suffices to show that
(*) N(s,a,p,C)=N(A,a,p,C) forall s Aand A € S/ =.

For all s € S we define ;3 = N([s], a, p, C'). (Recall that [s] denotes the weak bisimulation
equivalence class of s.) Clearly, (*) holds if norm(A, p) = 0. Now we assume A € S/ ~
and norm(A, p) > 0. (In particular, A # Div.) Then:

(2) If s € A with P(s,7,A) <1 then
norm(s, p) — P(s, 7, A) = norm(A, p)- (1 —P(s, 1, A)).

(3) If s € A with P(s,7,A) < 1 then norm(s, p) = P(s, 7, A) iff norm(A4, p) = 0.

First we assume that norm(A, p) = 0. By (1), Prob(s,7*a) = 0 for all s € A. Thus, by
the definition of N(-), N(s,a,p,C) =0= N(A,a,p,C) = ;.

Next we assume that norm(A, p) > 0. It is easy to see that, if Prob(A,7*a, C') = 0 then
z; =0= N(A a,p C) for all s € A. In what follows, we suppose Prob(A,*a,C) > 0.
By (2) and (3),

e norm(s,p) > 0 for all s € A,
e norm(s,p) > P(s, 7, A) for all s € A with P(s,7,A4) < 1.

Let s € A with P(s, 7, A) < 1. Then:

s = N(4,a,p,C)

e P(s, a1 1 P(s, 1)
~ norm(4,p) teZC’ 1-P(s,71,A) - norm(A, p) te;\A 1-P(s,1,A) ot
1-P(s,1,A) P(s,a,C)

= o) norm(s, p) — P(s, 7, A) | Cm

te



7.5. PROOFS 191

1-P(s,7,A) 3 P(s,7,t) .
norm(s, p) — P(s, 1, A) resa 1 —P(s,7,4)
pla)
P
norm(s, p) — P(s, 1, A) (5,,C)
1 P(s, 1, A)
NP £z, — T,
norm(s, p) — P(s, 7, A) g; (5,7,8) - 24 norm(s, p) — P(s, 1, A) v
Thus,
v norm(s, p) _ e (1 P(s,7,A)
norm(s, p) — P(s, 7, A) norm(s, p) — P(s, 7, A)
1
= . -P C P t) - .
norm(s, p) _ P(S, 7 A) (p(a) (Sa a, ) + ; (Sa T, ) wt)
Hence,
p(e) 1
- 2 p S N o - Ty
T norm(s, p) (5,0,C) + norm(s, p) g; (5,7,8) - 24

This yields s = N(s,a,p,C) for all s € A. m
Theorem 7.5.27 (cf. part (a) of Theorem 7.3.6, page 174) = is finer than =.

Proof: follows by Lemma 7.5.26 (page 189) and induction on the length of the
probabilistic traces. m
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Chapter 8

Fairness of probabilistic choice

In Section 3.2.3 (page 45 fI') we argued that, for concurrent probabilistic systems, certain
liveness properties cannot be established unless fairness assumptions are made about
the way in which the non-deterministic choices are resolved. For probabilistic systems,
one might also consider fairness with respect to the probabilistic choices. Clearly, the
probabilities for the transitions can be viewed as conditions on the frequencies with which
a certain transition is chosen. Thus, fairness assumptions about the probabilistic choices
seem to be superfluous as they are expressed implicitly by the transition probabilities.
Nevertheless, the probabilistic choices might be resolved unfair, and hence — as in the
non-probabilistic (or concurrent probabilistic) case — it is possible that certain liveness
probabilities are violated in some executions while they hold in all executions that are
fair with respect to the probabilistic choices. For instance, if we flip a coin infinitely
often then the property that eventually the outcome is “head” does not hold for all
executions as it is possible that we always obtain “tail”. But the probability for such an
unfair behaviour is zero; i.e. the event “eventually head” holds for almost all executions.
Thus, from a purely descriptive point of view, fairness with respect to the probabilistic
choices is irrelevant because the probability measure of all executions that satisfy a certain
linear time property does not depend on whether or not we shrink the attention to those
executions where the probabilistic choices are resolved in a fair manner. However, by
the results of Pnueli & Zuck [Pnue83, PnZu86a, PnZu93] fairness with respect to the
probabilistic choices might be helpful for verifying qualitative properties for probabilistic
systems. [Pnue83, PnZu86a, PnZu93] introduces two kinds of fairness with respect to the
probabilistic choices (called extremely fairness and a-fairness) for (a variant of ) concurrent
probabilistic systems. Extreme and a-fairness are shown to be sound for the verification of
qualitative linear time properties in the following sense: Whenever a linear time property
¢ holds for all execution sequences that are extremely fair (or a-fair) then ¢ holds with
probability 1 (independent on the adversary).

The main goal of that chapter (whose results are published in [BaKw98a|, a joint work
with Marta Kwiatkowska) is to present a general notion of fairness with respect to the
probabilistic choices (shortly called p-fairness) that subsumes extremely and a-fairness a
la [Pnue83, PnZu86a, PnZu93| and the above mentioned soundness result. More precisely,
we show that in order to demonstrate the validity of a qualitative linear time property ¢
for probabilistic processes it suffices to show — for some instance of our general p-fairness
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notion — that ¢ holds for all p-fair execution sequences. This allows one, given an instance
of our p-fairness notion, to reduce the verification of qualitative linear time properties of
probabilistic processes to the non-probabilistic case: rather than compute the exact prob-
abilities of the set of paths fulfilling ¢, it is sufficient to establish that ¢ holds for all p-fair
execution sequences by means of well-known non-probabilistic methods (deductive meth-
ods or model checking, see e.g. [LiPn85, MaPn92, CGH94, Lamp94, GPV*95, MaPn95]).

P-fairness might also be useful for computing the probability measure of certain events.
Given a set II of fulpaths for which we want to compute Prob(II(s)), one might define
a “simpler” set II' of fulpaths and show that, for any p-fair fulpath =, = € Il iff 7 € II'
(which yields Prob(II(s)) = Prob(II'(s))). Thus, the more “complicate” set IT might be
replaced by the “simpler” set I1'.!

Organization of this chapter: The notion of p-fairness is introduced for both fully
probabilistic and concurrent probabilistic systems. In Section 8.1, we introduce p-fairness
for fully probabilistic systems and present our main result stating that, for every instance
of our general notion of p-fairness, the set of p-fair execution sequences in bounded systems
has probability 1 (Theorem 8.1.5, page 196). Section 8.2 deals with p-fairness concurrent
probabilistic systems and shows that extreme and a-fairness and the above mentioned
soundness result a la Pnueli & Zuck can be obtained from our general p-fairness notion.

8.1 P-fairness for fully probabilistic systems

We introduce a general notion of (strong) fairness with respect to the probabilistic choices
in fully probabilitsic systems. For this, we suppose that the alternatives of the probabilistic
choices are associated with “labels”, with each label denoting e.g. a process name or an
action. We say an execution sequence is p-fair if whenever a label is enabled infinitely
many times then it is taken infinitely many times.

Definition 8.1.1 [p-fairness for fully probabilistic systems| Let (S,P) be a fully
probabilistic system. A p-fairness condition for (S,P) is a pair (L,1) where L is a non-
empty countable set of labels and | : S x S — 2% a function with I(s,t) = 0 if P(s,t) = 0.
Let ¢ € L. ( is called

e cnabled in a state s iff ¢ € I(s,t) for somet € S,
e taken in the i-th step of a fulpath w iff £ € |(mw (i), w(i + 1)).

A fulpath 7 is called p-fair with respect to (L, 1, ¢) iff either ¢ is enabled only finitely many
times in m or { is taken infinitely often in w. w is called p-fair with respect to (L,I) (or
(L, )-fair) iff, for each label ¢ € L, 7 is p-fair with respect to (L, 1, ).

Note that all finite fulpaths are (L, |)-fair since each label ¢ is enabled only finitely many
times. If (L,l) are understood from the context then we briefly speak about p-fairness

!For instance, in the correctness proofs of the model checking algorithms in Chapter 9 we make use of
this technique and introduce state and total fairness as special instances of p-fairness (resp. a combination
of p-fairness and fairness of non-deterministic choice in the case of total fairness) that we use to give simple
characterizations for the wanted probability measures.
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with respect to a label ¢ € L (rather than p-fairness with respect to (L, 1, ¢)) and p-fairness
(rather than (L, )-fairness).

The set L of labels should be thought of as an abstraction which allows to express different
kinds of fairness. Clearly, whether or not a fair probabilistic transition system yields a
reasonable notion of fairness depends on the choice of L and /.

Example 8.1.2 [Process fairness] To see why we need sets of labels we show how to
define process fairness. We consider a fully probabilistic system which is obtained from
a probabilistic merge of sequential randomizes processes Py, ..., P,. For this, we consider
the parallel (interleaved) execution of Py, ..., P, on a single processor where we assume a
scheduler that decides randomly which of the processes P; performs the next step. Given
a global state s of the composed system, the scheduler decides — according to a certain
distribution ps — which step has to be performed next. The transition probabilities of the
composed system are given by these distributions p, in the sense that P(s,t) = pu,(t).
To define process fairness, let L to be the set of process names (i.e. L = {Py,...,P,}) and
I(s,t) the set of processes that take part in the transition from the global state s to the
global state ¢. Thus, I(s,t) might consist of a single process P; (if the global transition
s — t arises from an autonomous move by P; while the other processes are idle) or of a
set consisting of two or more processes (if a communication occurs). Then, (L,I)-fairness
is process fairness in the following sense. For s to be a global state of the system, we say
that process P; is enabled in s iff there is some global ¢ with P(s,¢) > 0 such that P;
takes part in the transition s — ¢t. Let @ = sy — s; — ... be an infinite fulpath. Then, 7
is (L, I)-fair iff whenever P; is enabled in infinitely many states s; then there are infinitely
many indices ¢ where P; is activated in the transition s; — s;11.

Similarly, we can define interaction fairness which ensures that whenever the synchroniza-
tion of certain processes P, ..., P;, is possible in infinitely many global states then there
are infinitely many steps where (exactly) the processes P;,,...,P;, perform a synchro-
nized step. For this, we deal with L to be the powerset of {Py,...,P,} and the labelling
function | that assigns to each transition s — ¢ the singleton set I(s,¢) of all processes
that are activated in the step s — t. Then, (L, |)-fairness is interaction fairness. m

Remark 8.1.3 [Action fairness| To define action (event) fairness in action-labelled
probabilistic systems we have to deal with a slight modification of p-fairness. For an
action-labelled fully probabilistic systems (S, Act,P) we use a labelling function | : S x
Act x S — 2" that assigns to each (action-labelled) step a set of labels. To define action
fairness, we deal with L = Act and define I(s,a,t) = {a}. Then, (L,|)-fairness ensures
that whenever an action a € Act is enabled infinitely often then a is taken infinitely often.
More precisely, if 7 = so %> s; <% ... is an infinite fulpath then = is (L,1)-fair iff whenever
P(s;,a) > 0 for infinitely many ¢ then a = q; for infinitely many i. m

2This can be viewed as a generalization of the probabilistic merge operator proposed by Baeten,
Bergstra & Smolka [BBS92]. [BBS92] deal with a (binary) probabilistic merge operator Pil|p P>
parametrized by probabilities p, ¢ € [0,1] (with p + ¢ < 1) which are interpreted as follows. A com-
munication between P; and P2 occurs with probability 1 — q. p- ¢ is the probability for P; to make an
autonomous move while Py is idle; similarly, (1 — p) - ¢ is the probability for P, to make an autonomous
move while P; is idle.
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Notation 8.1.4 [The sets pFair, and pFair( )] Let (L,1) be a p-fairness condition for
a fully probabilistic system (S,P). For { € L, we define pFair ¢ to be the set of fulpaths
that are p-fair with respect to (.

pFair(LJ) = ﬂ pFair(LJve)
teL

denotes the set of all fulpaths that are (L,1)-fair.

If (L, 1) are understood from the context then we briefly write pFair rather than pFair
and pFair, rather than pFair( ,. To see that pFair(s) is measurable we first express
p-fairness as a linear time formula, and then use a well-known result [Vard85, PnZu93|
stating that the set of paths fulfilling a given linear time formula is measurable. The
underlying linear time logic is a slight modification of LTL (see Section 9.1.3, page 212)
which uses labelled next step operators X, rather than the usual (unlabelled) next step
operator X. Formulas are built from: the truth values ¢t and ff, the atomic propositions
enabled(?) for each label ¢ € L, the usual boolean connectives A, V, =, —, and the
temporal operators O (“always”), < (“eventually”) and a next-step operator X, for each
label £ € L. The formulas are interpreted over the fulpaths of fully probabilistic system
(S,P) with a p-fairness condition (L, l). We define the satisfaction relation |= as follows.
Let 7 be a fulpath in (S,P). Then,

(m,j) E enabled(?) iff ¢ is enabled in 7 (j)
(mJ) F Xegiffjn| >j+1, £€l(n(j),7(j +1)) and (7,j +1) = ¢

The other operators are interpreted in the usual way (see e.g. [MaPn92]). We write 7 = ¢
iff (7,0) = ¢. As shown e.g. in [Vard85, PnZu93], for a given formula ¢, the set of fulpaths
7 starting in a fixed state s € S such that 7 = ¢ is measurable. We define

pe = OCenabled(t) — OOtaken(?) where taken(l) = X, tt.
Clearly, 7 |= ¢y iff 7 is p-fair with respect to ¢. Thus,
pFair,(s) = {m € Pathp,(s):m = ¢¢ }

and pFair( \(s) = NgeL pFair,(s) are measurable.

Our results rely on the boundedness of (possibly infinite-state) fully probabilistic systems
(see Definition 3.1.12, page 38). We now state our main result which shows that for each
instance of p-fairness in a bounded system, the measure for the p-fair fulpaths is 1.

Theorem 8.1.5 Let (L,1) be a p-fairness condition for a bounded fully probabilistic system
(S,P) and s € S. Then,
Prob(pFair ; (s)) = 1.

Proof:  Let ¢ > 0 be areal number such that P(s,t) > 0 implies P(s,t) > c¢. It suffices
to show that pFair,(s) = 1 for all £ € L.3 Let £ be a fixed label and IT be the set of all
fulpaths where ¢ is enabled infinitely often and which totally ignore ¢-steps, i.e.

II = {m € Pathy, : 7 = OOenabled({) N O—taken(l)}

3Note that Prob(Il;) = 1 implies Prob((; II;) = 1 which holds in each probabilistic space.
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If o is a finite path with last(oc) = s then we briefly write o o II(s) to denote the set
{oom:meI(s)}. Let Pathy, be the set of all finite paths ending in ¢ and

= {te St} enabled(()}.

We show that, for all s € S, Prob(II(s)) = 0 and that Pathg,(s)\pFair,(s) can be written
as a countable union of sets of the form o o I1(t) where o € Path%n and t € T.

Claim 1: Prob(II(s)) =0 for all s € S.

Proof: We define X' to be the set of finite paths o € Pathg, such that |o| > 1, ¢ ¢ I(s, (1)),
o(i) T,i=1,...,|o| — 1, and last(c) € T. For t € T, let ' = T N Pathy,. Then, for
teT and s €S,

Yi(s)={o € X : first(o) = s, last(o) =t}.

Y(s) is countable and X(s) = Uy £%(s) where Xt(s) N X¥(s) = 0 if t # . Thus,

(1) ZP =2, 2. P

geX(s teT geXt(s)

We have

= U oollt) forallseS.

teT oeXt(s)
Asooll(t) N o' oII(t") =0 if (0,t) # (0o',t'), and as o o [I(t) is a measurable set with
Prob(o o I1(t)) = P(o) - Prob(II(t)) we obtain:

(2)  Prob(II(s)) = >, > P(o)-Prob(II(t)) forallse S.

teT oeXt(s)

Let t € T. As t |= enabled({) there is some s; € S with ¢ € I(¢,s;). Since P(t,s;) > ¢ we
obtain:

(3) > Plo) < > P(t,s) <1 —Plt,sy) < 1—c forallteT.

oeX(t) s£S8¢

We show by induction on k that Prob(I1(t)) < (1 — ¢)* for all t € T. In the basis of
induction (k = 0) there is nothing to show. In the induction step (k = k + 1) we
suppose that Prob(I1(t)) < (1 —c)f for all t € T. By (1), (2), (3) and the induction
hypothesis we get for all t € T":

Prob(I1 = > 3 Po)-Prob(II(u)) < (1—=¢)> Y P(o
uET o () weT o€ Do)
= (1-0* Y P(o) < (1—¢)f
oeX(t)

We conclude Prob(II(t)) = 0 for all t € T. Thus, Prob(II(s)) =0 for all s € S (by (2)). |
Claim 2: Prob(pFair,(s)) = 1forall s € S.
Proof: It is clear that

Pathy,(s) \ pFair,(s) = |J U oo Il(t).

teT g¢ Path% (s)
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Note that Path%n is countable. Claim 1 yields
Prob(o o II(t)) = P(o)- Prob(II(t)) =0
for all t € T'. Hence,

Prob(Paths,(s) \ pFair,(s)) < > > Prob(co II(t)) = 0

teT UEPath%n(s)
and Prob(pFair,(s)) =1. |m

Remark 8.1.6 If we drop the assumption that (S, P) is bounded then the probability of
the fair paths might be less than 1. As a counter-example consider the system of Figure
8.1, i.e. the system (S, P, L,l) where S = {t} U {so, s1,...}, L ={¢} and

27T coifv =84 oo
P(s;,v) = ¢ 1—-2"" : ifv=t I(si,v) = { ?E} gz B :’H
0 . otherwise ' N

and P(t,s;) =0, P(¢,t) = 1, I(¢,t) = 0. Here, (r;);>0 is a sequence of positive reals where
>i>0 Ti is convergent. m = sg — §; — S — ... is not p-fair as £ is continuously enabled

Y

—ro —r1 —r2
C) 22— )

Figure 8.1:
but never taken in 7. Any other fulpath is finite and hence p-fair. Hence,

Prob(pFair(sg)) = 1 — lim P(sg — s1 — ... — $g)

k—o0

= 1 — lim 2 (otrtetna) 1 927 -1
k— oo

where r =>",5¢ 7. B

Soundness of p-fairness: Theorem 8.1.5 (page 196) yields the soundness of proving the
validity of qualitative linear time properties under p-fairness constraints in the following
sense. We suppose a (linear time) logic L and, for a fixed bounded probabilistic system
(S,P), a satisfaction relation = C Pathp, x L such that, for each s € S and each
formula ¢ of L, the set {r € Path(s) : 7 = ¢} is measurable.* s is called ¢-valid iff
Prob{m € Path(s) : ™ = ¢} = 1. By Theorem 8.1.5 (page 196) we obtain the following.

Corollary 8.1.7 Let (S,P) be a bounded fully probabilistic system and (L,1) a p-fairness
condition on (S,P) Then, for all s € S:

“For example, L might be the standard propositional linear time logic LTL (see Section 9.1.3, page
212 ff).
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If m = ¢ for all m € pFair ) (s) then s is p-valid.

Proof:  follows immediately from Theorem 8.1.5 (page 196). m

Hence, in order to establish a (qualitative) linear time property ¢ for a probabilistic
process, it suffices to show that all p-fair fulpaths satisfy ¢ for some instance of our general
p-fairness notion (which can be achieved with well-known non-probabilistic methods).

Corollary 8.1.8 Let (S,P) be a bounded fully probabilistic system, (L,1) a p-fairness
condition on (S,P), s € S and II a subset of Pathg, such that II(s) is measurable. Then:

Prob (H(s) N pFair(LJ)) = Prob(I1(s)).

Proof: follows immediately from Theorem 8.1.5 (page 196). m

In particular, whenever ¢ is a linear time formula then the probability of the set of
fulpaths fulfilling ¢ equals the probability of the set of p-fair fulpaths fulfilling ¢. In
other words, whether or not a (qualitative or quantitative) linear time property holds for
a probabilistic process does not depend on whether fairness with respect to probabilistic
choice is required. Hence, from a purely descriptive point of view, fairness with respect
to probabilistic choice is irrelevant.’

8.2 P-fairness for concurrent probabilistic systems

In this section, we define p-fairness for concurrent probabilistic systems and show that
the soundness result of the p-fairness approach for establishing qualitative linear time
properties carries over to the concurrent case. Moreover, we show that the extreme and a-
fairness of Pnueli & Zuck [Pnue83, PnZu86a, PnZu93| are special instances of our general
p-fairnes notion. Hence, the soundness results established in [Pnue83, PnZu93] are special
cases of the results presented here. We cannot expect a general completeness result (in
the sense that, if a linear time property ¢ holds with probability 1 in all adversaries then
¢ holds on all p-fair execution sequences) as in [Pnue83] extreme fairness is shown to be
incomplete. However, we are able to show that — in some sense — a-fairness (shown to be
complete in [PnZu93)) is the only p-fairness notion that is complete for proving validity
of qualitative linear time properties (Lemma 8.2.11, page 203).

As in fully probabilistic case, we assume that the probabilistic alternatives are associated
with certain labels. P-fairness in concurrent systems ensures that whenever a label £ is
enabled infinitely often then ¢ is taken infinitely often where the underlying definition of
“enabled” in a state s only depends on the chosen non-deterministic alternatives and the
associated distribution p € Steps(s) (but not on the other non-deterministic alternatives

v € Steps(s) \ {u}).

5One might wonder why such a result is possible, since in the non-probabilistic case it is folklore
knowledge that certain liveness properties cannot be established without suitable fairness assumptions.
It is worth noting that ¢-validity of a state s in a probabilistic transition system is weaker than p-validity
in the corresponding non-probabilistic transition system. Recall that, in the non-probabilistic case, a
state s of a transition system is said to be -valid iff all fulpaths starting in s satisfy ¢, whereas in the
probabilistic case, p-validity requires that ¢ holds for almost all fulpaths starting in s.
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Definition 8.2.1 [p-fairness for concurrent systems]| Let S = (S, Steps) be a con-
current probabilistic system. A p-fairness condition on S is a pair (L,1) consisting of a
nonempty countable set L of labels and a function

|: {(0, 1, t) : 0 € Pathgy,, u € Steps(last(c)),t € Supp(u)} — 2-.

If m 1s a fulpath in S and ¢ € L then we say
e ( is enabled in the i-th step of w iff

¢ e l(x®, step(n, i), s)

for some s € Supp(step(m,1)),
e ( is taken in the i-th step of m iff £ € I(xW), step(w, i), (i + 1)).

If ¢ € L then 7 is called p-fair with respect to (L, 1, ¢) iff either £ is enabled only finitely
many times in w or { is taken infinitely many times in w. 7w is called p-fair with respect
to (L,1) (or (L,1)-fair) iff, for each label £ € L, m is p-fair with respect to (L, 1, £).

If (L,1) are understood from the context then we briefly speak about p-fairness with
respect to a label ¢ € L (rather than p-fairness with respect to (L,I,£)) and p-fairness
(rather than (L, l)-fairness).

Notation 8.2.2 [The sets pFair, and pFair( )] Let (L,1,{) be a p-fairness condition
for a concurrent probabilistic system (S, Steps). pFair( ) (or briefly pFair,) denotes the
set of fulpaths m which are (L,)-fair with respect to ¢, and pFair  the set of fulpaths m
which are (L,!1)-fair.

Theorem 8.2.3 Let (S, Steps) be a finite concurrent probabilistic system, (L,1) a p-
fairness condition on (S, Steps) and A an adversary of (S, Steps). Then,

Prob(pFairﬁ_J)(s)) =1
for all s € S. Moreover, if 1] is a subset of Pathﬁd where I1(s) is measurable then

Prob(I1(s) N pFair( ;) = Prob(I1(s)).

Proof: It is easy to see that, for A to be an adversary of (S, Steps), a fulpath
7 € Path” is (L,|)-fair if and only if 7 is (L,|)-fair as a path in the fully probabilistic
system S4.5 As (S, Steps) is finite, for each adversary A, the associated fully probabilistic
system S4 is bounded. Thus, the claim follows by Theorem 8.1.5 (page 196) and Corollary
8.1.8 (page 199). m

As before, we suppose a (linear time) logic L and a satisfaction relation = C Pathp, x L
such that, for each s € S, each adversary A and each formula ¢ of L, the set {7 €
Path;}d(s) : T = ¢} is measurable. We then obtain:

SRecall that we identify each path 7 in (S, Steps) with the path v =y — 41 — 4(2) 5 | in §4.
See Chapter 3, page 42.
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Corollary 8.2.4 If (L,l) is a p-fairness condition for a finite concurrent probabilistic
system (S, Steps) and ¢ a formula of L then

Prob{m € pFairﬁ_,l)(s) :mE 9} = Prob{m € Pathﬁtl(s) T E e}
for all adversaries A.

Proof: follows immediately from Theorem 8.2.3 (page 200). m

We call a state s @-valid iff Prob{mw € Path;;l(s) :m | ¢} = 1 for all adversaries A.
Furthermore, the soundness of proving the validity of linear time formulas under (L,1)-
fairness follows.

Corollary 8.2.5 Whenever (L,1) is a p-fairness condition for a finite concurrent proba-
bilistic system (S, Steps), ¢ is a formula of L and s € S. Then:

If ™ |= ¢ for all fulpaths w € pFair( ) (s) then s is p-valid.

Proof: follows immediately from Corollary 8.2.4 (page 201). m

Extreme and a-fairness & la Pnueli & Zuck: In [Pnue83] and [PnZu93] notions of
extreme fairness and a-fairness are introduced for (a variant of) concurrent probabilistic
systems. The definition of extreme fairness [Pnue83] employs a collection state predicates
(described by first order formulas), whereas a-fairness [PnZu93] uses some kind of linear
time logic with past operators. We now adapt the notions extreme and a-fairness for our
model of concurrent probabilistic systems and show that extreme and a-fairness (adapted
for our less general model of concurrent probabilistic systems) are instances of p-fairness
conditions as defined above.”

For the definition of extreme fairness we suppose a set StatePred C 2° (where each element
X € StatePred represents a state predicate).

Definition 8.2.6 [Extreme fairness, cf. [Pnue83, PnZu86a]| Let m be a fulpath in
S. 7 is called extremely fair iff, for each x € StatePred, each s € S and p € Steps(s),
whenever step(mw,i) = u for infinitely many ¢ > 0 with 7(i) € x then there are infinitely
many indices i > 0 with w(i) € x, step(m,i) = p and 7(i + 1) = s.

To define a-fairness we suppose PastForm to be a set consisting of subsets of Pathg,
where we assume that each element x of PastForm represents a past formulas of some
linear time logic [LPZ85]. Note that, for x to be a past formula, x can be identified with
the set of all finite paths o such that each fulpath m € o 1 fulfills x.

Definition 8.2.7 [a-fairness, cf. [PnZu93]|] A fulpath 7 is called o-fair iff, for each
X € PastForm, s € S and u € Steps(s), whenever there are infinitely many indices i
with 7@ € x and step(m,i) = u then there are infinitely many indices j with 7 € ¥,
step(m,j) =p and 7(j + 1) = s.

The next lemma shows that extreme and a-fairness are instances of p-fairness conditions
in our sense:

"See Section 3.6, page 63 for the precise connection between the model & la Pnueli & Zuck and ours.
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Lemma 8.2.8 Let (L,l) be a p-fairness condition for a concurrent probabilistic system
(S, Steps) and 7 be a fulpath in (S, Steps). Then:

(a) 7 is extremely fair if and only if ™ is (Lepair, lefair) -fair where
Lefsir = {(X, 11, 5) : x € StatePred,s € S, p € Steps(s)},
lefair (0,16, 8) = {(X; 1, 8) € Legair = last(o) € x .

(b) m is a-fair if and only if m is (Lafair, lafair)-fair where
Lofair = {(X,1,8) : x € PastForm,s € S, € Steps(s)},
lagair (0, 11, 8) = {(x, 11, 8) € Lagair : 0 € X}

Proof: We only show (a) as (b) can be shown similarly. For simplicity, we write L
and | instead of Lefyir and legair respectively. Let m be a fulpath in (S, Steps).

“only if”: Let 7 be extremely fair and let £ = (x, i, s) € L such that £ is infinitely often
enabled in . Let I be the set of indices ¢ > 0 such that ¢ is enabled in the i-th state of
m. Then, m(i) € x and step(m,i) = p for all ¢ € I. As 7 is extremely fair there exists an
infinite subset J of I such that (j + 1) = s for all j € J. Hence, £ € I(xU), pu, s) for all
j € J,ie. lis taken infinitely often in .

“if”: We suppose 7 to be (L,l)-fair and step(m,i) = u for infinitely many indices ¢ with
7(i) € x. Let s be a mode of p and let £ = (i, i, s). Then, ¢ is enabled infinitely often
in . Hence, ¢ is taken infinitely often in , i.e. there are infinitely many indices 5 with
¢ € 1(x), 70+1)), For each such index j, 7(j) € x, u = step(m,j) and 7(j +1) = s. Thus,
7 is extremely fair. m

From part (a) of Lemma 8.2.8 we can deduce that our soundness result (Corollary 8.2.5,
page 201) is a generalization of the result of [Pnue83] which states the soundness of proving
qualitative properties under extreme fairness. In [PnZu93] it is shown that, for each state
s and each linear time formula ¢,

s is p-valid iff 7 |= ¢ holds for all a-fair fulpaths m € Pathpy(s).

The “if”-part is an instance of Corollary 8.2.5 (page 201), whereas the “only-if”-part
(the completeness of the a-fairness approach) is not. The reason for this is that a general
completeness result cannot be established, as it is shown in [Pnue83] that extreme fairness
is not a necessary condition for the validity of linear time formulas.

In the remainder of this section, we show that a-fairness is the only p-fairness notion
which is complete for verifying qualitative properties expressed by linear time formulas
with past operators. We suppose that formulas of the linear time logic L are built from
the truth values ¢t and ff, atomic propositions, the usual boolean connectives, and the
temporal operators U (“until”), U~ (“since”), X! (“previous step”) and labelled next-
step operators X,, u € U, Steps(s). The usual next-step operator X can be derived
from the labelled next-step operators by putting X = V, X,p. Ly denotes the set
of past formulas of L, i.e. formulas which are built from atomic propositions, the boolean
connectives and the operators /! and X 1.

We fix a concurrent probabilistic system (S, Steps) together with a satisfaction relation
= C Pathpy < IN x L (where IN is the set of non-negative integers) with (7,j) E X,¢
iff step(m,j) = p and (7, j+1) = ¢. The remaining operators are interpreted in the usual
way (see e.g. [MaPn92]). The satisfaction relation = C Pathg,; x L, as used earlier, is
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given by 7 = ¢ iff (7,0) = ¢. Let
II, = {m € Pathg, : 7 = ¢}.

Then, s is called p-valid iff Prob(II/}(s)) = 1 for all adversaries A. For a past formula
Y and a finite path o with |o| = j, we define

o = iff (r,7) = o for all fulpaths 7 with 70) = &

(or equivalently, iff () = 9 for some fulpath 7 with 7() = o). Let xy be the set of
finite paths o with o = ¢ and PastForm = {xy : ¥ € Lypast}. Let (Loair, lafair) be as in
part (b) of Lemma 8.2.8 (page 202). We write aFair instead of pFair

afu,irvlafu,iT)'
Definition 8.2.9 [Completeness of p-fairness conditions| Let (L,|) be a p-fairness
condition for a concurrent probabilistic system (S, Steps) and L a linear time logic as
before. (L,1) is called complete (for verifying qualitative properties expressed as formulas
of L) iff the following holds:

if s is @-valid then ™ = ¢ for all p € pFair
for all formulas ¢ of L and all states s € S.
It is easy to see that the completeness result of [PnZu93] (where labelled next-step op-

erators are not used) carries over to L, i.e. if s is ¢-valid then aFair(s) C II,(s). Thus,
(Lafair, lafair) is complete.

Definition 8.2.10 [Expressiveness of L for a p-fairness condition] Let (L,l) be a
p-fairness condition for a concurrent probabilistic system (S, Steps) and L a linear time
logic as before. L is called expressive for (L,1) iff for each ¢ € L there exists a formula ¢
of L with II, = pFair .

We may assume that for each state s € S there is an atomic proposition a, with (7, j) | a,
iff 7(j) = s. Then, L is expressive for (Lafuir, lafair) as, for £ = (xy, p, s) and
e = OCenabled(l) — OO(Y A X,a,)
where enabled(¢) = 3 A X,tt, we have that
7 = ¢ iff 7 is (Lafair, lagair)-fair with respect to .

The next lemma shows that — in some sense — a-fairness is the only p-fairness notion
which is complete for verifying qualitative linear time properties.

Lemma 8.2.11 Let (S, Steps), L and (L,1) be as before. If L is expressive for (L,1) then
(L,1) is complete iff pFair( |y = aFair.
Proof: It suffices to show that if (L, ), (L’,I") are p-fairness conditions such that

e L is expressive for (L, 1),
e (L',I') is complete

then pFair ) (s) C pFair( ) (s) for all s € S and ¢ € L. Since L is expressive for (L,I)
there is a formula ¢ with I, = pFair |, where I, = {m € Pathy, : 7 |= ¢}. Since

Prob(HLpA(s)) = Prob(pFaz'r‘(L}_,l,z)(s)) =1

for all adversaries A we obtain ¢-validity of s. Hence, pFair (s) C pFair (s) by
the completeness of (L',I'). Thus, pFair. ) (s) C pFairg (s). m
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Chapter 9

Verifying quantitative temporal
properties

The main goal of this chapter is to present the basic concepts of the algorithmic methods
for verifying quantitative properties specified in the temporal logical framework.! We
consider both fully probabilistic and concurrent probabilistic systems. For the handling
of fully probabilistic systems, we recall techniques proposed in the literature (mainly the
methods of Hansson & Jonsson [HaJo94]).2 For the latter (concurrent) case, we mainly
concentrate on methods that involve fairness. The underlying fairness notions are those
of [HSP83, Vard85] (see Section 3.2.3, page 45).> For this, we first recall the approach of
Bianco & deAlfaro [BidAl95, dAlf97a, dAlf97b] and then show how to handle concurrent
probabilistic systems when fairness assumptions about the environment are made.

Probabilistic computation tree logic: Combining several aspects of the logics con-
sidered in [HaJo89, Hans91, HaJo94, SeLy94, BidAl95, IyNa96, dAlf97a, dAlf97b] we
introduce a logic, called PCTL*, for specifying quantitative properties for probabilistic
systems such as “the system terminates with probability at least 0.75” or “the message
will be delivered within in next three steps with probability at least %”. PCTL* can be
viewed as the probabilistic counterpart to the logic CTL* [EmHa86| that combines com-
putation tree logic CTL [CIEm81] and (propositional) linear time logic LTL. Asin CTL",
PCTL* distinguishes between state and path formulas where the path formulas stand for
linear time properties that make statements about the executions (fulpaths) whereas the
state formulas express branching time properties that assert something about the possible
behaviours in the states. To reason about the possible behaviours in the states, CTL" uses
the quantifiers V (“for all executions”, also often denoted by the letter A) and 3 (“there
exists an execution”, also often denoted by the letter ') combined with a path formula ¢.*
In a probabilistic scenario, we also want to reason about the “quantity” of the executions

!The basic ideas behind the use of temporal logic as specification formalism for probabilistic systems
are sketched in the introduction. See Section 1.1.3 (page 16) and Section 1.2.3, (page 24).

2The reason why we recall the results here are twofolds. First, the underlying basic ideas are also used
in our algorithm. Second, our symbolic model checker of Chapter 10 make use of them.

3In his thesis, Luca deAlfaro [dA1f97a] proposes a different notion of fairness and presents correspond-
ing verification methods. The relation to our approach is also discussed in [dAlf97a].

“The CTL* formula V¢ asserts that the linear time property ¢ holds for all executions while Jp states
the existence of a computation that fulfills ¢.

205
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that satisfy a certain linear time formula ¢. For this, PCTL" replaces the quantifiers V
and 3 by a probabilistic operator and uses state formulas of the form Prob,.,(y¢) rather
than Vo or 3p. Here, the subscript > p (where i is a comparison operator, e.g. > or <)
specifies an interval of “acceptable” probabilities. For example, Probs,(¢) asserts that
the probability that ¢ holds is at least p.

PCTL* formulas can be interpreted over the states of a fully probabilistic or concurrent
probabilistic system. In the former (fully probabilistic) case, in the PCTL" state formula
Prob.,(¢), the probabilistic operator refers to the probability measure of the fulpaths
where ¢ holds. In the latter (concurrent) case — where it makes no sense to speak about
probabilities of certain events unless the non-determinism is resolved — Prob,,(¢) is viewed
to be correct for a state s if the probability for the fulpaths satisfying ¢ and starting in s
lies in the interval {¢q € [0,1] : ¢ > p} under all possible environments (adversaries). The
assumptions (e.g. some kind of fairness assumptions) that we make about the environment
are formalized by an appropriate type A of adversaries.® For the truth value of the
formulas involving the probabilistic operator, we range over all adversaries A € A; that
is, Prob,o,(¢) holds in a state s if, under all adversaries A € A, the probability measure
of the fulpaths starting in s and satisfying ¢ is > p.

Model checking: The basic idea behind PCTL* model checking (i.e. computing the
set of states where a given state formula holds) is the reduction to the verification
of quantitative LTL specifications [BidA195, ASB*95, IyNa96] while the latter can be
reduced (via several tricky intermediate steps) to a probabilistic reachability analysis
which can be done by solving linear equation systems or linear optimization problems
[CoYa88, CoYa90, HaJo94, BidAl95]. For the reduction of calculating the probabilities
for LTL formulas to a probabilistic reachability analysis (by which we mean the computa-
tion of the probabilities to reach a certain set of states), one can use of the w-automaton
approach a la Sistla, Vardi & Wolper [WVS83, Vard85, VaWo86| for both fully proba-
bilistic [CoYa95, IyNa96] or concurrent probabilistic [dAlf97a, dAlf97b] systems. Using
suitable adaptions of the methods presented in [BidAl95, dAlf97a, dA1f97b|, we present
a model checking algorithm for PCTL" with respect to the interpretation over concur-
rent probabilistic systems where fairness assumptions are made (i.e. where the chosen
type A consists of some kind of fair adversaries). The time complexity of our method is
double exponential in the size of the system and linear in the formula. By the results of
[CoYa95], this is optimal as it meets the lower bound for verifying concurrent probabilistic
systems against (qualitative) linear time properties. The underlying PCTL model checker
uses similar techniques as the one proposed by [BidAl95] for concurrent probabilistic sys-
tems with respect to the standard interpretation that does not involves fairness (and
deals with the whole class of adversaries). For the handling of the probabilistic operator
(i.e. formulas of the form Prob.,(¢)), techniques are needed to calculate the minimal or
maximal probabilities for ¢ under all adversaries of the chosen type. As in the approach
of [BidAl95], the minimal and maximal probabilities for the until operator (i.e. path for-
mulas of the form ¢ = ®;UP;) can be computed by solving linear optimization problems.
Our PCTL model checker for the interpretations with fairness and the one of [BidAl95]
for the standard interpretation run in polynomial time.

5The standard interpretation where fairness in not taken into account is obtained by A = Adv while
the use of e.g. A = Advy,, leads to an interpretation where fairness is integrated.
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® u= tt | a | B AD, | 2@ | Probu(y)

p u= @ ‘ Xo ‘ o1l po ‘ e1UU=*py ‘ w1\ P2 ‘ %

Figure 9.1: Syntax of PCTL*

Organization of that chapter: Section 9.1 explains the syntax of PCTL* (and the
sublogics PCTL and LTL) and the interpretations over fully probabilistic and concurrent
probabilistic systems. Model checking algorithms for PCTL*, PCTL and LTL are pre-
sented Sections 9.2, 9.3 and 9.4 where we briefly sketch how the methods of the literature
work and show how to deal with satisfaction relations where fairness is involved. The the-
oretical foundations of the model checking algorithms for PCTL and LTL are formulated
in theorems whose proofs are given in Section 9.5.

The results of this chapter are mainly based on the joint work with Marta Kwiatkowska
[BaKw98].% 1In this chapter, we assume some familiarity with temporal logics and w-
automaton and the connection between them. See e.g. the survey papers [Thom90,
Thom96, Vard96| for the w-automaton approach and [Emer90, MaPn92, MaPn95| for
temporal logics.

9.1 The logic PCTL"

In this section, we explain the syntax of PCTL" (and the sublogics PCTL and LTL) and
present several semantics for PCTL*. The interpretation over fully probabilistic systems
is in the style of [HaJo94, ASB*95 IyNa96]. For the interpretation over concurrent
probabilistic systems, we introduce satisfaction relations =4 that are parametrized by
a class A of adversaries. Intuitively, the chosen type A of adversaries formalizes the
assumptions that are made about the “environment” (the instance that resolves the non-
deterministic choices). In the case where A = Adv (the collection of all adversaries) we
obtain the standard interpretation of [BidAl95].

Syntax of PCTL*: We fix a finite set AP of atomic propositions. PCTL" state formulas
(denoted by capital greek letters ®, ¥, ...) and PCTL" path formulas (denoted by greek
letters ¢,1,...) over AP are given by the grammar shown in Figure 9.1 (page 207).
Here, a € AP, p € [0,1], = € {<,<,>,>} and k is a natural number. The usual
derived constants and boolean operators (for both state and path formulas) are ff = —tt,
$1V P2 = (21 A 2da), d1 — @2 = Py V ¢po. The path formulas are built from the
boolean connectives and the standard temporal operators X, & and U=*. The meanings
of the temporal operators X (“next step”), U (“until”) and U=F (“bounded until” or
“within the next k steps”) are as in the non-probabilistic case. As usual, operators for

SWhen writing down this thesis the author detected that the PCTL model checker of [BaKw98] can
be reformulated resulting in a simpler algorithm. This simplification is presented in Section 9.3.
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modelling “eventually” <, “sometimes within the next k steps” O=F  “always” O and
“always within the next k steps” O<F can be derived.

Cp = U o, OFp = tt Uk p, Op = ~Onp, OFp = ~OSkop,

For instance, if error is an atomic proposition that characterizes all states where a sys-
tem error has happened then Prob_g o1 (O=%error) asserts that the probability for a sys-
tem error within the next four steps is less than 0.001. If crit; and crity are atomic
propositions stating that certain processes P; or P, are in their critical sections then
Prob>; (O(—erit; V —crity)) stands for the qualitative safety property stating mutual ex-
clusion. The formula Probsg.g9 ( O (request — <>§5resp0nse) ) stands for the quantitative

progress property stating that there is a 99% chance that every request will be answered
within the next 5 steps.

Remark 9.1.1 [Quantification over the fulpaths] Formulas of the form V¢ and Jp
(where ¢ is a path formula and where V and 3 are the usual CTL* path quantifiers that
range over all fulpaths) could be added to our logic PCTL*, but we omit them for the
sake of simplicity.” m

Semantics of PCTL*: The state formulas are interpreted over the states of a probabilistic
system, the paths formulas over the fulpaths. We fix a probabilistic (fully probabilistic
or concurrent probabilistic) system S with state space S and proposition labels in AP.
L denotes the labelling function S — 247, Dealing with a fully probabilistic system, the
satisfaction relation for the state and path formulas is denoted by |=. In the concurrent
case, we fix a certain class A of adversaries and use the symbol =4 for the induced
satisfaction relation. In what follows, we write =, to denote the satisfaction relation =
in the fully probabilistic case; in the concurrent case, =, denotes =4 for some adversary
type A C Adv. The satisfaction relations

=« C Pathp, x IN x PathFormaulas, =, C S x StateFormulas

are defined as follows. As usual, we write (7,Jj) . ¢ rather than (7,j,¢) € E. and
s =« ® rather than (s, ®) € k.. The definition of |=, for the path formulas is as in the
non-probabilistic case; see Figure 9.2 (page 209). From this, we obtain

=« O iff there exists an integer [ with j <1 < |r| and (7,1) =, ¢

. O<Fp iff there exists an integer [ with 7 <[ < min{|n|,j+k} and (7,1) E. ¢
. Op iff (m,1) =4 ¢ for all integers [ with j <1 < |r|

. Ok iff (7,1) =, ¢ for all integers | with j <[ < min{|r|, k}.

(m,
(m,
(m,
(m,
For the state formulas, |=, is defined as follows.

sk ttforallse S SE P NDiff s = @y, =1,2

s Evaiff a € L(s) sk, Qiff s £ P

7)
7)
7)
7)

"When adding state formulas V¢ and J¢p to our syntax, for the semantics of Vo and Jp we can either
use the standard interpretation (where V¢ asserts that ¢ holds for all fulpaths) or an interpretation that
requires “path fairness”. In this case, our model checker of Section 9.3 would have to be extended, e.g. by
the method proposed in [CES83] for the standard interpretation or the method of [EmLei85] for checking
whether a path formula holds for all (some) fair paths.
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(myi) Ewpr,i=3,j+1,...,0 —1and (m,1) . 2
(m,7) v @1UUSFpy iff there exists an integer [ with j <[ < min{|r|,j + k} and

(myi) Ewpr,i=3,j+1,...,0 —1and (m,1) . 2

Figure 9.2: The satisfaction relation |=, for PCTL* path formulas

The state formula ® = Prob.,(¢) ensures that the probability measure for the fulpaths
satisfying ¢ lies in the interval I, = {¢ € [0,1] : ¢ > p}. Here, the truth value of a path
formula interpreted over a fulpath (rather than a pair (7, 7)) is given by:

T e iff (7,0) F.op

In the fully probabilistic case, satisfaction of Prob,,(¢) in a state s is derived from the
probability measure of {m € Paths,(s) : m |= ¢} (see Section 9.1.1). In the concurrent
case, satisfaction of Prob.,(¢) depends on the chosen type A of adversaries and is defined
in terms of the probabilty measures of {7 € Path;;l(s) : T =4 ¢} where A ranges over all
adversaries in A (see Section 9.1.2).8

9.1.1 Interpretation over fully probabilistic systems

Let S = (S,P, AP, L) be a fully probabilistic system. We define
s |= Prob,(¢) iff Prob{m € Pathp,(s): 7 = ¢} > p.
Notation 9.1.2 [The set Sat(®)] Let Sat(®) = {se€ S:s | P}.
For a fully probabilistic process P, we write P = ® iff the initial state of P lies in Sat(®).

Example 9.1.3 [Sock selection problem] We consider the sock selection problem of
[GSB94] and the associated fully probabilistic system (see Example 3.3.14 on page 52).
The PCTL* formula ® = Probs; q/p2n-2(<Osuccess) states that the probability for the
algorithm to terminate in a successful state (i.e. a state where we got a matching pair of
socks) is at least 1 — 1/22"2, Then, for the initial state

Sinit = (color(socky), color(socks),2n — 2),

we have Prob {m € Paths,(sini) : ™ | Osuccess} = 1—1/2?"2. Thus, sjpy = @. m

81t is easy to see that, for each state s and path formula ¢, the set {m € Paths,(s) : ™ = ¢} (or
{re Pathﬁl(s) :m =4 ¢} for A € Advu in the concurrent case) is measurable.
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Example 9.1.4 [Simple communication protocol] For the simple commmunication
protocol of Example 1.2.1 (page 19) equipped with the atomic propositions init and wait
and the labelling function £ with a € L(s,) iff a = * we have

Sinit = Probsg.g909 (O=*wait)

which asserts that, with probability at least 0.9999, if the sender is in its initial state
(where it produces a message), then the message will be eventually delivered within the
next four steps. This can be seen as follows. Let p;(¢) denote the probability measure of
all fulpaths m € Pathg,(s) where ¢ holds. Then, we have

psznzt(<>§4waZt) = psdel(ogg’wait)
= 05+ 105 Poia (O wait)

100 100
_ 99 1 <1 :
= 100 -+ 100 ° psdgl(<>— wazt)
— 9 + 1,9 . 9999
100 100 100 ~— 10000

Here, we use the fact that p,(O<Fa) =1 if a € L(s) and, for a ¢ L(s),

p5(<>§k+1a) = Z P(s,t) -pt(<>§ka)
tes

and p,(O=%a) = 0. (See Section 9.3, page 217). m

9.1.2 Interpretation over concurrent probabilistic systems

If S = (S, Steps, AP, L) os a concurrent probabilistic system and A C Adv then we define
s =4 Probuo,(p) iff Prob {7r € Pathﬁd(s) = go} > p forall Ae A
Notation 9.1.5 [The set Sat4(®)] Let Sat4(®) = {s€ S:skF=4P}.

For a concurrent probabilistic process P, we write P |=4 @ iff the initial state of P belongs
to Sat 4(®). In the remainder of that thesis, we shrink our attention to the following four
classes of adversaries:

e Adv (the set of all adversaries)

o Advy,, (the set of fair adversaries in the sense of Definition 3.2.17, page 46),

o Advy, (the set of strictly fair adversaries in the sense of Definition 3.2.17, page 46),
o Advwuir (the set of W-fair adversaries in the sense of Definition 3.2.20, page 47).

The satisfaction relation =44, yields the standard interpretation a la [BidAl195]. We briefly
write = instead of |=44,. For the satisfaction relations = 44u,,,., FAdv. s, a0d FAduy g, We
also write =4, Fsfair and FEwyar. Similarly, we often write Sat(®), Satfeir(P), Sat s (P)
and Sat wyair(®) rather than Satsa(®), Satadg,, (®), Satad.,,, (®) and Satsdwy,,, (P)
respectively.

sfair

The following example demonstrates that the satisfaction relation in the concurrent case
depends on the chosen A. In particular, the below example shows that — as in the non-
probabilistic case — fairness assumptions (with respect to the non-deterministic choices)
might be essential for establishing certain (quantitative or qualitative) properties.
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Example 9.1.6 [Roulette player] We consider the roulette player of Example 1.2.3 on
page 22 (see Figure 1.3 on page 22). We use the atomic propositions play, happy and won
and the labelling function £ where a € L(s,) iff a = *. First, we regard the formula

¢ = O(play — Swon).

with respect to the standard satisfaction relation |= where we range over all adversaries.
For each adversary A, Prob {ﬂ' € Path}il(smt) T E go} = 1. Thus, Sinit = Probsi(p)
which ensures that —independent on the environment (adversary) — whenever the roulette

player starts playing then he will eventually win a game with probability 1. Next we regard
the PCTL" state formula

U = Probsg5(¢) where v = Shappy.

Intuitively, ¥ states that, there is at least a 50% chance for the roulette player to leave
the casino while winning the last game. The truth value of the formula ¥ depends on
the environment (the chosen adversary type A). Let p2(1) be the probability measure
of {7r € Path]‘%l(s) T ;D}. For the simple adversary A with A(Syen) = ,uiplay we have

p;“init(d)) = 0 because A forces the roulette player to stay forever in the casino. Thus,
Sinit = ¥

when we deal with the standard satisfaction relation |= that does not involve fairness.
Dealing with a satisfaction relation where fairness in the state s,,, is assumed, the formula
¥ holds in the initial state. This is because A behave unfair in the state s,,, and, for
each other adversary B, we have pZ () = 1/2 (cf. Example 3.2.13 on page 44). Hence,

Sinit ):faz'r \Ila Sinit ):sfaz'r \I!a Sinit ):Wfair v

provided that W contains s,,,. When we use a set W that does not contain $,,,, then
the above adversary A is W-fair which yields siir  FEwpir ¥. Thus, the quantitative
property ¥ cannot be established unless appropriate fairness assumptions are made. m

Remark 9.1.7 [The CTL* quantifiers V and 3] As in [Hans91, SeLy94, BaKw98|,
for the use of PCTL" as specification language for concurrent systems, instead of the
probabilistic operator Prob,.,(¢) we might use state formulas of the form [Vy]5, and
[3p]5,.% Then, [V]o, states that under all adversaries (of the chosen type) the probability
for ¢ is O p which corresponds to the meaning of Prob-,(¢). PCTL" state formulas with
an upper bound for the probabilities (i.e. formulas of the form Prob,(¢)) can be expressed
either by [V—¢|41_, (which is equivalent to Prob—;_,(—¢)) or with the help of existential
quantification. For instance, Prob<,(¢) corresponds to —[Jy].,. ®

9.1.3 The sublogics PCTL and LTL

PCTL" is a combination of PCTL (probabilistic computation tree logic) and LTL (propo-
sitional linear time logic). In PCTL, arbitrary combinations of state formulas are possible

9Here, we use J to denote one of the comparison operators > or >. As in CTL*, the quantifiers
vV and 3 range over all possible resolutions of the non-deterministic choices yielding ezecutions in the
non-probabilistic case and execution trees in the probabilistic case.
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but only path formulas of the form X®, ®,U®, and U P, (where ®, ®; and &,
are state formulas) are allowed. Linear time logic LTL is the other “extreme” fragment
of PCTL* where arbitrary combinations of path formulas but only propositional state
formulas are allowed.

Probabilistic computation tree logic PCTL: In PCTL, only “simple” path formulas
built from the temporal operators X, U=F or I/ and state formulas are allowed. Formally,
PCTL is those sublogic of PCTL* whose state and path formulas are built from the
production system shown in Figure 9.3 (page 212). In what follows, we briefly speak

& = tt ‘ a ‘ D A Dy ‘ - ‘ Prob., ()

o = Xo \ &, U, \ & Uk P,

Figure 9.3: Syntax of PCTL

about PCTL formulas rather than PCTL state formulas. In PCTL, the temporal operators
“eventually” or “sometimes within the next k steps” are obtained as in the case of PCTL":

Prob.,(O®) = Proby,(tt U ®), Prob.,(OSF®) = Prob,,(tt USF ®).

For modelling the temporal operators “always” and “always within the next k steps” in
PCTL, we use the fact that, for any PCTL" path formula ¢, the formulas Prob.,(¢) and
Probs; ,(—¢) are equivalent where < =>, < =>, > =< and > =<.'0 Thus, “always”
and “always within the next k£ steps” can be obtained in PCTL by:

Prob,,,(0®) = Probs;_,(O1®), Prob,,(05F®) = Probm;_,(O<k—®)

Note that — because of the simplicity of the PCTL path formulas — the satisfaction relation
. (where |=, stands for = in the fully probabilistic case and for =4 in the concurrent
case) for PCTL path formulas is given by:

mE.X®iff 7| >1and n(1l) =, @
T Ex ®1UP, iff there exists an integer [ with 0 <[ < |7| and
(i) Ex ®1,7=0,1,...,0 — 1 and 7(l) =, P2
7 =, UKD, iff there exists an integer [ with 0 < [ < min{|nx|, k} and
(i) e ®1,7=0,1,...,0 — 1 and 7(l) = ®s.
Linear time logic LTL: In LTL, the probabilistic operator Prob,, is removed. Thus,
LTL formulas are path formulas built from atomic propositions, the boolean connectives

and the temporal operators. Formally, LTL formulas are those PCTL* path formulas that
are built from the grammar shown in Figure 9.4 (page 213).

LTL itself can serve as specification formalism for probabilistic systems. In that case, a
specification consists of a LTL formula and a lower or upper bound for the “acceptable”
probabilities.

0Equivalence means semantic equality; that is, for any probabilistic system S and any state s of S,
the first formula holds in s if and only if the second formula holds in s.



9.1. THE LOGIC PCTL” 213

p = tt ‘ a ‘ - ‘ 01 N\ P2 ‘ Xop ‘ ©1lh s ‘ O U=Fp,

Figure 9.4: Syntax of LTL

Notation 9.1.8 [Quantitative LTL specifications] A quantitative LTL specification
is a pair (p,I) consisting of a LTL formula ¢ and an interval I of the form [0, p|, [0, p],
[p, 1] or |p, 1] for some p € [0, 1].

A state s of a fully probabilistic probabilistic system is viewed to be correct with respect
to a LTL specification (¢, I) if the “truth value” of that formula ¢ lies in the interval I
of “acceptable” probabilities. Here, the “truth value” is given by the probability measure
of all fulpaths starting in s and satisfying .

Notation 9.1.9 [The set Sat({p, I)) (fully probabilistic case)] Let Sat({p, I)) be the
set of states s € S where Prob {m € Pathp,(s) :m = ¢} € I.

In the concurrent case, a LTL specification (p, I) asserts that, for any possible environ-
ment, the probability for ¢ lies in the interval I. As before, the possible environments are
formalized by an adversary type A C Adv.

Notation 9.1.10 [The sets Sats({p,I)) (concurrent case)| Let Sat((p,I)) be the
set of states s € S such that, for all A € A,

Prob {ﬂ' € Path}il(s) =y go} e I

For A € {Adv, Advy,, Advspir, Advwair b, we often write Sat({p,I)), Satp((¢, 1)),
Sat spair ((@, 1)) or Sat wpar((p, I)) rather than Sat4({p,I)).

Remark 9.1.11 [Qualitative LTL specifications] Various authors, for example [Vard85,
VaWo86, CoYa95, PnZu93], deal with LTL (or similar logics) as a formalism for speci-
fying qualitative (linear time) properties that assert that a certain LTL formula ¢ holds
for almost all fulpaths (resp. almost all fulpaths of an adversary of the chosen type A).
Such qualitative properties can be formalized by quantitive LTL specifications of the form

(p,[1,1]). m

Clearly, in the fully probabilistic and concurrent cases, we have the equivalence of the
quantitative LTL specification (¢, I.o,) and the PCTL" state formula Prob,,(y¢) in the
sense that Sat.(Prob.,(¢)) = Sat.({p,I)) where I.,, = {q € [0,1] : g > p}.

9.1.4 Related logics

We mentioned before that our logic PCTL" is based on existing logics proposed in the
literature. We briefly sketch the connections and differences.
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Fully probabilistic case: Our logic PCTL agrees with the logic (also called PCTL)
introduced by Hansson & Jonsson [HaJo94|; the full logic PCTL* with the logic considered
by Aziz et al [ASBT95] (and later considered e.g. by Iyer & Narasimha [IyNa96]).!!

Concurrent case: Dealing with the standard interpretation |= our logic PCTL" (resp. the
sublogic PCTL) essentially agrees with the logics considered in [HaJo89, Hans91, SeLy94,
BidAl95, dAlf97a, dAlf97b]. The main difference between our logic PCTL and the
logic (also called PCTL) of Hansson [Hans91] (and later considered by Segala & Lynch
[SeLy94]) is that the latter deals with action labels while we label the states with atomic
propositions.'? The logic pCTL* of Bianco & deAlfaro [BidAl95] agrees with our logic
PCTL*. Luca de Alfaro [dAlf97a, dA1f97b] uses an extension of pCTL* that contains an
operator to express bounds on the average time between events which does not have a
counterpart in PCTL*.13

9.1.5 PCTL" equivalence and bisimulation equivalence

As shown in [ASB*95], for fully probabilistic systems, PCTL" equivalence (and also PCTL
equivalence) is the same as bisimulation equivalence. The connection between PCTL
equivalence and bisimulation equivalence for action-labelled concurrent systems is dis-
cussed in [SeLy94]. We conjecture that these results carry over to the proposition-labelled
case and claim that, for concurrent probabilistic systems, bisimulation equivalence implies
PCTL equivalence (with respect to the standard interpretation =) while the converse does
not hold.'* To see why (in the concurrent case) PCTL equivalence (or even PCTL* equiv-
alence) does not imply bisimulation equivalence consider the system shown in Figure 9.5
(page 215). The states s and s’ are PCTL* equivalent but not bisimulation equivalent.'®
Note that this stands in contrast to the non-probabilistic case where CTL" equivalence
and bisimulation equivalence coincide [BCGS8S].

9.2 Model checking algorithms for PCTL"

In this section, we consider model checking algorithms for PCTL* and the sublogics
PCTL and LTL. A model checking algorithm for PCTL* means a method that takes
as its input a PCTL" state formula ¥ over a certain set AP of atomic propositions

1 The only difference is that [ASB*95, IyNa96] do not use the bounded until operator Y<F. Moreover,
[ASBT95] extends the interpretation to the states of a generalized Markov chain (which can be viewed
as a fully probabilistic system with intervals of transition probabilities).

12Moreover, there are some minor differences. [Hans91, SeLy94] avoid the (explicit) use of the prob-
abilistic operator Prob., and deal with state formulas of the form [V¢]5, and [Jp]5, as explained in
Remark 9.1.7 (page 211). [Hans91] mainly concentrates on the specification of soft deadlines. For these,
the unbounded until operator I/ is not needed. However, unbounded until I/ could be added as well.

13More minor differences between pCTL* and PCTL* are that PCTL* contains the next step operator
X and the bounded until operator <F, whereas pCTL* does not (but these operators could easily be
added). Vice versa, pCTL" contains the usual CTL" quantifiers V and 3 (denoted A and F in the approach
by Bianco & de Alfaro) that range over all paths: ¥V meaning “for all fulpaths” and 3 “there is a fulpath”.

4For this, we assume a suitable adaption of the definition of bisimulation equivalence for the
proposition-labelled concurrent case (in the style of [JoLa91, ASB*95]).

15Here, we assume a labelling function £ with £(s) = £(s').
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} : TR VAN
(1) (v3)
{a} 0 {a} 0 {a} )

Figure 9.5: s and s’ are PCTL" equivalent but s o¢ s’

and a finite (fully or concurrent) probabilistic system S with proposition labels in AP
and computes the set Sat,(¥) of states s in S where ¥ holds.'® Similarly, PCTL (or
LTL) model checking means a procedure to compute Sat.(¥) (or Sat.({p,I))) for a given
finite probabilistic system and PCTL formula ¥ (or quantitative LT'L specification (¢, I)).
Clearly, any PCTL" model checking algorithm subsumes PCTL and LTL model checking
algorithms and yields an automatic procedure to verify probabilistic processes against
quantitative temporal logical specifications, provided that the process can be described
by a finite system S with initial state s;,;; and that the specification can be expressed by
a PCTL" state formula ¥. Model checking algorithms for PCTL, LTL and PCTL" are
presented for fully probabilistic systems in [CoYa88, HaJo94, ASB*95, CoYa95, IyNa96]
and concurrent probabilistic systems with respect to the standard satisfaction relation |=
in [BidAl95, dA1f97a, dA1f97b]. These methods are based on the following common ideas.

(1) The PCTL* model checking algorithm is based on a recursive procedure that suc-
cessively computes the sets Sat.(®) for all state subformulas ® of the given PCTL*
formula ¥. For the handling of subformulas of the form ® = Prob,,,(¢), the PCTL*
path formula ¢ is translated into a LTL formula ¢' such that Sat,(®) can be derived
from Sat,((¢, Ip)) where the latter is computed with a model checking algorithm
for LTL.

(2) The method for LTL uses the PCTL model checker for the handling of the until
operator. For this, the underlying LTL formula ¢Up, is replaced by a PCTL path
formula of the form al/b for atomic propositions a and b, the system S by a more
complex system S'.

Thus, PCTL* model checking can be reduced to LTL model checking; LTL model checking
to PCTL model checking. It is worth noting that these reductions can be seen as the
probabilistic counterparts to the results (for non-probabilistic systems) by Emerson & Lei
[EmLei85] (where it is shown that any model checking algorithm for LTL can be modified
for a CTL* model checking algorithm with the same complexity) and Clarke, Grumberg
& Hamaguchi [CGH94| (where it is shown that LTL model checking can be reduced to
CTL model checking with fairness assumptions).

We now explain how a given model checking algorithm for LTL can be applied to obtain
a PCTL" model checking algorithm. This method goes back to Bianco & de Alfaro
[BidA195] where concurrent systems and the satisfaction relation = are considered. It is

16 As before, Sat,(¥) denotes Sat(¥) for fully probabilistic systems. In the concurrent case, we assume
a fixed class A of adversaries and deal with Sat.(¥) = Sat 4(7).
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also applicable for fully probabilistic systems or concurrent systems with other satisfaction
relations, e.g. Ffur, Fsfair O FEwjair. Similar ideas are used in [ASBT95, IyNa96] that
consider PCTL* with the interpretation over fully probabilistic systems.

Model checking for PCTL*: The input is a PCTL" state formula ¥ over AP and a
finite probabilistic system with state space S and labelling function £ : S — 24F. The
algorithm is based on a recursive procedure that successively computes the sets Sat,(®)
for all state subformulas ® of ¥. The cases where ® is ¢f, an atomic proposition or of the
form —®' or ®; A ®, are clear since we have

Sat,(tt) = S, Sat, (—®') = S\ Sat.(P),
Sat.(a) ={se€ S:ac L(s)}, Sat, (P A ®3) = Sat.(®1) N Sat, (D).

The interesting case is where the outermost operator of ® is the probabilistic operator
Prob,.,. For this, we apply a model checking algorithm for LTL. Let ® = Prob.,(¢) and
let ®,...,®; be the maximal state subformulas of . We apply the described method
recursively to ®,,...,®; and obtain the sets Sat.(®;), i = ..., k. Then, we replace the
subformulas ®4, ..., ®; by “fresh” atomic propositions ay, ..., a; and extend the labelling
function £ by inserting a; into L(s) iff s € Sat.(®;). The so obtained path formula ¢’ is a
LTL formula over AP U{ay,...,a;}. Thus, we may apply the given LTL model checking
algorithm to the LTL specification (¢', I.,) and obtain Sat.(®) = Sat.((p, I«p)) where
Iip ={q €[0,1]: g p}.

In the next two section, we consider model checking algorithms for PCTL (Section 9.3) and
LTL (Section 9.4). As described above, the method for LTL can be modified for a PCTL*
model checker. We briefly recall the results of the literature (where the fully probabilistic
case and the concurrent case with the standard interpretation = are considered) and
present methods to deal with an interpretation that assumes fairness with respect to the
non-deterministic choices. More precisely, we deal with the satisfaction relations =y,
=sfair and =y that range over all fair, strictly fair and W-fair adversaries respectively.
We will see that the result of [dAlf97b] stating that PCTL* model checking with respect
to = can be done in time polynomial in the size of the system and double exponential
in the size of the formula carries over to the above satisfaction relations where fairness is
involved. Thus (by the results of the following two sections):

Theorem 9.2.1 Let ¥ a PCTL* formula, S a finite concurrent probabilistic system and
W a subset of the state space of S. Then, Satfoir(¥), Satspir (V) and Sat weir(¥) can be
computed in time polynomial in the size of S and double exponential in the size of V.

By the results of [CoYa95], this time complexity is optimal. In the fully probabilistic case,
the LTL model checking algorithm of [CoYa88, CoYa95| yields a PCTL"* model checking
that runs in time polynomial in the size of the system and single exponential in the size
of the formula. An alternative algorithm with the same time complexity (based on the
w-automaton approach) is presented in [IyNa96|.

9.3 Model checking for PCTL

Model checking algorithms for PCTL are presented by [HaJo94| for fully probabilistic
systems and by [BidAl95] for concurrent probabilistic systems with respect to the stan-
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dard satisfaction relation |=. Both algorithms are based on a recursive procedure that
successively computes the sets Sat(®) for all subformulas ® of the given formula ¥. For
the handling of the until operator, [HaJo94] uses linear equation systems, [BidAl95] linear
optimization problems (cf. Remark 3.1.8, page 36, and Remark 3.2.12, page 43). In both
cases, the time complexity is polynomial in the size of the system and linear in the size
of the formula.

In this section, we briefly sketch the methods of [HaJo94, BidAl95] and present model
checking algorithms for PCTL with respect to the satisfaction relations |=fuir, =sfair and
= wiair- As before, we write Sat,(®) to denote the set Sat(®) in the fully probabilistic
case and Sat 4(®) in the concurrent case (where A is the chosen type of adversaries).

The main procedure is the same for fully probabilistic and concurrent probabilistic systems
and uses the ideas of the model checking algorithm for CTL a la Clarke, Emerson & Sistla
[CES83|. The starting point is a PCTL formula ¥ over AP and a finite probabilistic
system S with state space S and a labelling function £ : S — 24F. First, it builds the
parse tree of ¥ whose nodes stand for subformulas of ¥. The root represents the formula ¥.
The leaves are labelled by the boolean constant ¢t or an atomic proposition. The internal
nodes are labelled by one of the operators A, =1, Prob..,(X _) Prob..,(_) or Prob,, (- U=F_).
Nodes labelled by — or a next-step operator Prob,,(X_) have exactly one son, representing
the argument of the negation, resp. next step operator, in the corresponding subformula.
Nodes labelled by A or an until operator Prob,., (/) or Prob..,(/=*_) have exactly two
sons (their arguments). If v is a node then let ®, denote the formula represented by v.
In a bottom-up manner, we calculate the sets Sat.(®,) of states where the corresponding
subformula ®, holds. For the handling of the leaves (nodes where the corresponding
formula is ¢t or an atomic proposition) we use the fact that Sat,.(tt) = S and Sat.(a) =
{s € §:a € L(s)}. For the computation of ®, for an internal node v, we might
assume that the sets Sat,(®,,) for the sons w of v are already computed. Thus, we can
treat the proper state subformulas of ®, as atomic propositions. The cases where the
outermost operator of ®, is one of the boolean connectives = or A is clear as we have:
Sat,(—®) = S\ Sat.(®) and Sat, (P A P2) = Sat,.(P;)N Sat.(P2). Now we consider the
case where ®, is of the form Prob.,(¢).

Fully probabilistic case: We briefly recall the results of Hansson & Jonsson [HaJo94]
for the fully probabilistic case. As before, let P : S x S — [0,1] denote the transition
probability matrix in S (i.e. S = (S,P, AP, £)). We compute

ps(p) = Prob{m € Pathp,(s) : 7 = ¢}

for all state s € S and then put Sat(®,) = {s € S : ps(p) > p}. The probabilities p,(¢)
can be computed as follows. The handling with the next step operator is based on the
observation that

ps(X®) = P(s,Sat(®)) = > P(s,t).

teSat(®)

For the computation of p,(®,U<F®,), [HaJo94] proposes two methods. One uses iterative
matrix multiplication; the other is based on the fact that

ps((ﬁlugk@z) =1lifse Sat((ﬁz),

ps((ﬁlugk(ﬁz) =0ifse S \ (Sat(@l) U Sat(q)2)),
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ps(CI>1L{§0@2) =0ifse Sat(@l) \ Sat(q)z)
and, for s € Sat(®q) \ Sat(P2) and k > 1,
ps(21UFRy) = Y P(s,t) - p(@1U=FT D).

tes
For the until operator, the probabilities ps(®,UP,) can be obtained by solving a regular
linear equation system (preceeded by a graph analysis which yields the set {s € S :
ps(®1UP;) = 0}). Alternatively, one can use an iterative method that computes an
approximation of the function s +— py(®1UP,) (viewed as the least fixed point of an
operator on the function space S — [0,1]).}” See Remark 3.1.8 (page 36).

Concurrent case: In the remainder of that section, we deal with the concurrent case
and show how to compute the set Sat 4 (Prob,,(¢)) where A is one of the adversary types
Adv, Advjyir, Advgpeir or Advw geir. The method for A = Adv is those of [BidAl95].

As before, let S = (S, Steps, AP, L) be the underlying system. Recall that we assume S
to be finite, i.e. the state space S is finite and, for any state s, the set Steps(s) is finite.
For the satisfaction relation =y, we deal with a fixed subset W of S. We consider the
cases p = X®, p = &;UP, and ¢ = ,U="P, and present criterias for s =4 Prob.,(¢) by
means of the sets Sat4(®) or Sat 4(®;), ¢ = 1,2. Since we assume that the sets Sat 4(®),
Sat4(®;), ¢ = 1,2, are already computed these criterias yield a method for computing
Sat 4 (Prob.,(¢)).

Notation 9.3.1 [The comparison operators J and C| We write J to denote one of
the comparison operators > or >. Similarly, T stands for < or <.

Clearly, for formulas of the form Prob-,(¢) we need the “minimal” probabilities for ¢
under all adversaries A € A, while the constraint C p requires to look for the “maximal”
probabilities under all A € A.

The next-step and the bounded-until operator are dealt with in the same way for all four
interpretations whereas the unbounded until operator requires special methods for the
satisfaction relations with fairness.®

9.3.1 Next step

The following lemma shows that the set of states where Prob,.,(X®) holds is obtained by
computing the values u [Sat 4(®)] = Yjcsat,(e) H(t) for all distributions p € U, Steps(s).

Lemma 9.3.2 Foralls€ S:
s Fa Prob,(X®) of > u(t) > p forall p € Steps(s)

teSat 4(®)

17Our MTBDD-based symbolic model checker of Chapter 10 applies this iterative method.

18This observation is no surprise as fairness is a property that only concerns the infinite behaviours
and the probabilities for the fulpaths satisfying PCTL path formulas built from next step X or bounded
until #=* only depend on the finite paths up to length k (where k = 1 in the case of the next step
operator). On the other hand, unbounded until I/ asserts something about the infinite behaviour and,
in general, an investigation of the finite paths up to a fixed length is not sufficient to reason about the
fulpaths satisfying ®,U ®5.
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Proof: easy verification. m

E.g. Sat 4(Prob5,(X ®)) is the set of states s € S where min,eseeps(s) [Sata(®)] > p.

9.3.2 Bounded until

The below characterization induces the computation of e.g. Sat 4(Prob-,(®1U=F®,)) by
recursively calculating the probabilities

: A < _
Jmin - py (o1U~'Dy), 1=0,...,k,

where p2(®,U=!®,) is the probability measure of all fulpaths 7 € Pathﬁd(s) with 7 =4
®,U='®,. This method is just an adaption of the method proposed by [HaJo94] sketched
on page 217.

Lemma 9.3.3 Forallse S:

s Fa Probo,(2:U<*®,) iff %" Jp,
s fEa Probo, (.U~ ®;) iff ¢l Cp.

and ¢q¥", s € S,1=0,1,...,k, are defined as follows.

s\l

mazr

Here, the values ¢

o If s Eq Py APy then qsyt = q;”j" =0 foralll > 0.
o If s |=a @y then ¢'f* = qJ" =1 for all 1 > 0.
o If s =u @y then ¢)" = qJ" =0 and

mar  __ mazx min  __ : min
gty = max 3 p(t) g, gt = min > p() g
peE Steps(s) oy e Steps(s) tes

Proof:  For A € A, let ¢, = Prob {7r € Path}il(s) =y <I>1USI(I>2}. By induction on

[, we get qg7"* = maxaca qél and q;’fli" = mingey q;‘fl which yields the claim. m

Example 9.3.4 We consider the system of Figure 9.6 (page 219) and the PCTL formula
Prob_1(al{=*b). Using the notations of Lemma 9.3.3 (page 219), we have ¢J§* = ¢/'§* = 1,

(@b}

(w) 0

1 1
p 2 5
() {a} OX

Figure 9.6: t [~ 4 Prob_1(al{=*b) and s =4 Prob_1(alf=°b)

1 1
3 3

mar __ mar __ ]
T3 = q,3° = 0 and the recursive formulas



220 CHAPTER 9. VERIFYING TEMPORAL PROPERTIES

mar  __ 1 max 1 mar __ 1 1 max
G541 — Mmax { 5 9ti 5 g }, Qiiv1 = 5 T 5 sy
mar __ mar __ 3 mar __ mar __ mar __ mar __
where ¢;§" = ¢/ = 0. We obtain ¢]'}* = 1/4, ¢\ =1/2, ¢[§* =1/4, ¢/¥* =5/8,

mar __ 5 mazr __ 21
43" = 15 and ¢5" = 5.

Hence, t [£F4 Probgé(aug‘q’b) and s |=4 Prob_1(al{i=*b). m

9.3.3 Unbounded until

This section is concerned with the unbounded until operator, i.e. formulas of the form
Prob..,(®:U®,) and the satisfaction relations =, Ffuir, Fsfair and = wiair-

Simplified notations: For the rest of this section, we fix two PCTL formulas ®;, ®, over
AP. We suppose that the sets of states s € S with s =4 ®; are already computed. We
may suppose that ®;, &, are atomic propositions with ®; € L(s;) if and only if s =4 @;,
¢ = 1,2. This simplifying assumption allows us to use the same notation for all four
interpretations (since s =4 a iff s = a for all atomic propositions a), and is made for this
reason alone. We simply write Sat(®;) rather than Sat4(®;), i =1,2.

Notation 9.3.5 [The probabilities pi(®,U®P;)] For A € Adv and s € S, let
pA(®:1UPy) = Prob{m € Pathjy(s) : 7 = &:1UP,},
P (@1UD;) = sup { pA(@1UPy) : A€ Adv },
prT(@UB,) = inf { pA(®1UB,) : A€ Adv |

By the results of [CoYa90, BidAl195| (more precisely, by Corollary 20 (part 1) of [BidAl195],
which uses the results of [CoYa90]):

p;naw(@luq)2) = max {psA(QIU‘I)z) A€ Advsimple })
I (@UB,) = min { pH(@1UP) : A€ A -

Observe that Advimgp. is finite (thus, mingec g, and maxae g, €xist). In partic-
ular, this yields that p™%(®,U®P,) = max {psA(q)1U<I>2) tA€ Adv} and p™"(®,UP,) =

min {p;“(@luth) A€ Adv}; thus, also maxgc 44, and mingc 44, exist. Immediately by
the definition of p™"(-) and p™**(-) we get:

S S

(1) S ): PI’ObEp(q)lucI)g) iff pm““”((I)lZ/l(I)z)

L)

C p.
(11) S )I Prob;p(@ﬂ/{(%) iff pm’"(<I>1U‘I>2) _ p.

L)

This fact is used in the PCTL model checker of [BidAl95]. Having obtained the sets
Sat 44,(®;), i = 1,2, one computes the values p™3(®,UP,) and p™"(®,UP,) which yield

S S

S

Sat ag ( Proboy(®1U®s) ) = {s € S:pl™(®:1U®;) I p}.

Sat gy ( Probe,(®:U®:) ) = {s € S:p*(2:1UP,) C p},

[BidA195] propose to compute the values p™*(®,U®P,) and p™"(®,;UP,) by solving cer-

s s
tain linear optimization problems. Alternatively, one can use the characterization of the
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functions s — pm®(®;UP,) and s — p™" (D, UD,) as least fixed points of certain opera-
tors on function space S — [0, 1] and compute (approximations for) them with iterative

methods.'® See Remark 3.2.12 (page 43).

We now turn to the question how to deal with the satisfaction relation that involve fairness
(namely, the satisfaction relations =feir, Fsfeir and =wyair). For this, we present a series
of technical results that characterizes the states where Prob,,,(®;U®;) holds with respect
to one of the above satisfaction relations. For readers’ convenience we state the main
theorems in this section without proof (those are included in Section 9.5, page 241 ff).
Instead, we include justification for the technical results in the form of examples and
informal explanations.

First, we observe that the results by Emerson & Lei [EmLei85| stating that C'TL model
checking under fairness assumptions can be reduced to CTL* model checking cannot
be adapted for the probabilistic case (for the logics PCTL and PCTL*). In the non-
probabilistic case (i.e. when using C'TL), fairness of fulpaths can be expressed by path
formulas of CTL*. Typically, this is achieved by means of formulas of the form

Plair = \/ /\(ODSOi,j v OO ;)

i j

where a fulpath 7 is said to be fair if 7 = ¢f;. The model checking for CTL under
fairness assumptions (i.e. with respect to the satisfaction relation =, where the CTL
path quantifiers V and 3 range over all fair fulpaths) can be reduced to the model checking
problem for CTL* with respect to the standard satisfaction relation = since one has an
equivalence of the form

s Epir Vo iff s = Y(0pr — ).

Unfortunately, this equivalence does not hold in the probabilistic case. The problem is that
formulas of the form Prob.,, (¢ir — ¢) interpreted over |= state that, in all adversaries
(whether fair or unfair), the measure of all fair fulpaths that satisfy ¢ is > p, i.e.

Prob {ﬂ' € Path}tl(s) : 7 is fair and 7 = (p} >1 p forall A€ Adv

whereas the interpretation with respect to =, quantifies over the fair adversaries; thus,
Prob,.,(¢) interpreted over |=s,;, asserts that

Prob {7r € Pathf;l(s) T (p} >1 p for all F € Advygp.

Hence, the model checking algorithms for PCTL* cannot be used to handle fairness (at
least not in a straightforward manner).

Recall the above mentioned result of [CoYa90, BidAl195] ((i) and (ii) on page 220) which
asserts that satisfaction with respect to |= (that ranges over all adversaries) only depends
on the probabilities under the simple adversaries. Now we will see that item (i) carries over
to the satisfaction relations =, and =wyeir (Theorem 9.3.6, page 222, and Theorem 9.3.7,
page 222), while (ii) does not (cf. Example 9.3.20, page 226). In particular, the maximal

19Tn Chapter 10 where we describe a MTBDD-based PCTL model checking algorithm for stratified
systems we make use of the iterative method.
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probabilities under all fair adversaries are given by the maximal probabilities under all
simple adversaries. Even though (ii) does not hold for |=f4i, or = wyeir we will see that also
the minimal probabilities under all fair adversaries can be derived by an investigation of
the simple adversaries. More precisely, the minimal probability for a PCTL path formula
®,UP, under all fair adversaries can be described in terms of the maximal probability for
another PCTL path formula a;Uas under all simple adversaries. Thus, both the minimal
and maximal probabilities under all fair adversaries can be expressed by means of the
simple adversaries. In our opinion, this is a surprising result since the simple adversaries
are “extremely unfair”.

Formulas of the form Prob,(®:U®,)

We consider formulas of the form Prob-,(®1U®;) for which we need the “maximal” prob-
abilities under all fair (strictly fair or W-fair) adversaries. First, we deal with the sat-
isfaction relation . Clearly, p7® (®,U®P,) > pF(®,UP,) for all fair adversaries F.
Vice versa, for each simple adversary A, there is a fair adversary F4 where Pathg;‘l‘ con-

tains all finite paths o € PathA such that o(i) = ®; A =®y, i = 0,1,...,]o| — 1, and

n

last(o) = @2 (cf. Lemma 9.5.15, page 243). Thus, if we take A to be a simple adversary
where pA(®,U®P,) = pme® (<I>1U@2) (which exists by the results of [CoYa90, BidAl95]) then

S

we get pfa(®,UDP,) > pd(1UDP,) = pl®®(®,UDP,). This yields
(*) poe(®1UPs) = max {pf (®:1UPy) : F € Advgasy }
and we obtain the following theorem.
Theorem 9.3.6 Foralls € S:
s FEpr Probp(®:U®,) iff p*(21UP,) T p.
Proof:  see Section 9.5.2, Theorem 9.5.19 (page 245). m
As each fair adversary A is W-fair, (*) yields
P (@1UDy) = max {pf (21UD,) : F € Advwpair} -

Thus, Theorem 9.3.6 carries over to the satisfaction relation =g
Theorem 9.3.7 Forall s€ S:

s Ewfur Probo,(21U®y) iff pl**(®1UP2) T p.
Proof:  see Section 9.5.2, Theorem 9.5.19 (page 245). m

It turns out that the satisfaction relation =, differs from |=f; and |= in that only a
stronger statement for formulas of the form Prob.,(®;U®;) can be shown.

Theorem 9.3.8 Forall s € S:
S ):sfair PrObSP( 12/{(1)2) Zﬁ pmaz( 12/{(1)2) S p
Proof:  see Section 9.5.2, Theorem 9.5.21 (page 245). m

The following example shows that the inequality “< p” in Theorem 9.3.8 cannot be
replaced by “< p” as pf(®1UP,) < pI*(®UP,) for all F € Advgy,, is possible.
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{a}

{a} (w{b}
Figure 9.7: s =y Prob.i(alfb) while pI*** (aldb) =1

Example 9.3.9 Consider the system shown in Figure 9.7 (page 223) and the path formula
aldb. Then, p¥' (aldb) < 1 for each strictly fair adversary F'. Hence, s [E=guir Prob.q(aldb).
On the other hand, p#(alfb) = 1 for the simple adversary A with A(s) = p. Hence,
p" (aldb) = 1.3 m

In order to describe how the set Sat g5, (Prob.,(®:U4®;)) can be computed we first intro-
duce some notations. We define Reachg, s, (s) to be the set of states which are reachable
in S from s via a path where all states — possibly except the last one — fulfill the formula
D A Dy,

Notation 9.3.10 [The set Reachg, r-a,(s)] For s € S, we define
Pathgy, (s, ®1 A ~®y) = {0 € Pathg,(s) :0(i) = @1 AN-Pe,i=0,1,...,|0] =1},
Reachg,n-a,(s) = {last(o) : 0 € Pathga(s, @1 A =P2)}.

ST(®q, ®y) is the set of all states from which one can reach a ®,-state via a path through
®,-states. Formally:

Notation 9.3.11 [The set ST (P, ®,)] We define

SH(®,,®y) = {s € S : Reacha, n-a,(s) N Sat(Py) # 0}

Clearly, s € S*(®,, @) iff p2(®:UP;) > 0 for some A € Adv iff p™*(®,UP,) > 0.

s
Example 9.3.12 For the system of Figure 9.7 (page 223) we have

Reachgp-p(8) = Reachgn—p(t) = {s,t,u,v},
Reachgp—p(z) = {z} for € {u,v}.

Moreover, Sat(b) = {u}, Sat(a) = {s,t}. Thus, S*(a,b) = {s,t,u}. m

We introduce MaxzSteps(s, @1, P2) as the set of steps u € Steps(s) that might be chosen
in state s by an adversary A that yields the maximal probabilities for ®;U/P,.

Notation 9.3.13 [The sets MazSteps(s, @1, P2)] If s € S\ Sat(®,) then we define
MazSteps(s, @1, ®y) = Steps(s). For s € Sat(®,), let MazSteps(s, P, Ps) be the set

2ONote that A is fair, cf. Example 3.2.18 on page 46. Thus, s |~ Probi(aldb).
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of p € Steps(s) such that

Pl (D1UD:) = Y p(t) - pt* (21UP,).

tesS

We define a set T™% (P, ®,) for which we show (in Section 9.5.2, page 246 ff) that
it contains exactly those states s such that p™®(®,U®P,) = p¥'(®,UP,) for some F €
Ad/Usfazr

Notation 9.3.14 [The set 7% (®,, ®y)] We define

Tmaz(q)l’q)z) — U Tvimaz(q)l’q)z)

i>0
where Ty (®1, Py) = Sat(P2) U (S \ ST(Py, P2)) and
Lo (@, @) = T7(@0,92) U T/ (@1, 83) for j > 1
Here,
o T71%(®y, ®2) consists of all states t € S\ U;; T (®1, @) such that

Supp(p) C |J T (®1, ®5)

1<j

for some p € MaxSteps(t, Py, Ps),
o T7%(®y,®2) = Urer T where T is the collection of all subsets T of

S\ ( U 77 (81, ®2) U T (D1, ) )
i<j
such that for allt € T:
(i) MazSteps(t, ®1,P2) = Steps(t)
(i) for all p € Steps(t):
Supp(u) Q T U U T;maz(q)l,q)z) U T}rﬁaﬁ(q)l,q)Q).
i<j

Example 9.3.15 We consider the system of Figure 9.8 (page 225). We write T"*
p® and MaxSteps(s) rather than T7"%*(a,b), pI***(aldb) and MazSteps(s,a,b). Then,
pg;aw — 1/2 pmaw — p;r;aa: — p;nzaw — 1/3’

mee 1 X 1\ 2
LAY (2) I
and pm” = max{2/3-1/3,2/9} = 2/9. Hence, Steps(s;) = MaxSteps(s;), j =1,...,5,

= py, ¢ MazSteps(sg). Thus,

o Ty =8\ ST (a,b) U Sat(b) = {uq, us, us, ug, ug, ts, ts },
o T = {ss5}, T{y" = {83, 54},
o Ty = {s2}, e = 0,
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1
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Figure 9.8: s =quir Prob<%(aZ/[b) while @ (aldb) = 2
o Y = {s1}
and 7" = () in all other cases. We get 7% (a,b) = S\ {ss}. m

In Section 9.5.2 (page 246 fI) we show: For all s € S\ T (®y,®,) and strictly fair
adversaries F', there exists o € Pathf{n(s) with F (o) ¢ MaxSteps(last(o), @1, P2) and
o(i) | @1 APy, i =0,1,...,[0f; thus, pf(21UP2) < pinefi,) (P1UP,).*" We conclude:

pf(CIMZ/{(I)z) < p;naz (<I>1L{<I>2) for all F' € Advsfair and s ¢ Tmam(q)l’ (I)z)

(See Lemma 9.5.33 on page 249.) For instance, for the state sg of the system in Example
9.3.15 (see Figure 9.8 on page 225) and each F' € Advy,,, there is some finite path o in
Pathﬁn of the form sg 2> sg = ... —> s with F(c) = v, ¢ MazSteps(ss, a,b). Hence,

pf;(aZ/{b) < % = pi®*(aldb).

Vice versa, a strictly fair adversary F' with F(o) = p, for all o € Pathg with last(o) =

n

t € T]1% (@1, ®2) (where p; is as in Notation 9.3.14, page 224) can be defined. For this
adversary F,

pf(@lucbg) == p;”‘“(cblutﬁz) for all t € Tmaz(q)l, @2)

(See Lemma 9.5.31 on page 248). For instance, for the system of Example 9.3.15 (see
Figure 9.8 on page 225) and each strictly fair adversary F' with F(o) = ps if 0 € Pathﬁn

2lHere, pf'(---) = pf;'st(g)(-) where F' is an adversary with F'(y) = F(c0+) for all v € Pathgy, (last(c)).
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and last(o) = s, we have pI'(aldb) = p[**®(aldd) for all t € T™(a,b). Note that there is
no fair fulpath where s3 occurs infinitely often. Thus, pZ, (alfb) = 1/3 = p"®* (aldd) for all
F € Adv,g,ir. These observations lead to the following theorem.

Theorem 9.3.16 For all s € S:

mar(® . YDy) <p ¢ if s € T™(Dy, By)

- ps
s ):sfazr Pr0b<p(q)1uq)2) — {p;naw(q)lu%) <p : otherwise.

Proof:  see Section 9.5.2, Theorem 9.5.35 (page 250). m

Example 9.3.17 For the system of Example 9.3.15 (see Figure 9.8 on page 225) we have:
S6  Esfair Prob<%(al/{b) but sg Prob<%(al/{b)

and s1 s Prob<%(al/{b). [ ]

Corollary 9.3.18 If s ¢ T™* (®q,®s) then s |=gpir Proboq(2:UP,).

Example 9.3.19 For the system in Example 9.3.9 (page 223), we have S*(a,b) =

{s,t,u} and Sat(b) = {u}. Hence, T§"*(a,b) = {u,v}. For the simple adversary A
with A(s) = pu we get p2(aldb) = p;i*(aldb) and
pAaldd) = 1 + L.pA(aldd).

2 2

Hence, p2(aldb) = 1. Thus, p™*®(aldb) = 1. Since

S

> (@) - (aldb) = p'*(a,b) = 0

we get MaxzSteps(s,a,b) = {u} # Steps(s). This yields 77" (a,b) = T{"5**(a,b) = () and
T™2 (g b) = Ty (a,b) = {u,v}.
By Corollary 9.3.18 (page 226), s |=sair Probi(alfb) as s ¢ T™*(a,b). m

Formulas of the form Prob-,(®,U®,)
First, we consider =, and =yf. The following example shows that
P (@,UB,) < inf {pf (21UB,) : F € Advyar |

(thus, s FEfur Probs,(®:U®;) while p™(®;U®P,) < p) is possible. In particular, this

example shows the difference between =y, and =, and that, in item (ii) on page 220,
the satisfaction relation = cannot be replaced by |=fuir Or FEsfair-

Example 9.3.20 Consider the following system and the path formula alfb.

{1 ® ®©{a}
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Then, p2(aldb) = 0 for the simple adversary A with A(s) = ul, whereas pf (aldb) = 1 for
each fair adversary F. Hence, s =, Probsi(a U b ) but p™"(aldb) = 0. m

The above simple example demonstrates that the progress property Probs;(alfb) cannot
be established unless fairness is required. The “problem” with the simple adversary A
where A(s) = ul is that it forces the system to stay forever in a “non-successful” state (s)
from which a “successful” state (¢) can be reached. In fair adversaries, with probability
1, all states that are reachable from a state that is visited infinitely often are also visited
infinitely often (see Lemma 9.5.10 on page 242 and Lemma 9.5.12 on page 243). This
explains why p#(al{b) cannot be “approximated” by fair adversaries. Moreover, we will
see (in Corollary 9.5.23, page 246) that, for each fair adversary F and state s, the measure
of the fulpaths 7 € Pathf;l(s) where either ®;U/®, holds or that eventually reach a state
that is not contained in ST(®;,®,) is 1. Thus, 1 — pf(®;U®P,) is the probability (with
respect to the adversary F') for s to reach a state in S\ S*(®;, ®,) via a finite path that
only passes states in ST(®y, ®5) \ Sat(P2).

Notation 9.3.21 [The set S?((I)l, (I)g)] Let S?(q)l, (1)2) = S+((I)1, @2) \ Sat(CI>2)

Having computed the sets ST (®;, ®;) and S*(®;, ®;) (which will be explained in Section
9.3.5, page 231 ff) we may extend AP by “fresh” atomic propositions that characterize
the sets S*(®;, ;) and S*(P,, »).

Notation 9.3.22 [The atomic propositions a™ and a’] In the sequel, we suppose a™,
a' € AP with a™ € L(s) iff s € ST(®1,®3) and a’ € L(s) iff a’ € S'(®y, Dy).

The following theorem states that to handle formulas of the type Probo,(®,U®,) with
respect to g it suffices to compute the values p™(a’U—a™).

Theorem 9.3.23 Forall s S:
S ):fair Prob;p(¢1u¢2) Zﬁ 1 _pmam(a?u_‘a+) Ip.

L)

Proof:  see Section 9.5.2, Theorem 9.5.25 (page 246). m
If Reachg, p-a,(s) C ST(®1,P2) and s € Sat(P;) then p®®(a’U—at) = 0. Hence, s Ejqyy

Prob>1(®,U®;). Vice versa, if Reachg,n-a,(s) € ST(P1,Ps) then there is a finite path
o € Pathg,(s) with (i) E @1 APy, i =0,1,...,|0| — 1, and last(o) ¢ ST(P,, P,). For
any (fair) adversary F with o € Pathgn(s), we have pf'(®,U®P,) < 1—P(o) < 1. Thus,

S Fpair Probs;(®1U®,). This leads to the following corollary.
Corollary 9.3.24 For all s € S:

S ):fair Probzl(CIhZ/{(I)z) Z_ﬁ' Reach%Aﬁ%(s) Q S+((I)1,(I)2).
In particular, a concurrent probabilistic system S with initial state s;,;; satisfies a qual-
itative progress property expressed by a PCTL formula of the form Probs; (@) (where
satisfaction is understood to be with respect to |=f,) if and only if the system is “safe”

in the sense that no “deadlocked” state (a state ¢ from which no ®-state can be reached,
i.e. Reach(t) N Sat(®) = 0) is reachable from the initial state s;p;:

Sinit Ffair Probs1(O®) iff Reach(sini) C {s € S : Reach(s)N Sat(®) # 0}
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{a}
{0}

{a} (w) o

Figure 9.9: p™®(a’U-a’) = 1 but pf(aldb) > 0 for all F € Adv,

S

Thus, for verifying qualitative progress properties as explained above, an analysis of the
“topology” of the system suffices. This result was first established in [HSP83]. A similar
observation for fully probabilistic systems is made in Section 3.1 (Lemma 3.1.10, page
37).

Example 9.3.25 For the system of Example 9.3.20 (page 226), we have Reach(s) = {s,t}
and Sat(b) = {t}. Hence, s |=fir Prob>1(<b). m

Theorem 9.3.26 For all s € S:
o ):sfaz'r PrOpr(q)luq)2) off 1 _pmaz(a?u_la+) > p.

S

Proof:  see Section 9.5.2, Theorem 9.5.27 (page 246). m

A stronger version of Theorem 9.3.26 stating that s |=gir Probs,(®,:U®,) iff 1 —
p"@(a'U—a™) > p is incorrect, as can be seen from Example 9.3.27 below. (This ex-

ample again demonstrates the difference between =5, and =)

Example 9.3.27 We consider the system shown in Figure 9.9 (page 228). Clearly, u is
the only state that satisfies ma™. Thus, for the simple adversary A with A(s) = u we have
pA(a’U—at) = 1. This yields p™*(a’U—~a™) = 1 but pF'(aldb) > 0 for all F € Adv,.

Hence, s Egpir Probo(aldb) while p®(a’'U—at) =1. m

The next result is an analogue of Theorem 9.3.16 (page 226), in which we show how to
deal with formulas Prob.,(®;U®,) with respect to the satisfaction relation =y

Theorem 9.3.28 For all s € S:

1—pr=(a'U-at) >p : if s € T™*(a’,—a")
s ):sfazr Pr0b>p(q)1uq)2) — { 1 _p;"aw(a?uﬁa"') >p otherwise.

Proof:  see Section 9.5.2, Theorem 9.5.36 (page 250). m
Corollary 9.3.29 Ifs ¢ T™(a’,—a") then s Egfuir Prob.o(®1UP,).

Example 9.3.30 In Example 9.3.27 (page 228) we have T™% (a’, ~a™) = {u, v}. Hence,
S Esfair Prob-o(aldb) since s ¢ T™%(a’, —a™). m
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Next we consider formulas of the form Prob—,(®,U/®,) and the satisfaction relation =y,
First, we observe that Theorem 9.3.23 (page 227) does not carry over to =y, since

inf {p/(®:1U®y): F € Advwpair} < inf {p}(®:1U;): F € Advjusr }

is possible. For this, consider the simple system of Figure 9.10 and the simple adversary A

{a} @ {aO——G {8}

Figure 9.10: ¢t %Wfair PI’ObZl((IUb) while ¢ ):fair Probzl(an)

with A(t) = pl. Dealing with W = {w}, we get the W-fairness of A. Since p(aldb) = 0,
the minimal probability for state ¢ under all W-fair adversaries is 0. On the other hand,
if fairness in state ¢ is assumed then the state s will eventually be reached from ¢. Thus,
pf (aldb) = 1 for any adversary F' that is fair in state ¢ (e.g. F' € Advy,,); hence, the
minimal probability for state ¢ under all fair adversaries is 1. In particular, if ¢ ¢ W then

t Fwpair Probsi(aldb) while t [ Probsi(aldb) (and pi**®(a'U—a™) = 0).

To deal with |=wyir, we use an atomic proposition a¥, (that characterizes all states s
which can reach S\ ST(®;, ®,) without passing a ®o-state with probability 1 in a W-fair
adversary) and replace in Theorem 9.3.23 (page 227) the path formula a’U—a* by a'Ualy,.

Notation 9.3.31 [The set S{, (1, ®,)] We define

Sw(®1,®2) = J T

i>0
where Ty = S\ ST(®1, ®2) and, fori > 1,T; = T;1 UT,; with:
o T, isthe set of statest € S\(TpU...UT;_1USat(Ps)) such that, for some pu; € Steps(t),
Supp(pe) CToU...UT; ;.

o Tio = Urer, T where T; denotes the collection of all sets
T g S\(TOUUTZ,IUTZ,lUSat(‘I)z))
such that for allt € T:
- Ift € W then Supp(p) C ToU...T,_1 UT;1 UT for all p € Steps(t).
- Ift ¢ W then there exists p; € Steps(t) with Supp(pn:) C ToU... T, 1 UT;; UT.

Notation 9.3.32 [The atomic proposition aly] We suppose a¥, € AP with
(I?}V c E(S) zﬁ”s < SI(}V((I)L @2)

The following theorem is an analogue of Theorem 9.3.23 (page 227) which shows that, to
handle formulas of the type Prob-,(®:U®,) with respect to =wyair, it suffices to compute

the values p™* (a'Ualy,).
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Theorem 9.3.33 Forall s S:
s Ewpair Proba,(®:U®2) iff 1—pr*(a’Ual),) I p.
Proof:  see Section 9.5.2, Theorem 9.5.40 (page 252). m
Example 9.3.34 Consider the path formula alfb and the system of Figure 9.11 (page

230) where W = {w;, ws}. The set SYy(a, b) is obtained as follows. We have S*(a,b) = S.
Let T; 1, T;2 be as in Notation 9.3.31 (page 229). Then, we get:

e Ty =S5\ S*(a,b) = 0 which yields 71 ; =0

e T} o = {v1} (consider the distribution s, = u,l,l € Steps(v1))
o T51 = {w;} (consider the distribution ju,, = py, € Steps(wy))
o Ty = {wsy, v}

and T;; = T;o = 0 for all 4 > 3. Thus, S (a,b) = {v1, vz, w1, w2} and pi"*®(a’Uald,) = %.
Hence,

t }wa(mn Probzo,g(aZ/{b) while ¢ %Wﬁzir Prob0_5(an).
On the other hand, t [, Probsgs(aldb) since p/"® (a’U-a™) = 0 (as Sat(-a™) =0). m

1
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2
3

()
{a)
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(@} () )~
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:@ -® 0

Figure 9.11: SY,(a,b) = {v1, v2, wy, wy} for W = {wy, wy}

9.3.4 The connection between |=, =pir, Espir and = pwiar

From the results of the previous sections we get that the four satisfaction relations only
differ for PCTL formulas whose outermost operator is the until operator (i.e. formulas
of the type Prob.(®;U®,)). The difference between the standard satisfaction relation =
and the satisfaction relations with fairness (see e.g. Example 9.1.6, page 211) is due to the
well-known fact that appropriate fairness assumptions might be essential for establishing
certain liveness properties. However, the satisfaction relations |=, =t and =y coin-
cide when dealing with formulas of the type Probr,(®;U®;) (provided that ®;, ®, cannot
be distinguished by |=, FEfir and Ewyeir). Thus, we get:
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Theorem 9.3.35 Let ® be a PCTL formula that does not contain subformulas of the
form Prob—,(®,U®,) then, for all states s,

S ): ¢ Zﬁ S ):faz'r P Zﬁ S ):Wfaz'r P,
Proof: by (i) (page 220), Theorem 9.3.6 (page 222), Theorem 9.3.7 (page 222). m

From the results of the previous section, we get that the difference between the interpreta-
tions ey and |=gfir is only marginal. This result is not surprising as it is already shown
in [HSP83] that each strictly fair scheduler can be “approximated” by fair schedulers.
The precise connection between =y, and =, is as follows.

Theorem 9.3.36 Let ® be a PCTL formula that does not contain subformulas of the
form Prob_,(¢) or Prob-,(¢). Then, for all states s:

§ ):fair P Zﬁ S ):sfair o.

Proof: follows by Theorem 9.3.6 (page 222), Theorem 9.3.8 (page 222), Theorem
9.3.23 (page 227) and Theorem 9.3.26 (page 228). m

Clearly, fairness with respect to a proper subset W of S induces a satisfaction relation
which, in general, differs from f=¢,,; see e.g. Figure 9.10 (page 229). Dealing with W = S,
the satisfaction relations |=f;, and |=wir coincide, although fairness with respect to
W =S (in the sense of Definition 3.2.20 page 47) does not coincide with fairness in the
sense of Definition 3.2.17 (page 46).

Theorem 9.3.37 If W =S then for all states s and PCTL formulas ®:

s ):fair P Zﬁ § ):Wfair P.

Proof: see Section 9.5.2 (Theorem 9.5.41, page 252). m

9.3.5 Complexity of PCTL model checking

We summarize the results of the previous sections and investigate the complexity of the
resulting PCTL model checking algorithm. As before, we assume a fixed finite concurrent
probabilistic system S = (S, Steps, AP, L). Let n be the set of states (i.e. n = |S|) and
m the number of transitions (i.e. m = > ,cg |Steps(s)|). W.l.o.g. we may assume that
m > n. Moreover, we fix a PCTL formula ¥ for which we want to compute Sat4(V).
The size of the parse tree (the number of nodes) is linear in the length |¥|. For every
node v of the parse tree where the associated formula ®, is #¢, an atomic proposition
or of the form —® or ®; A ®,, the costs for computing the set of states fulfilling ®, is
O(n). The nodes which represent formulas whose outermost operator is the probabilistic
operator combined with next-step (i.e. formulas of the form Prob..,(X®)) require O(nm)
time since, for every transition u € Steps(s), we have to compute the sum Y e g4t , (@) H(t)
(cf. Lemma 9.3.2, page 218). Computing the states that fulfill a formula whose outermost
operator is the probabilistic operator combined with bounded until <F takes O(knm)
time when using the method of Lemma 9.3.3 (page 219). We now show that the time
needed for the handling of unbounded until is polynomial in n and m.
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Dealing with Ffur, Fsfair 08 Ewfer and formulas of the form Prob.,(®:U®2) we pro-
pose the following procedure. As before, we assume that the sets Sat4(®;) are already
known. We first compute the set S*(®;, ®3) from which we derive the sets Sat(—a™) =
S\ SH(®,,®,), Sat(a’) = S*(®y,®;) and SY (P, P,). Using well-known methods of
linear programming, the maximal probabilities p”** (a;Uas) under all adversaries can be
computed in time polynomial in n and m (cf. Remark 3.2.12, page 43). Here,

(®1,®,) : ife{<,<}
(a1,a2) = { (a’,—a™) : if € {>,>} and dealing with =y or Egpir
(a’,a%) : ife< € {>,>} and dealing with = -

Moreover, for the satisfaction relation =i we compute the set T7% (a1, az). We now
show that the above mentioned sets can be computed in polynomial time.

Computation of S(®y, ®,): Let G*(P1, P2) be the directed graph (S, E') where (s,t) €
E iff t = ®; A =P, and u(s) > 0 for some p € Steps(t). Then, ST(Py, Py) is the set of
states which are reachable in G*(®;, ®2) from a state s € Sat(®2). Hence, S*(P;, P2)

can be derived by a depth-first search in G*(®;, ®5). This yields the time complexity
O(nm) for the computation of ST(®;, P,).%?

Computation of T™%(ay,a3): In what follows, we simply write MaxzSteps(s) rather
than MazSteps(s,aq,as). First, we compute MazSteps(s) for all s € S and the sets

Ty = Sat(ax) U (S\ ST (a1,as2)), U={veS\T,: MazSteps(s) # Steps(s)}.
We compute the strongly connected components in the directed graph (S '\ (Tp UU), E)
where (s,t) € E iff pu(t) > 0 for some p € MaxSteps(s) = Steps(s). Let Ci,...,Cy be
an enumeration of the strongly connected components which satisfies: if s € Cj, s’ €
with (s,s') € E then [ < j. Fori =1,...,k we compute the set S; of states w € S\ T
such that p(w) > 0 for some pu € Steps(s) and s € C;. Let Z be the set of pairs (v, V)
such that v € S\ Ty, 0 £V C S\ Ty and V = Supp(u) \ Ty for some p € Steps(v). For
z € Z, we denote the first component of z by z.state, the second component by z.next
and we define |z| = |z.next|. Let Sy be the set of states s € S\ Ty with s = z.state for

some z € Z with |z| = 0. Initially, we define T' = T,. We successively modify Sy, 7" and
|z| by the following procedure:

Fori=1,2,...,k+ 1 do:
(1) While Sy # 0 do:
(1.1) choose some s € S
(1.2) Sp:=Sp\{s}, T:=T U{s}
(1.3) For all z € Z do:
(1.3.1) If s € z.neat then |2| :=|z]| — 1.
(1.3.2) If |z| = 0 then Sy := So U {z.state}.
(2) If i <kand S; CC;UT then Sp:=S,UC; \ T.

Then, T™% (ay,a3) = T.

22The construction of G*(®1, ®3) needs O(nm) steps. The time for performing a depth-first search in
a directed graph G is linear in the number of nodes and edges. As the number of edges in GT(®;, ®) is
bounded by min{n?,nm} we get the time complexity O(nm) for the computation of ST (®;, ®2).
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Figure 9.12:

Example 9.3.38 We consider the system of Example 9.3.15 (Figure 9.8, page 225) and
deal with a; = a, a = b. Then, py, po € MaxzSteps(s;) and MazSteps(ss) = {v1}. We
obtain U = {s¢} and Tp = S\ {s1,...,s6}. We first compute the strongly connected
components of the directed graph shown in Figure 9.12 (page 233) and obtain

C = {85}, Cy = {33, 84}, Cs = {82}, Cy = {81},
S1 = @, Sy = {33, Sy, 35}, S = {83, 54}, Sy = {32, 56}-

Initially, the set Z consists of the pairs

(357(2))7 (83){85})7 (33){84})7 (34’{83734})’(827{33)84})7 (31){82})7 (31){86})7 (36){86})'

This yields Sy = {s5}. In the first iteration step (i = 1), we first remove s5 from Sy and
obtain Sy = {s3} and s5 € Ty. Then, we remove s3 from Sp and obtain Sy = 0, s3 € Ty.
Thus, in the second iteration step (i = 2), step (1) is not applicable (since Sy = 0). In
step (2) we have Sy = {s3, 4,55} € Cy UTj and obtain Sy = {s4}. The third iteration
step (i = 3) removes sq4 from Sy and yields Sy = {s2}, s4 € Ty. Then, we remove sy from
So and obtain Sy = {s1}, s2 € Tp. Finally, we remove s; from Sy and get Sp = () and
s1 € Tp. In the iteration steps ¢ = 4,5, only step (2) is applicable that yields Sy = (). The
algorithm returns 7% (a,b) = S\ {s¢}. m

For the computation of MazSteps(-), U, the components C1, ..., Cy, the sets Sy,. .., Sk,
Z and the function | - |, we need O(nm) time.?* We suppose the sets T, C,...,Cy and
z.next for z € Z to be represented as boolean vectors (one bit for each state s € S\ Tp)
and that each of the sets Z, Sy, S1, ..., Sk is represented as a list consisting of pointers to
their elements. Then, the test in (1) and steps (1.1), (1.2) can be performed in constant
time. Step (1.3) can be performed in time linear in the size of Z. As |Z]| < m we get the
time complexity O(m) for step (1.3). As each state s € S\ Ty can only be chosen once
in step (1.1) the while-loop can be performed at most n-times. Hence, ranging over all
i€{1,2,...,k+ 1} and all executions of the while loop we need O(nm) time to perform
steps (1.1), (1.2) and (1.3). Ranging over all i € {1,2,...,k} we need

> O(Isi]) = O(k- 1S\ (LuU)]) = O

=1

*Note that for the computation of MaxSteps(s) we have to calculate Y, ¢ u(t) - pi***(a1llas) for
each u € Steps(s). As G has at most min{n?,nm} edges and as the strongly connected components of a
directed graph can always be computed in time linear in the number of states and edges, the computation

of Cy,...,C} takes O(nm) time.
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time for step (2). We conclude that the time complexity of computing 7% (ay, as) by
the method described above is O(nm). (Recall that we assume m > n.)

Computation of SV (®,,®,): S% (P, P,) can be computed in a similar way as we
obtained T™%(ay, a). Thus, also the computation of S% (®;, ®,) needs O(nm) time.

Complexity of PCTL model checking: Let p(n,m) be a polynomial that stands for
the cost function for the time for computing the values p?***(a;, az) for atomic propositions

a1, az. Summing up over all nodes in the parse tree we obtain the time complexity
O( |\I/|(k'l'nm + p(n,m)) )

Here, kY is either 1 (in the case where ¥ does not contain the bounded until operator) or
the maximal value k such that ¥ contains a subformula of the form Prob,, (<I>1U§k(1>2).
Le., the time complexity is polynomial in the size of the structure and linear in the size
of the formula. The space complexity is O(n(|¥| + m)). This can be seen as follows.
The representation of the set associated with each node v of the parse tree requires O(n)
space. For the system (S, steps, AP, L) itself, we need O(nm) space (where we neglect
the space needed for the representation of the labelling function £). For the computation
of p™*(a,Uasy), we need O(n?) space while the computation of the sets 7™ (ay, as) or

S

Spy (®1, ®2) needs O(nm) space. (Note that n < m.) We summarize:

Theorem 9.3.39 Let S a finite concurrent probabilistic system, ¥ a PCTL formula and
W a subset of the state space of S. Then, Sat (¥) can be computed in time and space
polynomial in the the size of S and linear in the size of ¥ where A is one of the adversary
types Adv, Advsair, Advsser or Advw feir-

9.4 Model checking for LTL

In the literature, several methods are proposed to verify a probabilistic system against
LTL formulas or similar specification formalisms. A wide range of these methods is
based on the deductive approach and/or deal with qualitative properties stating that a
linear time formula holds with probability 0 or 1. See e.g. [LeSh82, HaSh84, Vard85,
VaWo86, CoYa88, ACD91a| where methods for fully probabilistic systems are proposed
and [HSP83, Pnue83, Vard85, PnZu86a, PnZu86b, VaWo86, PnZu93, CoYa95| where
methods for concurrent probabilistic systems are presented.

Following the w-automata approach proposed by Vardi & Wolper [Vard85, VaWo86| for
verifying qualitative linear time properties, algorithms to establish quantitative linear time
properties (and derived model checking algorithms for PCTL") have been developed by
several authors (see [CoYa95, IyNa96| for the fully probabilistic case and [dAlf97b] where
concurrent probabilistic systems and the standard interpretation |= are considered). The
basic idea behind the w-automata theoretic approach can be sketched as follows. The
starting point is a probabilistic system S and a LTL formula ¢ over AP. Using well-
known methods [WVS83, SVW85, Safr88, VaWo94|, one constructs an w-automata A for
the formula ¢ (i.e. an w-automata over the alphabet 247 that accepts exactly those words
over 247 for which the formula ¢ holds). Then, one defines a new probabilistic system
S x A which can be viewed as the product of S and A and, for which, there is a natural
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“embedding” s — sa of the states s of S into the the state space of the product system
S x A. From the acceptance condition of A, a set U’ of states in S x A can be derived
such that the “probability” that ¢ holds in state s agrees with the “probability” for sa
to reach a state in U’.%*

In the fully probabilistic case (where it is possible to deal with a non-deterministic w-
automaton), the time complexity of the w-automata-based method is (single) exponential
in the size of the system and linear in the size of the system, see [CoYa95, IyNa96|.
An alternative algorithm (with the same time complexity) to compute the probabilities
ps(p) = Prob{m € Paths,(s) : m = ¢} in a finite fully probabilistic system is given by
Courcoubetis & Yannakakis [CoYa88]. The main idea of this method is successively to
remove the temporal operators from the given formula ¢ (finally resulting in a proposi-
tional formula ¢') where at the same time the fully probabilistic systems is modified. As
described in Section 9.2, both methods can be used for a PCTL* model checking algorithm
with the same time complexity.

For the concurrent case, the above mentioned relation between the original system S
and the product S x A requires that the w-automaton A is deterministic (or at least
“deterministic in limit” [VaWo86, CoYa95]). The time complexity of the resulting method
for verifying concurrent probabilistic systems against quantitative LTL specifications (and
the derived PCTL* model checking algorithm) with respect to the standard satisfaction
relation = is double exponential in the size of the formula and linear in the size of the
system. By the results of [CoYa95], this meets the lower bound for verifying concurrent
probabilistic systems against linear time specifications.

In this section, we present methods for verifying concurrent probabilistic systems against
quantitative LTL specifations when fairness assumptions are made. More precisely, we
explain the w-automaton approach can be applied for LTL model checking with respect
to the satisfaction relations Ffur, Fsfair and Ewpir. The method we present here is
an adaption of the one developped by deAlfaro [dAlf97b] for a PCTL* model checking
algorithm with respect to the standard satisfaction relation f=.

Remark 9.4.1 [Avoiding terminal states] The presented method assumes a finite
concurrent probabilistic system without terminal states. This is a harmless restriction
since any system can be transformed into an “equivalent” system without terminal states.
Given a system S = (S, Steps, AP, L) with terminal states, we insert a special state 0
with a self-loop and transitions from any terminal state in S to 0.2 Given a LTL formula
¢, we replace each subformula X9 by X (1 A —ag), 01U =Fps by o1U=*(ps A—ag) and each
subformula pUps by p1U(p2 A —ag). Let ¢ be the resulting LTL formula over AP'. It
is easy to see that the interpretation of ¢ over S corresponds to the interpretation of ¢’
over §'. Hence, we may assume w.l.o.g. that the system does not have terminal states. m

Verifying w-automaton specifications: As suggested by Luca deAlfaro, we consider

24Here, in the fully probabilistic case, “probability” stands for the usual probability measure; while in
the concurrent case, “probability” stands for the minimal or maximal probability under a certain kind of
adversaries.

Z5Formally, we consider the system S’ = (S, Steps, AP', L) where S’ = SW{0} and AP’ = APW{ao},
L'(s) = L(s) if s € S and £'(0) = {ag}. If s € S is nonterminal then Steps’(s) = Steps(s). If s € S is
terminal then Steps’(s) = {ub}. The self-loop at the auxiliary state 0 is modelled by Steps'(0) = {ug}-



236 CHAPTER 9. VERIFYING TEMPORAL PROPERTIES

w-automaton with the Rabin acceptance condition. We briefly recall the definition. A
deterministic Rabin automaton is a tuple A = (Q, qo, Alph, d, AccCond) where

e Q is a finite set of states,

do € Q the initial state,

Alph a nonempty finite alphabet,

d: Q x Alph — Q the transition function,

AccCond the (Rabin) acceptance condition, i.e. AccCond = {(H;,K;):j=1,...,r}is
a set consisting of subsets H;, K; of Q.

A run over A is a “sequence” py == p1 —> p2 —% ... such that py = qo and p;;1 = d(p;, ai),
1=0,1,2,.... In what follows, we refer to an infinite sequence over Alph as a word over
Alph. Each word a = aga; ... over Alph ia associated with the run

run(a) = pp 3 p1 > p2 3 ...

where py = qo and p; = d(p;_1,3;-1), i = 1,2,.... Let ga = pop1p2 ... be the associated
sequence of (automata) states. The set AccWords(A) of accepted words over Alph is the
set of words a over Alph such that, for the induced word q, = qoq; . .. over Q,

inf(q) C H; and inf(q) N K; # 0 for some j € {1,...,r}.

Here, inf(q) denotes the set of states ¢ € Q that occur infinitely often in q. In what
follows, we fix a concurrent probabilistic system S = (S, Steps, AP, L) without terminal

states and a deterministic Rabin automata A = (Q, qo, 247, d, AccCond) over the alphabet
Alph = 247, Let AccCond = {(H;,K;) : 5 =1,...,7}.

Notation 9.4.2 [Accepted fulpaths| If 7 is a fulpath in S then
word(m) = L(w(0)) L(m(1)) L(7(2))...
denotes the induced word over Alph = 247 . The set of accepted fulpaths is defined by

AccPath = {m € Pathy, : word(m) € AccWords(A)}.

For A € Adv, s € S, we put AccPath®(s) = AccPath N Path;;l(s). Let I C [0,1] be an
interval of the form I = I, = {¢ € [0,1] : g > p}. As before, A denotes a certain type of
adversaries, e.g. A = Adv or A = Advs,,,. We aim at a method for computing

Sat 4((A, Iop)) = {s € S : Prob(AccPath®(s)) >ap forall A€ A } .

De Alfaro [dAlf97a, dAIf97b] describes a method for the case A = Adv. We now present
a modification of this method for the cases A € {Advs,, Advspir, Advwseir}. As in
[dAlf97a, dA1f97b], we built the product of S and A, thus obtaining a new proposition-
labelled concurrent probabilistic system S x A.

Notation 9.4.3 [The distributions u9] For u € Distr(S), q € Q, we put

Mq(<t,P>) _ {M(t) : ifpzd(q,ﬁ(t))

0 . otherwise.
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The steps in the product system are given by these “lifted” distributions u? € Distr(SxQ).
Notation 9.4.4 [The product system S x A] The product system

S XA = (Sa, Stepsp, AP, Lp)
is given by Sa = S X Q, La((s,q)) = L(s) and Stepsa((s,q)) = {p?: u € Steps(s)}.

Clearly, § x A is a proposition-labelled concurrent probabilistic system. The original
system S can be “embedded” into the product system by adding to each state s € S
those automata state q that is reached from the initial automata state qp by the L(s)-
labelled transition.

Notation 9.4.5 [The state sp| For s € S, let sn = (s,d(qo, L(s))).

The resulting embedding s — sa of the state space S of the original system into the state
space of the product can be extended to an embedding of the paths. For this, we lift any
path v in S to a path y4 in § x A as follows.

Notation 9.4.6 [The paths ya] Let v = 5o 25 s, 22 ... be a (finite or infinite) path in
S. We define ya to be the following path in Sa.

<30a P0> g <Sla p1> g <32, p2> g .
where s; = (i), po = d(do, £(50)), Pir1 = d(pi, L(si41) and vy = p7* ™",

Notation 9.4.7 [The sets IIp]| Let 1T C Path}sul. Then, IIn = {ma: 7€ II}.

The function v +— ~va yields bijections Path}‘gn(s) — Pathﬁ,fA(sA) and Path}il(s) —
Path]‘sz(sA) between the finite paths starting in s and sa and the fulpaths starting in s
and sa. Clearly, m € Fair® iff mp € Fair®*®. This also induces a connection between the
(fair) adversaries of S and & x A. Any adversary A for S induces a set of adversaries in

S x A. The adversaries of this set only differ in those paths ¢’ that do not start in a state
of {sa:s€S5}.2

Notation 9.4.8 [The adversary set Aa] Let A € Adv®. Then, Ap denotes the set of
adversaries A' € AdvS* such that, for any finite path o € Path}‘gn,

if A(o) = u and last(oa) = (s,q) then A'(oa) = ul.

Clearly, the function A — Aj is injective and, for each A’ € Adv®*?, there is a (unique)
adversary A with A’ € Aa. It is easy to see that, for any A € Adv® and A’ € Aa, the
functions Pathﬁn(s) — Pathﬁ,’l(sA), o +— oa, and Pathﬁd(s) — Path}‘gl(sA), T > Ta,
are bijections. Moreover, we have P(0) = P(oa) for any finite path o. This yields an
isomorphism between the induced probability spaces on Path}tl(s) and Path;gl(sA). More
precisely: Let A € Adv®, A" € Ap and IT C Pathg,. Then, IT#(s) is measurable iff
IT{ (sa) is measurable; in which case, the probability measures of IT4(s) and IT (sa) are
the same. Moreover,

260f course, we do not have a one-to-one correspondence between the adversaries of S and S x A since
paths in & x A that do not start in a state sa do not have a counterpart in S.
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e F'is a (strictly) fair adversary for S iff there is a (strictly) fair adversary F’ € Fi,
e F is W-fair iff there is (W x Q)-fair adversary F' in Fa.

If we take II = AccPath then these observations lead to the following lemma.

Notation 9.4.9 [The set AccPath] Let AccPath be the set of fulpaths ma in S x A where
7 18 an accepted fulpath in S. I.e. AccPath = AccPathp.

Lemma 9.4.10 Let p € [0,1] and < € {>,>,<,<} and s € S. Then:
(a) Prob (AccPathF(s)) > p for all fair adversaries F' of S
iff Prob (AccPathF’(sA)) 1 p for all fair adversaries F' of S x A.
(b) Prob (AccPathF(s)) X1 p for all strictly fair adversaries F' of S
iff Prob (AccPathF’(sA)) 1 p for all strictly fair adversaries F' of S x A.
(c) Prob (AccPathF(s)) >1 p for all W-fair adversaries F' of S
iff Prob (AccPath™(sa)) b1 p for all (W x Q)-fair adversaries F' of S x A.

Proof: easy verification. Uses the above mentioned facts. m

Next we show that, for any fair (strictly fair, W-fair) adversary F' of S x A and state s €
S, the probability Prob (AccPathF’(sA)) is given by Prob {7‘(” € Pathle(sA) ol <>aU:}
where agyr is an atomic proposition that characterizes a certain set U’ of states in & x A.
The definition of U’ is derived from the acceptance condition in A and depends on the
chosen satisfaction relation. When dealing with |=f or |=gir, the definition of U’ is
quite simple:

Notation 9.4.11 [The sets U', H; and Kj] We define H; = S x H;, K = § x K;,
j=1,...,r, and
v~ U
1<5<r
where Uy is the largest subset of H; such that, for all u' € U;:

Reach®*A(u') C U; and Reach® A (u') N K #0.

We define AP' = AP U {ay} where ayr ¢ AP and extend the labelling function of S x A
to a labelling function S x Q — 247" (also called £a) where ayr € La(s') iff ' € U'. In
Section 9.5.3 (Lemma 9.5.43, page 253) we show that

Prob(AccPath™ (s')) = Prob {n' € Pathfy(s') : 7' = Oarr }.

for all states s’ € S x Q and fair adversaries F' of & x A. Thus, part (a) and (b)
of Lemma 9.4.10 (page 238) yield the following characterization of the states satisfying
the quantitative w-automaton specification (A, I..,) with respect to the adversary types

Adv g5 and Adv ggyir
Satﬁm’«A’ Il><1p>) = {S €5 :sa ):fair Pr0b1><1p (<>aU’) }a

Satsair((A, Iap)) = {5 €S :sn Esfair Probu, (Cayr) }.
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1 (o)

(s o
0 {6} 2 (s
Figure 9.13: The systemQ)S

Thus, the sets Sat 4 ((A, Iap)) and Satspir ((A, Ip)) can be obtained by building the prod-
uct S X A, computing the set U’ and then applying the PCTL model checking algorithm of
Section 9.3 to compute the sets Satfqir ( Prob.o,(Capr) ) and Sat sir ( Probug,($agpr) ). For
computing U’, one might apply graph theoretical methods to obtain the sets U]’-. Alterna-
tively, the set U} can be described as greatest fixed point of the operator Fj : 25%XQ _y 25%Q

F(V') = {vl € Hj : Reach®*(v') C V' A Reach®*(v') N K} # @} ;

and computed by the iteration Vj = S x Q, V/,; = F;(V/), i = 0,1,.... Dealing with
W -fairness, similar ideas can be applied. The only difference is that the set U’ has to be
replaced by the following set Uy,. We define W' =W x Q and U’ = U, <<, U; where

vi= U T

J
T'eT;

and where 7; is defined as follows. 7; consists of all subsets 7" of H; such that, for each
t' € T"\ W', there is some vy € Steps,(t') where the following conditions are satisfied:

(1) Ift' e T"NW' and v € Steps,(t'), then Supp(v) C T
(2) If t' € T\ W' then Supp(vy) C T".
(3) Each state t' € T" can reach a state v’ € Kj in the system (7", Steps') where

Steps(t') . ift' e T"NW/,
Steps'(t') :{ (v} ) LAt e TN\ W

We state (without proof) that

Satwfair(<A, I[X]p>) = {8 €S :sa ):W’fair PI’Opr (OQU{,V) }

Model checking for LTL: As before, we fix a finite concurrent probabilistic system
S = (S, Steps, AP, L) without terminal states. Let (¢, I) be a quantitative LTL specifica-
tion. Using well-known methods [WVS83, SVW85, Safr88, VaWo94|, we can construct a
deterministic Rabin automata A, over the alphabet Alph = 24 such that AccWords(A,,)
is the set of infinite words over 24 for which ¢ holds.?” For this, we need double expo-
nential time in the size of ¢. Then, we obtain Sat4({(p,I)) = Sata((A,,I)) with the
method explained before. The time complexity is polynomial in the size of S and double
exponential in the size of ¢. (Thus, the method is optimal by the results of [CoYa95]).

Example 9.4.12 We apply the method described above to the system shown in Figure
9.13 (page 239) and the quantitative LTL specification (O(a A Xb), Isg5). The determin-
istic Rabin automaton A = Agaaxp) is shown in Figure 9.14 (page 240) where we deal
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{a}, {a,b}
N a
: 0 \ﬁg ), {a,b) &

o
A

. U
{a}
Figure 9.14: Rabin automata A for &(a A Xb)

=
=

S
—

with the acceptance condition AccCond = {(Q, {qg2})}.?® The system S x A is shown in
Figure 9.15 on page 240 where states that are not reachable from the state (sj,qp) are
omitted. We get H' = S x Q and K' = {(s;,92) : ¢ = 1,...,5}. Thus, U’ contains (s3, qo),

Figure 9.15: The product system & x A

o7

(s5,q1) and (ss,q2) but none of the other states shown in Figure 9.15. Clearly,

Prob {ﬂ'l € Pathﬁ}((sl,qg}) ' e <>an} =1
for each fair adversary F' of S x A. Hence, (s1,90) Ffir Probsos(<>(a A Xb)) which
yields s1 € Satfir ((Cla A Xb),I505)). ®

Remark 9.4.13 By the results of [CoYa90, BidAl95|, the minimal and maximal proba-
bilities for PCTL path formulas under all adversaries agree with the minimal or maximal
probabilities under all simple adversaries (see items (i) and (ii) on page 220). This result
does not longer hold when dealing with general LTL formulas rather than PCTL path
formulas. We consider the LTL formula ¢ = Xb — Oa and the system shown in Figure

'
{a,0} © Ao} ©®——@ 0
/

Figure 9.16: p(Xb — Oa) = 1 for all A € Advimpie

9.16 (page 240). Then, p?(p) = Prob {7r € Pathﬁd(s) T go} = 1 for all simple adver-
saries A, while p¥'(¢) = Prob {ﬂ' € Path;;,(s) = go} = 0 for the fair adversaries F' with

2THere, the underlying satisfaction relation = C 24P » IN x LTL is defined in the obvious way.
28This w-automata can be viewed as a deterministic Biichi automata where the acceptance set is {q2}.
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F(s) = pu} and F(o) = pl for all paths o with last(c) = s and |o| > 1. This example
also shows that, unlike in Theorem 9.3.6 (page 222), a result stating that the equality of
sup {pf(gp) :F e Ad'Ufair} and sup {pf(gp) A€ Adv} cannot be established. m

9.5 Proofs

This section includes the proofs of the theorems established in Section 9.3 and Section
9.4 which we have used to derive the model checking procedure for PCTL".

9.5.1 State and total fairness

In this section we introduce state and total fairness. State fairness is an instance of
p-fairness (see Chapter 8, page 193 ff) which is defined in the fully probabilistic and
concurrent case. Total fairness for concurrent probabilistic systems requires both fairness
of adversaries (see Section 3.2.3, page 45 ff) and state fairness. State and total fairness
are introduced for technical reasons only; they yield a simple proof technique for showing
the equality of the probability measures of certain events. For instance, state fairness in
fully probabilistic systems yields a simple proof for Lemma 3.1.10 (page 37) that gives a
graph-theoretical criteria for establishing “qualitative progress properties”.

Definition 9.5.1 [State fairness (fully probabilistic case)] Let S = (S, P) be a fully
probabilistic system and m € Pathful, 7 s called state fair iff, for each s € inf(m), if
P(s,t) > 0 then there are infinitely many indices j with w(j) = s and w(j + 1) = t.

Clearly, state fairness is a special instance of p-fairness (cf. Definition 8.1.1, page 194).
We take L = S x S and I(s,t) = {(s,t)}. Then, for each fulpath 7, 7 is state fair iff 7 is
(L, )-fair.

Lemma 9.5.2 Let § =
fulpath in S. Then, inf (7

S,P) be a finite fully probabilistic system and ™ a state fair
= Reach(s) for all states s € inf(m).

~— N

Proof: Let s € inf(m). Clearly, inf(r) C Reach(s). For t € Reach(s), let dist(s,t)
be the length of a shortest path from s to t. By induction on & it is easy to see that, if
dist(s,t) = k then t € inf(7r). m

Notation 9.5.3 [The set StateFair] StateFair® (or shortly StateFair) denotes the set
of state fair fulpaths in S.

Lemma 9.5.4 Let (S,P) be a bounded fully probabilistic system. Then, for all s € S,
Prob (StateFair(s)) = 1.
In particular, whenever II C Pathg, such that I1(s) is measurable then

Prob(II(s)) = Prob (StateFair N II(s)).

Proof: follows immediately from Theorem 8.1.5 (page 196). m
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Corollary 9.5.5 (cf. Lemma 3.1.10, page 37) Let (S, P) be a finite fully probabilistic
system. Let U be a subset of S and X the set of finite paths o where o(i) € S\ U,
i=0,1,...,l0] =1, and last(oc) € U. Let II = X 1. Let s € S and T = {last(c) : 0 €
Pathg,(s),0 &€ X Tan}. Then, we have:

X(t) # 0 for all states t € T iff Prob(II(s)) = 1.
Proof:  The “if” part is clear. For the “only if” part, we assume that X(¢) # ) for all
) C

states t € T'. Using Lemma 9.5.2 (page 241) it is easy to see that StateFair(s) C II(s).
Thus, Lemma 9.5.4 (page 241) yields the claim. m

The definition of state fairness in the concurrent case is as follows.
Definition 9.5.6 [State fairness (concurrent case)] Let S = (S, Steps) be a concur-
rent probabilistic system and 7 a fulpath in S. m is called state fair iff, for each s € S and

p € Steps(s) such that w(i) = s, step(m,1) = u for infinitely many ¢ and each t € Supp(p),
there are infinitely many indices j with w(j) = s, step(m,j) = p and w(j + 1) = t.

Note that state fairness is a special instance of p-fairness (cf. Definition 8.2.1, page 200).
Let L = {(s,u,t) : s € S, € Steps(s),t € Supp(p)} and I(s, p,t) = {(s,u,t)}. Then,
for each fulpath m, 7 is state fair iff 7 is (L,l)-fair. As in the fully probabilistic case,
StateFair® (or shortly StateFair) denotes the set of state fair fulpaths in S.

Lemma 9.5.7 Let S = (S, Steps) be a finite concurrent probabilistic system, A a simple
adversary for S. Then, for each w € StateFair®, Reach®(s) = inf(r) for all s € inf (7).

Proof: follows immediately by Lemma 9.5.2 (page 241) applied to the finite fully
probabilistic system S4 induced by the simple adversary A. m

Lemma 9.5.8 Let (S, Steps) be a finite concurrent probabilistic system. Then:
Prob (StateFaz'rA(s)) =1

for all adversaries A and s € S. In particular, whenever II C Pathg, such that IT4(s) is
measurable then Prob (HA(S)) = Prob (StateFaz'r N HA(S)) :

Proof:  follows immediately from Theorem 8.2.3 (page 200). m

We define total fairness as the combination of state fairness and fairness with respect to
the non-deterministic choices (in the sense of Definition 3.2.14, page 45).

Definition 9.5.9 [Total fairness| Let S = (S, Steps) be a concurrent probabilistic sys-
tem and 7 a fulpath in S. 7 s called total fair uoff ™ is fair and state fair.

Lemma 9.5.10 Let S = (S, Steps) be a finite concurrent probabilistic system. Then, for
each total fair fulpath w in S, Reach(s) = inf(m) for all s € inf ().

Proof: easy verification. Uses induction on the “distance” between two states as in
the proof of Lemma 9.5.2 (page 241). m

Notation 9.5.11 [The set TotalFair] TotalFair® (or shortly TotalFair) denotes the set
of total fair fulpaths.
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Lemma 9.5.12 Let (S, Steps) be a finite concurrent probabilistic system. Then:
Prob (TotalFairF(s)) =1

for all fair adversaries F and s € S. In particular, if II C Pathp, such that IIF(s) is
measurable then Prob (HF(S)) = Prob (TotalFair N HF(S)) :

Proof: follows immediately from Lemma 9.5.8 (page 242). m

9.5.2 Correctness of the PCTL model checking algorithm

We fix a proposition-labelled concurrent probabilistic system S = (S, Steps, AP, L), a
subset W of S and two PCTL formulas ®; and ®, which we treat as atomic propositions
(i.e. we assume that ®;, ®, € AP). Moreover, we assume atomic propositions a’, a*
and a¥, as in Notation 9.3.22 (page 227) and Notation 9.3.32 (page 229). We often use
the following lemma which follows from the results of [BidAl195] (Corollary 20, part 1, in
[BidAl195)), cf. item (i) and (ii) on page 220.

Lemma 9.5.13 (cf. [BidA195]) There exist A™%, A™" € Advimpre with
Amaz B Amzn
py (2UPy) > pl(P1lUDP,y) > py (P1UP,)
for all states s € S and all adversaries B. In particular,

AT (®UDB,) = P (B UD,), T (B1UDy) = pli(BUD,).

s

Maximal probabilities under all fair adversaries: We give the proof of Theorem
9.3.6 (page 222) and Theorem 9.3.8 (page 222).

Lemma 9.5.14 Let (S, Steps) be a finite concurrent probabilistic system and Sy, Sz C S.
Let A be a simple adversary for S and X C Pathﬁn be the set of all fulpaths o such that
o(i) € S\ S2,i=0,1,...,|0| — 1, and last(o) € Ss. Then, we have:

If m € StateFair then there are only finitely many indices i such that 7 € X |.

Proof: We assume that there is a fulpath m € StateFair such that 7 € ¥ | for
infinitely many 7. Then, 79 € ¥ | for all i. Hence, 7 € Path;}d. Thus, © € StateFair®.
By Lemma 9.5.7 (page 242),

(*) inf(7) = Reach®(s).

By definition of ¥ and since 7() € X' | for infinitely many (all) i, we have 7 (i) € Sy \ S
and Reach®(m(i)) NSy # 0 for all i. This contradicts (*). Thus, we get the claim. m

Lemma 9.5.15 Let (S, Steps) be a finite concurrent probabilistic system and Sy, Sz C S.
Let ¥ C Pathg, be the set of all fulpaths o such that o(i) € S1\ S2, 1 =0,1,...,|0| — 1,
and last(c) € Sy. Then:

For each simple adversary A, there exists a fair adversary F with X4 C Pathgn.
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In particular, X4 C XF and
Prob (Z’A(s) T) < Prob (EF(S) T)

for all states s € S. Moreover, there is a sequence (Fy)x>o of strictly fair adversaries such
that
Prob (EA(S) T) < sup Prob (EF’“(S) T)

k>0
for all states s € S.

Proof: Let A be a simple adversary. Let I' a subset of ¥4. We define an adversary

Fy as follows. For each state s € S, we choose an enumeration vg, ..., v, _; of Steps(s).

o If v € Pathgy, is a proper prefix of some o € I', i.e. if y = o for some o € I' and some
integer ¢ with ¢ < |o| then we define Fr(y) = step(o,i).

e If v € Pathg, is not a proper prefix of some o € I' then we define Fr(y) = v where
s = last(7y), 7 = r mod mg and r the number of indices i < |y| with v(i) = s.

Here, mod denotes the “modulo-division” function. Clearly, I' C Pathgfl. Thus,
(1) Prob(T'(s) 1) < Prob(Xfr(s) 1)
It is easy to see that,
(2) ifm e Path;;r, is not fair then, for each i, 7( is a proper prefix of some o; € I.

Clearly, (2) yields that, if I" is finite then Fr is strictly fair. Thus, dealing with the
sequence (Fy);>o where Fy = Fr, and I'y, = {0 € X4 : |o]| < k}, we get: F}, is strictly fair
and

sup Prob (Z’F’”‘(s) T) > sup Prob(Tx(s)T) = Prob (EA(S) T) :

k>0 k>0
Here, we use (1), the fact that Uyso Ik(s) = 24(s) and that Iy is finite.?

Next we consider F' = Fya. Since X4 C Pathﬁn we have
Prob (Z%(s) 1) < Prob (2(s) 1)

for all s € S. Next we show that F' is fair. Lemma 9.5.14 (page 243) yields:
(3) If m € StateFair” then there are only finitely many indices i with 7() € 24 1,
By (2) and (3), we get StateFair® C Fair®. By Lemma 9.5.8 (page 242),

Prob (FairF(s)) =1
for all s € S. Thus, F is fair. m

Remark 9.5.16 In Lemma 9.5.15 (page 243) we cannot ensure the existence of a strictly
fair adversary F with ¥4 C Pathﬁn (unless X4 is finite). For instance, consider the system

29The finiteness of [';, can be seen as follows. Recall that A is simple and (S, Steps) finite. Thus, the
fully probabilistic system associated with A is finite, and hence, the set of all finite paths in A up to a
fixed length £ is finite.
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Figure 9.17:

shown in Figure 9.17 (page 245) and the simple adversary A with A(s) = p. Then, with
Sy = Sat(a) = {s,t}, So = Sat(b) = {u}, we have:

A ={oc Pathﬁn last(o) = u,0(i) #u, 1=0,1,...]0] — 1}.

Then, for each adversary F with X4 C Pathf;n: if last(c) = s then F(o) = p. Hence, F
contains the unfair fulpath s = t 2% s 5 ¢ 2% . ie. F cannot be strictly fair. m

Lemma 9.5.17 For each A € Advgimpie there exist

(a) F € Advpy, with p2(®,U®,) < pf(®,UP,) for all s € S
(b) a sequence (Fi)r>1 in Advgpair such that, for all s € S,

pH(®.UP,) < sup plF(®,UD,).
k>1

Proof: follows immediately by Lemma 9.5.15 (page 243). m
Corollary 9.5.18 For all s € S:

S

max {p! (®1U®) : F € Advjsir } = max {p!'(®1UP,) : F € Advwpair } = pI (2:1UD).

Proof: follows immediately by Lemma 9.5.13 (page 243), part (a) of Lemma 9.5.17
(page 245) and the fact that Advs, C Advwj,,. B

Theorem 9.5.19 (cf. Theorem 9.3.6, page 222, and Theorem 9.3.7, page 222)
s Efur Probo,(21U®2) iff s Ewpar Probo,(®1U®) iff pi*(®1UP;) T p.

Proof: follows immediately by Corollary 9.5.18 (page 245). m

Corollary 9.5.20 For all s € S: sup {pf(cblucbg) F e Advsfair} = pla (P UD,).

Proof: by Lemma 9.5.13 (page 243) and part (b) of Lemma 9.5.17 (page 245). m

Theorem 9.5.21 (cf. Theorem 9.3.8, page 222) Foralls€ S:

S ):sfair Probgp(‘PlU‘I)2) Zﬁ pm‘”(élutﬁﬂgp.

S
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Proof: follows by Corollary 9.5.20 (page 245). m

Minimal probabilities under all fair adversaries: We give the proof of Theorem
9.3.23 (page 227) and Theorem 9.3.26 (page 228).

Lemma 9.5.22 Let 7 be a total fair fulpath. Then, ™ = ®.UP, iff T [~ a'U—a™.

Proof:  Clearly, if 7 = ®;U®, then 7 [~ a’U—a*t. Let m £ a’U—a*. Then,
(*) 7T(Z) € S+(q)1, (I)z) g Sat(cbl) for all ¢ Z 0.

Hence, inf(m) C ST(®y,®y). Let s € inf(m). By Lemma 9.5.10 (page 242), Reach(s)
inf(m). By definition of S*(®;, ®,) (and since s € ST (P, P2)), Reach(s) N Sat(Py) #
Thus, Sat(®s) N inf(r) # 0. From this and (*), we get 7 = &;UP,. m

-
0

Corollary 9.5.23 For all F € Advgyy, s € S: pEF(®2,U®y) = 1 —pF(a’U—at).
Proof:  follows from Lemma 9.5.22 (page 246) and Lemma 9.5.12 (page 243). m
Corollary 9.5.24 For all s € S:

min {p! (®:U®,) : F € Advy} =1 - pl™(a'U-a").

Proof: If F € Advj, then pf'(®,U®,) = 1—pf'(a'U-a™) > 1 - pm(a'U-a")
(by Corollary 9.5.23). By Corollary 9.5.18 (page 245), p¥'(a’U—a™) = p™*®(a'U~a™) for
some F' € Advg,,. For this adversary F, we get (again by Corollary 9.5.23),

pE(®UD,) = 1 —pf(a’U-a™) = 1—p™(a'U-a™).
This yields the claim. m

Theorem 9.5.25 (cf. Theorem 9.3.23, page 227) For all s € S:
8 Efair Probo,(®:U®s) iff 1—pr(a’'U—a™) dp.

Proof: follows immediately by Corollary 9.5.24 (page 246). m
Corollary 9.5.26 For all s € S:

inf {p!'(B1U®,) : F € Advygair} =1 —pl"(a'U—a").

Proof:  follows by Corollary 9.5.23 (page 246) and Corollary 9.5.18 (page 245). m
Theorem 9.5.27 (cf. Theorem 9.3.26, page 228) For all s € S:

Proof: follows immediately by Corollary 9.5.26 (page 246). m

Maximal and minimal probabilities under all strictly fair adversaries: We now
give the proof of Theorem 9.3.16 (page 226) and Theorem 9.3.28 (page 228).
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Lemma 9.5.28 Let F € Advy,, II = {m € Pathf, : 7 |= 21U} and IIy = Usea, A 17
where Ay, = {W(k) T E H} Then, for all s € S:

pE(2,UPy) = klim Prob(I1x(s))
— 00

Proof: We have Iy O II; O ... D II. Let II' = (> II;. Then, II'(s) is measurable
and II'(s) D II(s). Hence,

pF(®.UP,) = Prob(I1(s)) < Prob(Il'(s)) = kILYBOPTOb(Hk(S))-

Using Lemma 9.5.10 (page 242) it can be shown that TotalFair N II'(s) C II(s). By
Lemma 9.5.12 (page 243):

Prob(IT'(s)) = Prob(TotalFair® (s) N IT'(s)) < Prob(I1(s)) = p'(®.UD,).
Hence, pf'(®,U®,) = Prob(I11'(s)) = lim Prob(II(s)). m
Notation 9.5.29 [The probabilities p?(®,U®,)] Let A € Adv, o € Path;i‘n. Then,
po (21U®;) = py (P1UD,)
where A" is an adversary with A'(y) = A(o o) for each v € Pathg,(last(0)).

Lemma 9.5.30 Let F € Advyfr, s € S and X = {0 € Pathﬁn(s) co(i) | PiADs, i =
0,1,...,|c|}. The following are equivalent:

(i) F(o) € MazSteps(last(o), 1, ®3) for allo € X.
(i) pro (B.UB,) = pF (B,UD,).
(iii) pipsti o) (P1UPy) = pl(21UP,) for all o € L.

maxr
S

Proof: For simplicity, we omit the argument ®,U/®, and shortly write p? and p
rather than pf'(®,U®,) and p™®*(®,;UP,). The implication (iii) = (ii) is obvious.

S

(ii) = (iii): We suppose pZ < Plast(cy) for some g € L. Let B be an adversary with

pfwt(ao) = Dlnsi(oo) (Which exists by Lemma 9.5.13, page 243). Let A be the adversary
given by: A(A) = F(X) if 09 ZLprefic A and A(og 0 y) = B(7) if last(oy) = first(y). Then,

(*) p?o = pﬁst(ao) = pggtw(a'o) > pcI:O‘
Let k = |og| and X, = {o € X : |o| = k}. Let Ay the set of paths A € Pathgn(s) with
o A<k,
e \DE® A=y 1=0,1,..., ]\ -1,
e last(A) E ®,.

Clearly, Xy, Ay C Pathgn(s). Moreover, by definition of A, p2 = pf forall o € X} \ {og}.
Since oy € X} we obtain by (*):

pi = > Plo)pl + > PN < X Plo)ps + > PO =pl <pi™

ocXy, A€y ocXy, A€y
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Contradiction.

(iii) = (i): If 0 € X, s = last(o) and p = F(0) then

it = pl =Y p)-pl = > w) p
tes tesS

where oy is the path o & t. Hence, p € MazSteps(s, @1, ,).
(i) = (iii): We define IT = {7 € Path;;, . = ®1UP,} and Let 0 € X and II(o) be the
set of fulpaths 7 € Pathyy,(last(c)) where o o m € II* and

Ag(o) = {W(k) :WGH(G)}, A) = |J Akl(o).

k>0
Lemma 9.5.28 (page 247) applied to the fair adversary F' with F'(A\) = F(o o A) if
first(\) = last(o) yields

F Lk k
p, = klirgopa where p¥ = > P()).
AEAL (o)
mazr mazr

By induction on & it can be shown that p* > Phitis) for all o € X. This yields pf > Pnsiio)
for all o € . Hence, p; = ppat,) foralloc X. m

Lemma 9.5.31 There exists F € Advg,, with pf(®1UP,) = p® (D1UP,) for all s €
T (B, By).

Proof: We simplify the notations introduced in Notation 9.3.14 (page 224) and write
Tmee, T and T} rather than T (@, ®,), T/"(®y, @) and T77%°(Py, P2). Let

o maz
T=U 17"
i>1

For each j > 1, ¢ € T]1*" we choose some p; € MazSteps(t, ®,, ®,) with

Supp(pe) € |J T

i<j

We define an adversary F' as follows. For each s € S, let v5,..., vy, _; be an enumeration

of Steps(s) (and my the cardinality of Steps(s)). For o € Pathgy,, let n(o) be the number
of indices i < |o| with o(i) = last(o). Let

Y = {o € Pathg, :0(i) E &1 A Py,i=0,1,...,|0|}.
We define
Flo) = { Z ?fs = last(o), j = n(o) mod my and either 0 ¢ ¥ or s € S\ T
pe o ift=last(c) €T and o € ¥
It is easy to see that F' is strictly fair. By definition of F' it is immediately clear that

o {last(o) :0 € XF(t)} C T™= for all t € T™,
e F (o) € MazSteps(last(o), P, ®,) for all o € X' with last(o) € T™?.
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By Lemma 9.5.30 (page 247), we get pf'(®:U®P,) = pl"*®(®,UP,) for all t € T™". m

Corollary 9.5.32 There exists F € Advgf, with pf(®1UP,) = 1 — p™=(a’'U—a™) for
all s € T™2(a’'U—a™).

Proof:  follows from Lemma 9.5.31 (page 248) and Corollary 9.5.26 (page 246). m
Lemma 9.5.33 If F € Advyay, s ¢ T (01, @y) then pF (@,UBs) < plae(®,UD,).

Proof: We write p? instead of p2(®,U®,), and p™®® instead of p™*®(®,UP,). Sim-

S S

ilarly, we simply write 7™, T/, T/ and MazSteps(s) rather than T (®y, ®,),
T (@1, @2), T77%(P1, 2) and MazSteps(s, 1, P2).

We suppose pf' = p™ for some F' € Advgg,, and s € S\ T™*. Let X be the set of paths
o€ Pathf;n(s) with o(i) | ®; A =P, for all i < |o|. By Lemma 9.5.30 (page 247):

(1) F(o) € MazSteps(last(o)) for all 0 € X.
By definition of 7% we have S\ 7™ C ST\ Sat(®y). Let

U = {ue S\T"? : MaxSteps(u) # Steps(u)} .

Claim 1: For each o € X with last(o) ¢ T™, there exists
G € X with 0 <,es, 0 and last(c) € U.

Proof: Let o0 € X with last(o) € S\ T™*. We suppose that there does not exists a path
G € X with 0 <, 0 and last(o) € U.

First, we observe that last(c) cannot be terminal. All terminal states either belong to
Sat(®y) or S\ ST(®;,Py). Thus, all terminal states are contained in T™*. Moreover,
there exists p € Steps(last(c)) with Supp(u) N (Sat(P,) \ Sat(Ps)) # 0.3° Thus, the set
of finite paths o' € X' with 0 <4, o' is not empty. Let

T = {last(0') :0' € X, 0 <prefiz o'} \ T™.
By our assumption, T N U = (). For each t € T, we choose some o; € o Tﬁn N X with
t = last(oy) and define yu; = F(oy). Then,
(2) Supp(uy) € TUT™ forallt € T3

Since T'NU = 0, we have MazSteps(t) = Steps(t) for all ¢ € T. By definition of 7™,
we get T C T™% and therefore T = () (as T is defined as a subset of S\ T™%). Let
p = F(c). Then, we get Supp(u) € T™* which yields last(o) € T;5* for some j. Thus,
last(o) € T™*. Contradiction. |

Claim 2: There exists 7 € Pathf;l(s) with
(i) E ®1 APy, i=0,1,2,... and U Ninf(7) # 0.

30Note that Supp(u) N (Sat(®y1) \ Sat(®2)) = 0 for all pu € Steps(last(o)) implies Supp(u) C T™* for
all pu € Steps(s) which yields last(o) € T™*.
31Note that, for u € Supp(us), the finite path oy % u belongs to o Tg'n nx.
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Proof: For each 0 € ¥ with last(c) € S\ T™*, we choose some & € ¥ with 0 <prefiy
and last(o) € U (which exists by Claim 1). Let 09 = s and 044 =75, j = 0,1,2,....
Then, the unique fulpath 7 with o; <prfe m, ¢ =0,1,2,. .., has the desired properties. |
We choose some 7 € Pathf;l(s) with 7(1) = &1 APy, i=0,1,2,... and u € inf(7)NU

(which exists by Claim 2). As F'is strictly fair and MaxzSteps(u) # Steps(u) for all u € U
there exists j > 0 with F((7\)) ¢ MaaSteps(n(j)). Contradiction (to (1)) as 7V) € £. m

Corollary 9.5.34 If F € Adv,, and s ¢ T™(a’,—a™) then

Py (21U®B,) > 1 — p[*(a’U=a®).

Proof:  follows by Lemma 9.5.33 (page 249) and Corollary 9.5.26 (page 246). m
Theorem 9.5.35 (cf. Theorem 9.3.16, page 226) For all s € S:

| P (B UD,) <p : if s € TT(Dy, By)
S Fsair Probop(®1U®;) — {pgnw(q)lucpz) <p : otherwise.

Proof: follows by Lemma 9.5.31 (page 248), Lemma 9.5.33 (page 249) and Theorem
9.5.21 (page 245). m

Theorem 9.5.36 (cf. Theorem 9.3.28, page 228) For all s € S:

_ 1—pr(a'U—at) <p : ifs€T™*(a’,~a")

S Foair Prob.p(2:4®z) <= { 1—pm™(a’'U—at) < p : otherwise.

Proof:  follows by Corollary 9.5.32 (page 249), Corollary 9.5.34 (page 250) and Corol-
lary 9.5.26 (page 246). m

Minimal probabilities under all W-fair adversaries: We give the proof of Theorem
9.3.33 (page 230). In the sequel, W is a fixed subset of S. For simplicity, we write Sp,
rather than SY, (®, ®,), S* rather than S*(®;, ®,) and S’ rather than S*(®;, ®,).

Lemma 9.5.37 Let m be a fulpath which is W-fair and state fair and such that 7 =
OUD,. Then, 7 = a'Uady.

Proof: = We assume 7 [~ a’UaY,. It is easy to see that 7 is infinite and 7 (i) € S7 for

all i. Let T = inf(w). Then, T C S* C S\ Sat(®;). Fort € T\ W, we choose some

py € Steps(t) such that pu; = step(w,i) for infinitely many indices ¢ with 7 (i) = ¢t. Then,

we have:

o Let t € TNW and p € Steps(t). Since 7 is W-fair we have p = step(m, i) for infinitely
many i. By the state fairness of 7, we get Supp(u) C inf(n) = T.

o Let t € T\ W. Then, Supp(ps) C inf(m) = T (by the state fairness of 7 and the
choice of p).

By definition of SY,, we get T' C SY, which yields 7 = a'Ua,. Contradiction. m

Lemma 9.5.38 If F € Advyir, s € S then pf'(®,U®2) > 1—p™?(a’Ualy).

S
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Proof: Let IT = {r € Path;;l cm = & UP,}Y and let T' be the set of fulpaths

T e Pathf;l that are W-fair and state fair. Then, by Lemma 9.5.8 (page 242) and the
W-fairness of F', Prob(I'(s)) = 1 and Prob(I1(s)) = Prob(II(s)NT). By Lemma 9.5.37
(page 250),

II(s)NT C {7‘(’ € Path;;l(s) T a?Lla?,V}.

Thus, Prob(II(s) NT) < p¥ (a’Ual) < pm=(a’Ual,). We conclude
1 _pf(¢1u¢2) = P?”Ob(ﬂ(s)) = Prob(ﬂ(s) mr) S p;na.’t(a?ua(l]}v)

which yields pf'(®,U®;) > 1—p™=(a’Ualy,). m

L)

Lemma 9.5.39 There exists F € Advy feir with pf(2,U®P,) = 1—p™<(a’Ualy,) for all
ses.

Proof: Let A be a simple adversary with p#(a’Ual),) = p™*®(a’Ual,) (which exists
by Lemma 9.5.13, page 243) and

Y = {0 € Pathg, : 0(i) | a’ A—aYy,i=0,1,...,|0| — 1,last(c) | aly }.

We define a W-fair adversary F such that X4 C ¥ and p¥(®,U®,) = 0 for all s € SY,.
Let A be the set of finite paths A € Path]fi1 such that A\ <p.p, o for some o € YA, Let

T;, Ti1, T;2 be as in the definition of Sf}, = Sp,(®1, ®2) (see Notation 9.3.31, page 229).
Then, SgV == UZZO 7—;;, TO - S \ S+ and 1—; == 7—;;7]_ U 1—;,2. Let

T = U (TaL(Ta\ W)).
i>1
By definition of T;, for each ¢ € T, there exists some p; € Steps(t) such that:

(1) If t € T;; then Supp(p) CToU...UT;_.
(2) Ift € T;» \ W then Supp(us) € ToU...UT;.

By definition of the sets T; 5, we have
(3) Supp(p) € ToU...UT;forallt € T;oNW and p € Steps(t).

For s € S\ T, let m, be the cardinality of Steps(s) and vf,...,v;, _; an enumeration of
Steps(s). We define an adversary F as follows. Let o € Pathg,.

(I) If 0 € A then we put F(o) = A(last(0)).

(IT) If last(c) € S\ T and 0 ¢ A then we define F(0) = v where s = last(o) and
i = n(o) mod my. Here, n(c) denotes the number of indices i < |o| such that
o(i) = last(o) and mod the “modulo-division” function.

(III) If last(o) € T and o ¢ A then F(o) = u; where t = last(o).

It is easy to see that each fulpath = € StateFairt is W-fair. Thus, Lemma 9.5.8 (page
242) yields the W-fairness of F. Moreover, (I) yields Y4 C 2. Thus,

ps(a'Uayy) > pl(aUay) = pi™(a'Uayy)

which yields pf'(a'Uad,) = p™=(a'UaY,) for all s € S. Clearly, by (1), (2), (3), (II) and
(III), we get that,
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whenever 7 € Pathy, with (i) € SY, for some i then 7(j) € S, for all j > i.
In particular, if 7 € Pathfu, and 7 |= a’UaY, then 7 = ®,UP,. From this,
(4) pre(a'Uady) = pf(a'Uady) < 1—pF(®1UP,) forall s € S.
By Lemma 9.5.38 (page 250) and (4), pf'(®:U®;) = 1 — p™=(a’Ual,) for all s € S. m

Theorem 9.5.40 (cf. Theorem 9.3.33, page 230) For all s € S:
s ):Wfaz'r PrObgp( 12/{(1)2) Z_ﬁ 1- m‘“(a Z/[(IW) dp.

Proof:  follows by Lemma 9.5.38 (page 250) and Lemma 9.5.39 (page 251). m

The connection between |=;,;, and |=gy4;,: We give the proof of Theorem 9.3.37 (page
231) which states that, when dealing with W = S, the satisfaction relations =y, and
= wrair coincide.

Theorem 9.5.41 (cf. Theorem 9.3.37, page 231) If W = S then for all states s and
PCTL formulas ®:

§ ):fair P Zﬁ s ):Wfair @

Proof: Because of Theorem 9.5.19 (page 245), Theorem 9.5.25 (page 246) and The-
orem 9.5.40 (page 252) it suffices to show that p™®(a’'U—a*) = p™*®(a'Ual) for all
s € 5. Since S\ ST(®,,®y) C SY(Py, ) we have p™(a’U—a™) < p™=(a’Ual). Let F
be defined as in the proof of Lemma 9.5.39 (page 251). Since we deal with W = S, the
so obtained adversary F is fair. Using Lemma 9.5.10 (page 242) it is easy to see that, for
each m € TotalFair”

T EdUd) iff 7FdU-at.
By Lemma 9.5.12 (page 243), p¥'(a’U—a™) = pF'(a’Ua%) for all s € S. From this, we get

pi*(@'Una®) = p(a’U-a®) = p(a'Uag) = p*(a'Uag)

for all s € S. Hence, p™(a’U—-a") = p™=<(a’'U—-al) foralls € S. m

9.5.3 Correctness of the LTL model checking algorithm

We now show the correctness of our LTL model checking algorithm (Section 9.4, page 234
ff). Recall that our algorithm is based on a method for verifying concurrent probabilistic
systems systems against w-automata specifications. For this, we needed the fact that, for
any fair adversary of the product system S x A (of a concurrent probabilistic system S
and a deterministic Rabin automata A), the probability of accepting paths agrees with
the probability eventually to reach the set U’ (defined as in Notation 9.4.11, page 238).
This fact can be derived from the following observation whose proof uses total fairness
(see Section 9.5.1, page 241 ff).

Lemma 9.5.42 Let (S, Steps, AP, L) be a finite proposition-labelled concurrent proba-
bilistic system that does not contain terminal states. Let a;, ay € AP and let U be the
largest subset of Sat(ay) such that, for all u € U,
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Reach(u) C U and Reach(u) N Sat(az) # 0.
Then, for all m € TotalFair:

7 CO(a A Cag) iff ™ Cay
where ay € AP such that Sat(ay) =U.

Proof: If # E <¢O(ay A Oag) then inf(r) C Sat(ay) and inf(m) C Sat(az). By
definition of U, we get inf(7) C U; in particular, 7 | $ay. Now we assume that 7 is
total fair and 7 = Cay. Let ¢ > 0 be an integer with () € U. Then,

(1) inf(w) C Reach(w(i)) € U C Sat(ay).

Let u € inf (). By definition of U, we have Reach(u) N Sat(az) # (. By Lemma 9.5.10
(page 242), inf(m) = Reach(u). Hence,

(2) inf(m) N Sat(az) # 0.
(1) and (2) yield 7 = <O(a; A Cas). m
Lemma 9.5.43 In the notations of Section 9.4 (page 236 ff), we have:
Prob(AccPath™ (s)) = Prob{r' € Pathjy(sa) : 7' = Oar |.
for all states s € S and fair adversaries F' of S x A.

Proof: Because of Lemma 9.5.12 (page 243), it suffices to show that, for any total
fair fulpath ©' € Pathy;*(sa):
(*) 7' = Cayr iff ' € AccPath(sa).

We assume atomic propositions a;1,aj2,b; € AP such that a;; € La(s') iff s' € HJ,
aj2 € La(s') iff ' € K and b; € La(s') iff s' € U]. Clearly,

AccPath(sa) = <7’ € Pathy " (sa) :n' =\ ©O(aj1 A Cajp)
1<j<r
and {7': 7' = Cayr} = {n' : ' = Vi<j<, b;j}. Then, by Lemma 9.5.42 (page 252), if 7'
is total fair then 7’ = ©¢O(a;1 A $ajp) iff 7' = Obj. Thus, we obtain (*) which yields
the claim. m
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Chapter 10

Symbolic model checking

As in the non-probabilistic case, the verification methods for probabilistic systems that
assume an explicit representation of the state space suffer from the state explosion problem
and might fail for systems of industrial size. In the last decade, two general techniques
have been developed to attack the state explosion problem for (non-probabilistic) parallel
systems:

e the symbolic methods that are based on an implicit representation of the state space
by ordered binary decision diagrams [BCM™90, McMil92]

e the partial order methods which can be classified into reduction techniques that inves-
tigate only certain parts of the state space [Pele93, Valm94, Gode94| and techniques
that work with net unfoldings [McMil92a, Espa94].

Both techniques have been implemented in tools and successful applied to realistic (very
large) systems. In the literature, only a few work has been done on how to avoid the
state explosion problem for probabilistic systems. To the best of the author’s knowledge,
the adaption of the partial order approach for probabilistic systems has not yet been
investigated. The research on symbolic verification methods for probabilistic systems has
started so far. Clarke proposed an extension of Bryant’s ordered BDDs to multiterminal
BDDs (MTBDDs) [CFM™93] and their use for the symbolic representation of Markov
chains. This idea has been further developed by Hachtel et al [HMP*94] and Hartonas-
Garmhausen [HarG98]. [HMP*94] presents MTBDD-based algorithms to compute the
steady-state probabilities for very large finite state machines and reports on experimental
results for systems with more than 10?” states. In her thesis, Vicky Hartonas-Garmhausen
has implemented a MTBDD-based tool for verifying probabilistic systems against PCTL
specifications [HarG98].! The probabilistic systems in [HarG98] arise through the (lazy)
synchronous parallel composition of several sequential components. The use of a (lazy)
synchronous parallel composition allows for a representation by a fully probabilistic system
whose transition probability function is described by MTBDD. As far as the author knows,
symbolic methods for concurrent probabilistic systems are not yet investigated.

In this chapter we present MTBDD-based algorithms for verifying fully probabilistic
and concurrent probabilistic systems against several types of specification formalisms.

!The theoretical foundations of the underlying symbolic PCTL model checker can be found in
[BCH'97].

255
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More precisely, we will describe MTBDD-based PCTL model checking algorithms for
fully probabilistic systems and stratified systems® and the satisfaction relations }= and
=fair (and briefly sketch how to deal with |=4fir and =wyr). Moreover, we will explain
how the MTBDD-based approach can be applied for deciding strong or weak bisimu-
lation equivalence.> The results of this chapter are based on the joint work with Ed
Clarke [BaCl98] and uses results from the joint work with Ed Clarke, Vicky Hartonas-
Garmbhausen, Marta Kwiatkowska and Mark Ryan [BCH*97].

In what follows, the reader is supposed to be familiar with ordered binary decision dia-
grams (OBDDs or BDDs for short) [Brya86] and the main ideas behind the BDD-approach
for verifying parallel systems, see e.g. [BCM190, McMil92, CGL93]. The definition of
multi-terminal BDDs (MTBDDs for short) as introduced by Clarke et al [CFM ™93] and
related notations are summarized in the appendix (Section 12.3, page 315 ff). In Section
10.4 (page 295 ff) and the remainder of this introduction, we assume familiarity with
the logic PCTL and PCTL model checking (see Section 9.3, page 216), strong bisimu-
lation (see Section 3.4.1, page 54) and weak bisimulation (see Section 7.1.1, page 161).
Throughout this chapter, we assume finite systems.

The basic idea behind the MTBDD-based approach for verifying probabilistic systems is
the representation of the system by a (real-valued) MTBDD. Using an encoding of the
state space in {0, 1}* for some k, the transition probability matrix of a fully probabilistic
or stratified system can be viewed as a function from bit vectors into the unit interval
and represented by a MTBDD. To obtain symbolic MTBDD-based verification methods
the operators used in the verification algorithms of the literature have to be replaced
by operators on MTBDDs. The main operators that are used in almost all verification
algorithms for probabilistic systems are the following.

(1) The computation of the probabilities of certain events requires arithmetic operators
(like summation + or multiplication *, minimum and maximum) and least fized
points of certain self-mappings of the function space S — [0,1]. For instance, for
PCTL model checking for fully probabilistic systems, the probabilities

ps(P1UP,) = Prob{m € Paths,(s) : m = ®1UP,}

are needed to compute the set of states where the formula Prob.,(®;U®,) holds.
The function s — ps(®;UP,) can be characterized as the least fixed point of the
operator F': (S — [0,1]) — (S — [0, 1]),

1 :if s | @
F(f)(s) = Sies P(s,t)- f(t) : if s |E P APy
0 : otherwise

and computed either by solving a linear equation system or iteration (see Theorem
3.1.6, page 36, and Remark 3.1.8, page 36). Dealing with concurrent probabilistic
systems, the corresponding operator F' involves minimum or maximum operations.

2The reason why we deal with stratified systems rather than (general) concurrent probabilistic systems
will be explained on page 297.

3We deal with fully probabilistic or reactive systems in the case of strong bisimulation and fully
probabilistic systems in the case of weak bisimulation.
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E.g. the maximal probabilities

P (®,1UDy) = sup Prob{m € Pathfy(s) : m = ®:1U, }
AcAdv
in a stratified system are given by the least fixed point of the operator F : (S —
[0,1]) — (S — [0,1]) which is defined by: F(f)(s) = 1if s = @2, F(f)(s) = 0 if
S Fé (I)l \/(I)Q and, for s ): (I)l A _|(I)2,

F(f)(s) = Yies P(s, 1) f(t) . if s is a probabilistic state
77\ maxics P(s,t)- f(t) : if 5 is non-probabilistic

and can be calculated by solving a linear optimization problem or iteration (see
Theorem 3.2.11, page 43, and Remark 3.2.12, page 43).

(2) For some specification formalisms, comparison operators (like <, <, =) are needed.
For instance, for PCTL model checking for fully probabilistic systems, the com-
putation of the set Sat(Prob.,(®:U®2)) requires the comparison of the constant p
with the probabilities ps(®,UP;). For deciding bisimulation equivalence, we need
an equality test for the probabilities P(s,a, C) and P(s', «, C) for the states s, s’ to
reach a C-state via an a-labelled transition.

(3) Several algorithms require a reachability analysis in the underlying directed graph.
This can be performed with the help of set-based operators like U, N, \ and operators
for computing least or greatest fixed points of monotonic set-valued functions. For
example, for PCTL model checking with respect to the satisfaction relation f=,;, we
have to compute the set S*(®1, ®s) of all states s € S that can reach a ®y-state
via a path through ®;-states (cf. Section 9.3, Notation 9.3.11, page 223). The set
ST(®, ®,) can be described as the least fixed point of the operator F : 25 — 25,

F(Z) = Sat(®;) U {s € Sat(®,) : Ju € Steps(s) [ Supp(u)NZ #£0] }.

Hence, a general MTBDD-based framework in which a wide range of verification algo-
rithms for probabilistic systems requires a language for manipulating MTBDDs via the
above mentioned operators.

(1) requires binary arithmetic operators op (like +, %, min, max, etc.) on MTBDDs,
i.e. operators that take as their input two MTBDDs Q; and Q3 and return the MTBDD
for the function fq, op fq,.* In our applications, the self-mappings of S — [0,1] for
which the least fixed points have to be computed meet the conditions of Tarski’s fixed
point theorem for continuous operators on the complete lattice S — [0, 1]. Thus, the least
fixed points can be obtained by iteration. Hence, we aim at an operator that computes
least fixed points of certain MTBDD-valued operators (representing self-mappings of the
function space S — [0,1]) by iteration. Moreover, the definition of the higher-order
function F' requires arithmetic quantifiers like Y-, or max; where the index ¢ ranges over
all states. (2) requires an operator that takes as its input two MTBDDs Q; and Q, and
returns the BDD for the boolean function

1 i fo () > fo, (T, Tg)
f@,. ) = {0 . otherwise.

“Here, fq denotes the function that is associated with the MTBDD Q (see Section 12.3, page 315 ff).
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Here, < is a comparsion operator like <, < or =. This operator can just be seen as a
special kind of combining two MTBDDs via a binary arithmetic operator, namely the
operator op,, : IR x IR — {0,1} where ¢; op., g2 is 1 iff ¢; > go. The operators required
in (3) arise as special instances of the operators obtained from (2). For this, we identify
each finite set with its characteristic function that we represent by a BDD (which is just
a special case of a MTBDD). The boolean connectives on sets like union U or intersection
N correspond to the maximum and minimum operators applied to the BDDs for the
characteristic functions; similarly, the boolean quantifiers 3¢ or Vt are obtained from the
“arithmetic quantifiers” max, and min,. Any operator F : 25 — 2% can be viewed as a
self-mapping of the function space S — {0,1}. In our applications, these mappings have
a natural extension to self-mappings of the function space S — [0, 1] and can be viewed as
MTBDD-valued operators. Thus, the above mentioned iteration operator on MTBDDs
should also be applicable to compute the BDD for the least or greatest fixed point of
a monotonic set-valued operator. In summary, the necessary ingredients for a uniform
language for MTBDDs that is expressive enough to subsume a wide range of verification
methods for probabilistic systems are

e operators for combining two MTBDDs via arithmetic operators,
e “arithmetic quantifiers” like }°,, min; or maxy,

e an iteration operator that returns (an approximation of) the limit of (the MTBDD
representations of) certain function sequences.

The algebraic mu-calculus: These requirements have lead to the algebraic mu-calculus
which can be viewed as a generalization Park’s relational mu-calculus [Park74]. While the
relational mu-calculus deals with formulas (interpreted by the usual truth values 0 and 1)
and relational terms (interpreted by relations, or equivalently, boolean-valued functions)
the algebraic mu-calculus deals with algebraic expressions (interpreted by real numbers)
and algebraic terms (interpreted by real-valued functions). The main concepts of the
relational mu-calculus are the boolean connectives A, V, =, quantification 3¢ and V¢, -
abstraction of the formulas and least/greatest fixed point operators. These are replaced
by arithmetic connectives +, *, etc., the algebraic quantifiers }_,, min, and max;, A-
abstraction of the algebraic expressions and an iteration operator (which might specialize
to a fixed point operator).

MTBDD-based compilation: We present an algorithm that computes the semantics
for the expressions and terms where the underlying data structure are MTBDDs. In
the same way as the relational mu-calculus (together with the BDD-based method of
[BCM*90] for evaluating the formulas and terms of the relational mu-calculus) can be
viewed as a language for BDDs the algebraic mu-calculus yields a language for MTBDDs
where the algorithm to compute the MTBDD representations for the expressions and
terms can be viewed as “compiler”.

Applications: The algebraic mu-calculus together with this MTBDD-based algorithm
has applications in various areas. Several temporal and modal logics can be embed-
ded into the algebraic mu-calculus. Hence, the algebraic mu-calculus itself can serve
as a specification language for several types of programs. In particular, the algebraic
mu-calculus subsumes the logic PCTL (with the interpretations over fully probabilistic
[HaJo94| and stratified systems with e.g. the standard interpretation a la [BidAl95] or
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=fair as introduced in Chapter 9) and can express bisimulation equivalence & la Larsen &
Skou [LaSk89] or weak bisimulation in the sense of Chapter 7. In these applications, the
algebraic mu-calculus together with its MTBDD-based “compiler” specializes to a sym-
bolic model checker for probabilistic systems. Beside the verification of probabilistic (or
other types of) programs, the algebraic mu-calculus is applicable in other contexts, e.g. for
solving graph-theoretical problems (such as shortest path problems) or for MTBDD-based
numerical methods in linear algebra (such as solving linear equation systems or computing
eigenvalues).

Organization of that chapter: The syntax and semantics of the algebraic mu-calculus
is presented in Section 10.1. Section 10.2 shows that the algebraic mu-calculus subsumes
several temporal or modal logics (and hence, can serve itself as specification language for
several types of parallel systems). In Section 10.3 we describe the MTBDD-based algo-
rithm for computing the semantics of the algebraic mu-calculus. Section 10.4 explains how
the algebraic mu-calculus can be applied to obtain symbolic model checking algorithms
for verifying probabilistic systems.

10.1 The algebraic mu-calculus

This section presents the syntax and semantics of the algebraic mu-calculus. The algebraic
mu-calculus can be viewed as an extension of Park’s relational mu-calculus [Park74].
While the relational mu-calculus contains formulas (interpreted by the usual truth values
0 and 1) and relational terms (interpreted by relations that — when identified with their
characteristic function — can be viewed as boolean-valued functions), the algebraic mu-
calculus deals with algebraic expressions (interpreted by real numbers) and algebraic terms
(interpreted by real-valued functions). The relational terms are mainly built by predicate
symbols, A-abstraction from the formulas and a least or greatest fixed point operator.
For an interpretation by real-valued functions (rather than boolean-valued functions),
the predicate symbols are replaced by function symbols; the concept of A-abstraction is
maintained. The fixed point operators of the relational mu-calculus are partial operators
that can only be applied to those relational terms where the induced semantic operator
yields a monotonic set-valued function. The existence of the least or greatest fixed point
is then ensured by Tarski’s fixed point theorem. Dealing with real-valued functions rather
than boolean-valued functions (sets) leads to the problem that least or greatest fixed
point (or even fixed points at all) of monotonic operators might not exist; or, if they
exist, one might be interested in other fixed points than the least or greatest ones. For
this reason, we replace the least/greatest fixed point operators by a limit operator. The
intended meaning of this limit operator is the limit of function sequences of the form
LEf),F(E(f)),F(F(F(f))),...for some function f and some higher-order operator F'.
In the case where F' can be restriced to a monotonic operator on boolean-valued functions
(sets), i.e. an operator (D — {0,1}) — (D — {0,1}), or equivalently, 2” — 2P for some
finite set D, and where f is the boolean function that always returns the truth value 0
(resp. 1), i.e. f represents the empty set (resp. the set D), the above sequence converges
to the least (resp. greatest) fixed point of F' (as an operator 22 — 2P on sets). Thus, our
limit operator generalizes the least and greatest fixed point operators of the relational mu-
calculus. Clearly, for arbitrary f and F', the above function sequence does not converge.
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expr = q ‘ expr; op expr, ‘ term(zy, ..., 2n) ‘ > [expr] ‘
min [expr| ‘ max [expr|
term = fct ‘ Z ‘ Az1, ..., zplexpr] ‘ lim Z | term 1 termy | ‘

iterate Z [ term 1* termy |

Figure 10.1: Syntax of the algebraic mu-calculus

For this reason, the meanings of the algebraic terms are partial real-valued functions.
The semantics of the limit operator returns a partial function that is undefined for those
arguments d where the sequence f(d), F(f)(d), F(F(f))(d), ... does not converge.

10.1.1 Syntax of the algebraic mu-calculus

The syntax of the algebraic mu-calculus arises from Park’s relational mu-calculus [Park74|
by using arbitary arithmetic operators (e.g. summation + or multiplication *) instead of
the boolean connectives VV and A, replacing the quantifiers dz and Vz by arithmetic ones
>, min, and max, and the least/greatest fixed point operators by a limit operator.
Moreover, we add a bounded iteration operator (that could be added to the relational
mu-calculus as well) whose intended meaning is the function fj obtained by an iteration
of the form fo = f fi1 = F(f;) for a certain function f and a higher-order operator F.

The algebraic mu-calculus: Let IndVar be a set of of individual variables, TermVar a
set of term wariables and Fct a set of function symbols. The term variables and function
symbols are associated with an arity (a natural number > 1). TermVar"™ and Fct" denote
the set of n-ary term variables resp. n-ary function symbols. Let Op be a set of binary
arithmetic operators on the reals including summation +, minus —, multiplication *, the
binary minimum and maximum operators op,,,, and op,,,, (where e.g. ¢ opin ¢ =
min{qi, ¢2}) and the comparison operators op,, where x1 € {<, <, >, > = #} and

1 : ifg <
Qi 0P ¢ _{ q1 q2

0 : otherwise.

Op might also contain partial operators such as division % which is undefined if the
second argument is 0. Expressions and n-ary terms of the algebraic mu-calculus (called
algebraic expressions and algebraic terms) are built from the production system shown in
Figure 10.1 on page 260. Here, ¢ is a real number, op € Op, z, z1,..., 2z, are individual
variables such that zq,..., 2, are pairwise distinct, fct is an n-ary function symbol, Z is
an n-ary term variable and k a natural number. For the terms lim Z | term 1 termy ]
and iterate Z | term 1* termy |, we require that Z is a term variable and term and termy
are algebraic terms such that Z, term and termgy have the same arity. As usual, we define
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the boundedness of occurrences of variables in algebraic expressions or algebraic terms.
The individual variables can be bounded by the operators ), min, max and A-abstraction
while the term variables can be bounded by the limit or bounded iteration operator. An
occurrence of an individual variable or a term variable in an algebraic expression or term
is said to be free if it is not bounded. An algebraic expression or term is called closed if
it does not contain free occurrences of term and individual variables. For the expressions
term(zy, . .., z,), we require that none of the individual variables z1, ..., z, occurs free in
term. In what follows, we write

e —expr rather than 0 — expr,
e min{expr,, expr,} rather than expr; op,,., expr,,
e max{expr,, expr,} rather than expr; op,,,. €xprs,

e |expr| rather than max{expr, —expr}.

Moreover, we often write

S [expr] rather than 3 [Z [...Z[expr]...]].

Z1,--%n Z1 Z2 Zn

The notations min,, ., [expr| and max,, ., [expr| are used with corresponding mean-
ings. Intuitively, lim Z[term T termy| stands for the “limit” of the sequence (term;);>o
where term;, = term{Z < term;}, i = 0,1,2,... and where the brackets {...} denote
syntactic replacement. The intended meaning of iterate Z | term 1* termy | is termy,
where termy, termy, ... are defined as before.

The boolean mu-calculus: The boolean mu-calculus is a subcalculus of the algebraic
mu-calculus where only those operators op are allowed that are closed under the boolean
values 0 and 1 (i.e. that can be restricted to operators {0,1}> — {0,1}). Formally,
expressions and terms of the boolean mu-calculus are built from the production system
shown in Figure 10.2 (page 261). Here, expr,, expr, are arbitrary algebraic expressions

bexpr == 0 ‘ 1 ‘ bexpr, N bexpr, ‘ bexpr, V bexpr, ‘ —bexpr ‘
expr, op., exprs ‘ bterm(zy, ..., z,) ‘ Vz [bexpr] ‘ 3z [bexpr]
bterm = fct ‘ Az1, ..., 2, [bexpr] ‘ Z ‘ Ifp Z [bterm] ‘ gfp Z |bterm] ‘

iterate Z [ bterm 1* btermy |

Figure 10.2: Syntax of the boolean mu-calculus
and A = 0p,in, V = 0D,00, PeXpr =1 — bexpr and

Vz [bexpr] = min |bexpr|, 3Jz [bexpr] = max [bexpr].
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The least and greatest fized point operators Ifp Z [...] and gfp Z [...] are given by:®

Ifp Z [bterm| = lim Z [ bterm T Azy,.. ., z,[0] |,
gfp Z |[bterm| = lim Z [ bterm T Azy, ..., z,[1] |-

Here, we assume that n is the arity of Z and bterm. As usual, other boolean connectives,
such as “implication” — or “equivalence” <, can be derived from A, V and —. In the
boolean subcalculus, we write expr; > expr, rather than expr, op., expr,. We refer to the
terms and expressions of the boolean mu-calculus as boolean terms or boolean expressions.

The relational mu-calculus a la Park can be viewed as a subcalculus of the boolean mu-
calculus. More precisely, formulas (resp. terms) of the relational mu-calculus are those
expressions (resp. terms) of the boolean mu-calculus that do not contain subexpressions
of the form expr, > expr, and the bounded iteration operator. In Section 10.2.1 (see
page 275) we show that the standard semantics for the relational mu-calculus a la Park
coincides with the induced semantics of the relational mu-calculus as a sublanguage of
the algebraic mu-calculus.

10.1.2 Semantics of the algebraic mu-calculus

Intuitively, algebraic expressions are interpreted by real numbers, algebraic terms by real-
valued functions.® To handle non-converging behaviour in the case of the limit operator
lim Z|...], we extend the real line by a special symbol L which can be interpreted as
“undefined” or “divergence”. Functions with range IR U { L} can be viewed as partial
functions that are undefined for those arguments where the value L is returned.

Definition 10.1.1 [Extended reals| Let IR be the set of real numbers and L ¢ IR.
Then, R = IRU { L} is called the domain of extended reals.

In the sequel, we use subscripts to denote certain subsets of reals or extended reals. For
instance, IR~ denotes the set of positive reals and R<; = {g € R: ¢ <1}U{Ll}.

The limit operator for converging sequences of reals is extended to an operator lim on
arbitrary sequences of extended reals.

Notation 10.1.2 [The operator lim] Let qo, q1,q>, . .. be an infinite sequence in IR.
e If q, € IR for almost all n, e.g. q, € IR for all n > ngy, then

{ 1 i (@n)n>n, does not converge in IR

]Im(qu q1,42, . . ) = lim qn Zf (QH)TLZTLO converges m IR.

Here, limg,, denotes the usual limit of (¢n)n>n, 0 IR.

®The reason not to use the standard notations pZ[...] and vZ[...] to denote the least and greatest
fixed point operators is that, in the other chapters of that thesis, the greek letters u and v range over
distributions. Of course, instead of the least and greatest fixed point operators, the more general limit
operator lim Z [bterm 1 btermy| could be added to the boolean mu-calculus. However, for the applications
of the boolean mu-calculus that are considered in that thesis, only the least and greatest fixed point
operators are needed.

SFor the boolean expressions, we have an interpretation by the usual truth values 0 or 1 and for the
boolean terms an interpretation by boolean-valued functions in mind.
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e If g, = L for infinitely many n then lim(qo, q1,q2,...) = L.

If X is a set and (f;)j>0 is a sequence of functions f; : X — IR then lim(fo, f1, f2,-.-)
denotes the function X — IR, x — lim(fo(z), f1(2), f2(2), .. .).

Algebraic expressions are interpreted by extended real numbers, n-ary algebraic terms by
n-ary functions into the extended reals where the interpretation for the individual and
term variables and the function symbols is given by a model for the algebraic mu-calculus.

Definition 10.1.3 [Models for the algebraic mu-calculus] 4 model for the algebraic
mu-calculus is a pair M = (D, I) consisting of a nonempty finite set D (called the domain )
and an interpretation I for the individual and term variables and the function symbols,
i.e. a function I which assigns

e to each individual variable z an element I(z) € D,
e to each n-ary term variable Z a function I(Z) : D™ — IR,

e to each n-ary function symbol fct a function I(fct) : D™ — IR.

Remark 10.1.4 From a purely mathemetical point of view, the concept of function sym-
bols can be removed from the algebraic mu-calculus since function symbols can be con-
sidered as special term variables (namely, term variables that cannot be bounded by the
limit or bounded iteration operator). However, the use of both function symbols and
term variables is motivated by the convention that function symbols represent functions
for which we have a fixed meaning in mind (e.g. the transition probability function of a
fully probabilistic system) while the term variables are used in the scope of the limit or
bounded iteration operator lim Z [...] or iterate Z [...]. Thus, the term variables are
auxiliary symbols that are needed for technical reasons only while the function symbols
stand for objects of the “real world”. m

Notation 10.1.5 [The models M]|...]] Let M = (D, I) be a model. If n, m > 0 and
21, ...,2n are pairwise distinct individual variables and Z1,. .., Z, are pairwise distinct

term variables where the arity of Z; is k; and d; € D, f; : D¥ — IR then
Mlzy:=dy, ... 20 i =dn, Z1 = f1,. .., Zm = fm]

denotes the model (D, I]z; :=dy,...,2n :=dpn, Z1 = f1,..., Zm := fm]) where
Izy :=dy, ... 2n :=dn, Z1 = f1, oo, Zm = [

s those interpretation J for the individual and term variables and the function symbols
such that J(fct) = I(fct) for all function symbols fct and J(z) =d;, i =1,...,n, J(Z;) =
fivi=1...,m, and J(2) =1(2), J(Z) = I(Z) in all other cases.

Let M = (D, I) be a model. For each algebraic expression expr and algebraic term term,
[expr]™ € R and [term]™ : D™ — IR are defined as shown in Figure 10.3 on page 264.
Here, we assume that all operators op € Op are extended to total operators on IR. For
instance, the partial division operator % on the reals is extended to a total operator on
R by 1%q = Lifga=00r L € {q, ¢}
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g™

M M M

op [expr,]

[

[ = [expri]
[ term(z, ..., 2,) M = [term]M(I(2),...,1(2))
[

[

expr; op expr, |
>, lexpr] [M = Luep [expr]ME=d
min, [expr] [M = min {[expr]M*=4 : d € D}
[ max. [expr] [M = max {[expr[MF=4 : d € D}
[fct]M = I(fct), [Z]M = I(Z)
[ Az1,. .., zalexpr] [M(dy, ..., dy) = [expr]MF=dirmmn:=dn]
[ lim Z | term 1 termy | [™ = lLim(fo, f1, f2,--)
[ iterate Z | term 1% termg | M = fi

where fo = [termo]™, fiy = [term]MIZ=1.

Figure 10.3: Semantics of the algebraic mu-calculus

Example 10.1.6 [Computing shortest paths] Let G = (V, E, cost) be a finite di-
rected graph with a positive cost function, i.e. V is a finite set of vertices, E CV x V a
set of directed edges and cost : E — IR~y a function that assigns to each edge (v, w) the
cost cost(v, w) for passing the edge from v to w. Let mincost : V XV — IR be the function
that returns for any pair (v, w) of nodes in G the length of a shortest path from v to w.
(We put mincost(v,w) = L if there is no path from v to w.) It is easy to see that the
function mincost is the limit of the sequence (f;);>o where the functions f; : V. x V — R
are given by
0 : ifv=w
Jo(v,w) = { 1 : otherwise

and
firi(v,w) = min{ f;(v,w), min{f;(v,u) + cost(u,w) : (u,w) € E} }

where the limit is taken in IR (cf. Notation 10.1.2, page 262).” We use binary function
symbols cost and id and the model M = (V, I) where the underlying domain is the vertex
set V' and the interpretation I is given by I(id) = f, and
| cost(v,w) : if (v,w)€EE
I{cost)(v, w) = { 1 . otherwise.

"Here, we assume that the natural order on the real line is extended by ¢ < L for all real numbers g.
(This yields min @ = min(Q \ {1}) if 0 # Q@ C R, @ # {L}.) For the extension of + to an operator on
the extended reals, we require that L +¢=¢+ 1L = L.
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Then, the semantics of the algebraic term lim Z [ term 1 id | is the function mincost
where

term = Av,w [min { Z(v,w), min [ Z(v,u) + cost(u, w) ] } ] :

This can be seen as follows. We have fy = [id]™. By induction on i, we get that
fiz1 = [term]MZ=F1 1 =0,1,2,....
Thus, [ lim Z [term 1 id] [ = ILim(fo, f1, f2,...) = mincost. The semantics of the

term
iterate Z [ AV, w [ min [ Z(v, u) + cost(u, w) | ] % id ]

with respect to M is the function f;. The value fi(v,w) is the cost of a shortest path
v =g, V1,...,uy =w where [ < k. m

Example 10.1.7 [Matrix multiplication] Let A be a n x m-matrix, B a m x [-matrix.
A(4, j) denotes the element of A in the i-th row and j-th column; similarly, the element
of B in the j-th row and k-th column is denoted by B(j, k). The following algebraic terms
describes the matrix product A - B.

term = M,k l Z [ A(4,7) * B(j,k) ]

where A and B are binary function symbols that represent the matrices A and B respec-
tively. More precisely, if N = max{n, m,[} and M = ({1,..., N}, I) where

.. A(t,7) : ifl<i<nand1<j3<m
) = { 109 j

otherwise
. | B(,k) s ifl1<j<mand 1<k <1
I(B)(j; k) = { 1 otherwise

then [term|™ represents A - B in the sense that [term]™ (i, k) is the element of A - B in
the i-th row and k-th column (provided that 1 <i<nand 1 <k <)% m

Example 10.1.8 [Iterative squaring] In certain applications, one has to compute AX
for a quadratic matrix A and some large K.° For simplicity, we assume that K = 2F.
Instead of computing AX by the iteration Al = A?. A, i=2,...,K—1,it is better to
use iterative squaring which is based on the iteration A2 = A2 . A2 ;=0,1,..., k—1.
This can be described by the algebraic term

iterate Z

AL,k [Z [ 26, 5) * Z(5, k) ]] LA

J

where A is a binary function symbol that represents A. m

8Here, we assume that L xg=¢g* L =1 +qg=q+ 1L =0ifgeRand Lx L =1+ 1 = 1.
°For example, one of the two methods for the handling of the bounded until operator /=¥ in the
PCTL model checking algorithm of [HaJo94] is based on the computation of AX for some matrix A.
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In the literature about numerical analysis, a variety of iterative methods for matrix op-
erations are proposed; see e.g. [Varg62, YoGr73]. Using the limit operator, most of them
can be described as terms of the algebraic mu-calculus. In Example 10.1.9, we consider
the “naive” method for solving linear equation systems of the type z = q + A - z that
is based on the iteration z;;; = q + A - z;. This method can be viewed as the basis of
several iterative methods, e.g. the methods by Jacobi or Gauss-Seidel or the relaxation
methods. Another possible application of the algebraic mu-calculus in the field of matrix
operations is the computation of eigenvalues by well-known iterative methods, e.g. the
methods by Mises or Wielandt (see Example 10.1.10, page 266).

Example 10.1.9 [Solving linear equation systems] Let A be a real n X n-matrix,
I the n x n-identity matrix. We assume that ||[I — A|| < 1 for some matrix norm || - ||.
Then, I — A is regular and, for each vector q € IR", the sequence (zj)i>o converges to
the unique solution of the equation system (I — A) -z = q where z; is an arbitrary real
vector with n components and z,; = q + A - z;. We use a binary function symbol A
(that represents A) and l-ary function symbols q and z, (that represent the vector q and
the starting vector zg) and consider the algebraic term
a@) + X [AGH*ZG) ]| 1 20]-
j

Let M = ({1,...,n},I) where I(A)(3,j) = A(3,J), I(q)(¢) is the i-th component of q and
I(2)(4) the i-th component of zg. Then, [term]™ represents the solution of (I-A)-z = q,
i.e. the vector ([term]*(7))i<i<n is the unique solution of z = q+ A - z.

i

term = lim 7

The Jacobi-approach for solving linear equation systems of the type B -z = q is a modifi-
cation of this naive method. It is based on a decomposition of the matrix B into D4+L+U
where D is a diagonal matrix, L a lower triangular matrix and U an upper triangular
matrix (where all entries in the diagonals of L and U are 0). We assume that D is regular
(i.e. all elements in the diagonal of B are non-zero) and that A = D™!(L + U) satisfies
the conditions of the naive method (i.e. |I — A|| < 1 for some matrix norm || - ||). Then,
the Jacobi-method is based on the observation that

B-z=q if z=D"1'-(q — (L+U)-2)

and uses the iteration z;; = D™ (q— (L + U) -z;). This corresponds to the algebraic
term

lim Z [ Xi { ( a(i) = 3 [h,5) * B j) * 2(5) | ) % B(i, i) } 1z }
J

where B, zy, q are function symbols with the obvious interpretations. his a binary function

symbol for which we assume the interpretation I(h) : {1,...,n}* — {0,1}, I(h)(3,7) =1

iffi 7. m

Example 10.1.10 [Computing eigenvectors| We sketch how the iterative method by
Mises for computing eigenvectors can be described by an algebraic term. Let A be a n xn-
matrix that is similar to a diagonal matrix and let zy be a real vector with n components.
Let || - || be a vector norm and let

1
Zpi1 = ——Yr Where yp = A-z,, £=0,1,2,....
[yl



10.1. THE ALGEBRAIC MU-CALCULUS 2607

Under certain conditions about zg, the sequence (z)g>o converges to an eigenvector of
A. Using a binary function symbol A (that represents A) and a l-ary function symbol
7z (that represents the starting vector zg) this iterative method can be described in the
algebraic mu-calculus by the term lim Z [term T z] where

term = Xi | > [A(i,5)*Z(j)] % max [ |A(i,5)* Z(5)] ]
. j
j
The underlying vector norm that we use here is the maximum norm ||y||c = max{|y;| :
i=1,...,ntify = (¥i)i<i<n ®

Having a fixed model M = (D, I) in mind, it is often useful to extend the syntax of
the algebraic mu-calculus by expressions of the form term(ky, ..., k,) where k; are either
individual variables that do do occur free in term or values of the underlying domain D.

Then, term(ky,...,k,) stands short for the algebraic expression term'(zi, ..., z;) where
{z1,..., 21} = IndVar N{K1,...,kn},

term’ = Az1,...,2 > [ term(Gi, ..., Cy) * bexpr |

Cla"'a('n
and
bexpr = N\ A EadG) A A N E(G 2)
deD 1<i<n 1<j<k 1<i<n
K,,'Zd KRi{=2Zj
Here, (1,...,(, are “fresh” pairwise distinct individual variables that do not occur free

in term. E is a binary function symbol (that represents the equality predicate on D), E,
are l-ary function symbols (that stand for the singleton set {d}). The intended meanings
of E and E; are formalized by the requirement that the interpretations for E and E; are
given by:

1 : 1fd1:d2

1 : ifd=d
I(E)(dy, d3) = {0 otherwise

[(Eq)(d) = {0 otherwise.

For example, term(d, z, z) stands short for term'(z) where

term' = Mz |- > [ term(Gr, ¢, 3) * bexpr ]-|
|_ €1,¢2,¢3 J

and bexpr = (1 =d) A (& =2) A ((3 = z) where we write (; = d rather than E4((;)
and (; = z rather than E((;, 2), i = 2, 3.

Example 10.1.11 [Computing the probabilities Prob(s,7*, C)] Let S = (S, Act, P)
be a finite action-labelled fully probabilistic system and R an equivalence relation on
S. We show how the probabilities Prob(s,7*,C) (where s € S and C € S/R) can be
described by a term of the algebraic mu-calculus.!® For this, we use the following fact.
The function S x S — [0,1], (s,t) — Prob(s,7*, [t|r), is the least fixed point of the

10Recall that Prob(s,7*,C) denotes the probability for s to reach a C-state via internal actions, see
page 50.
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operator F' : (S xS — [0,1]) — (S xS — [0,1]) that is given by F(f)(s,t) = 1 if
(s,t) € R and, if (s,t) ¢ R,

F(f)(s’t) = P(S’T’ [t]R) + Z P(S’T’u)'f(u’t)

ueS\[tlr

(cf. Proposition 3.3.4, page 49). Here, [t|g = {t' € S : (t,t') € R}. By Tarski’s fixed point
theorem, the least fixed point is obtained as limit of the function sequence (F*(fq))izo
where fo(s,t) = 0 for all s,¢t € S. This iteration can be described by an algebraic term
of the form lim Z [... 1 As,t[0]]. For this, we rewrite the definition of F. Let fg be the
characteristic function of R. Then,

F(f)(s,t) = max { fr(s,t), (1= fr(s,t)) * G(f)(s,1) }

where

G(f)(s,t) = > Pls,mt) - fr(t,t) + > P(s,7u)- (1= falt,w)) - f(ut).

t'esS uces

We use a ternary function symbol P (that represents P) and a binary function symbol R
(that represents R). We consider the model M = (D, I) where D = S'& Act and

P(s,a,t) : ifs,t€ S and a € Act

I(P)(s,a,t) = 0 . otherwise
B 1 : ifs,teSand(s,t)€ER
I(R)(s,1) o 0 : otherwise.

We use s, t, ' and u as individual variables and define
term = lim Z [ As,t [ max{ R(s,t), (1 — R(s,t))*xexpr } | T As,t[0] |
where
expr = Y [P(s,7,t')xR(t,t") ] + > [P(s,7,u)* (1 — R(t,u)) * Z(u,t) ].
t u

Here, in the expressions P(s,7,t') and P(s,7,u), we use the notation term(ks, ..., k)
explained on page 267.1! The meaning of term with respect to M is the function [term]™ :
D? — IR which is given by [term]*(s,t) = Prob(s,7*,[t]r) if s, t € 5. m

Remark 10.1.12 There are several possible extensions of the algebraic mu-calculus that
might be useful in certain applications.

e The algebraic mu-calculus could be extended by (total or partial) l-ary arithmetic
operators such as square root /expr, logarithms (such as log,(expr)) or exponentiation
(such as 2°*PT) together with an appropriate semantics, e.g. in the case of square root

if [expr]™ € R
otherwise.

I Note that 7 is an element of the domain D.
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e Another possible extension is to deal with tuples of term variables in the limit or
bounded iteration operator; i.e. to deal with an operator

lim; Z | term T termy |

where, for some natural number | > 1, Z = (Zy,...,%;) is a [-tuple of term vari-
ables, term = (termy,...,termy) and termy = (termyy,...,termyy) are [-tuples of
algebraic terms and j € {1,...,l} such that the arity of Z,, term, and termyy is
the same, h = 1,...,[. The semantics of this limit operator with index j is given by

ll'm(fjvg, fj717 fj,27 .. ) where fh,O = [[termh,o]]M and

Frir1 = [termpMZv=luiZi=fiadl =1 landi=0,1,2,....

Similarly, the bounded iteration operator could be extended for tuples of term variables.

e Instead of just using the symbol 1 — that we use to handle all kinds of non-converging
sequences — one might extend the real line by three symbols —oo, +00 and L. This
allows the distinction between sequences that diverge to —oo (e.g. —1,—2,—3,...) and
sequences that diverge to +oo (e.g. 1,2,3,...) and sequences that neither diverge to
+00 or —oo nor converge to a real number (e.g. —1,1,—1,1,...). =

Notation 10.1.13 [The range Range™(term)] Let term be an n-ary algebraic term and
M = (D,I) a model. Then,

Range™ (term) = {[[term]]M(a) :d e D"}
denotes the range of (the semantics of ) term with respect to M.

Definition 10.1.14 [R-models] Let R be a subset of IR. A model M = (D, I) is called
a R-model iff Range(I(Z)), Range(I(fct)) C R for all term variables Z and function
symbols fct.1?

Definition 10.1.15 [R-closedness] Let R be a subset of IR, M = (D, I) a model and
Z an n-ary term variable. An algebraic term term is called R-closed with respect to Z
and M iff RangeM[Z::ﬂ(term) C R for all functions f: D™ — R. Similarly, an algebraic
expression expr is said to be N-closed with respect to Z and M iff [expr]MZ=fl ¢ R
for any function f : D™ — R. An algebraic term or expression is called R-closed iff it is
R-closed with respect to any term variable Z and any R-model (i.e. if Range’ (term) C R

resp. [expr]™ € R for any R-model M ).

Clearly, the subcalculus of R-closed expressions and terms contains any constant ¢ € RNIR
and is closed under A-abstraction and term application and all those operators op € Op
that are closed in R (i.e. whenever ¢, go € R then ¢; op ¢ € R).

Example 10.1.16 [{0,1, L }-closedness] Given a {0, 1}-model M = (D, I), the seman-
tics [bexpr]™ for expressions of the boolean mu-calculus is either 0 or 1 or L. Similarly,
the meaning [bterm]™ of a term of the boolean mu-calculus is a partial boolean function,
i.e. returns 0, 1 or L. Thus, each boolean expression or term is {0, 1, 1 }-closed. m

12Tn the notations of Section 2.1, page 29, Range(f) denotes the image of the function f, i.e. if f :
X — Y then Range(f) = f(X)={f(z):z € X}.
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10.1.3 Fixed point operators

This section shows that under certain conditions the limit operator lim Z [term T termy|
specializes to a fixed point operator in the sense that the semantics of lim Z [term T termy|
is a certain fixed point of the higher-order function f + [term]*!4=f]. The conditions
that we present here are based on Banach’s or Tarski’s fixed point theorem which yield
operators that describe unique or least or greatest fixed points.?* To apply Banach’s
or Tarski’s fixed point theorem we have to ensure that the higher-order operator f —
[term]MIZ=11 i5 a self-mapping of a complete metric space (in the case of Banach’s fixed
point theorem) or a complete lattice (in the case of Tarski’s fixed point theorem). In both
cases, we deal with function spaces of the form D™ — R where R is a certain nonempty
compact subset of IR, namely either a real interval [a, b] or a finite nonempty set of reals.
Then, R — and hence, the function space D™ — R — is a complete metric space and a
complete lattice.'

Proposition 10.1.17 Let term be an n-ary algebraic term, Z an n-ary term variable
and M = (D, I) a model for the algebraic mu-calculus. Let R be a nonempty subset of IR
such that term is R-closed with respect to M and Z. Then, the operator

F:(D"—R)— (D" = R), F(f) = [term]MZ=T],
1s well-defined. Moreover:

(a) If F is contracting, R is a compact interval [a,b] and termqy an n-ary algebraic term
such that Range™ (termg) C R then

[ lim Z [term 1 termg] [M = fiz(F)

15 the unique fized point of F'.

(b) Let a = minR and b = maxR and R either a compact interval or finite (i.e. either
R =a,b] or R ={as,...,ar} where a = a1 < ay < ... < ax =b). If F preserves
suprema and infima then

[ lim Z [ term T Azy,...,25]a] | JM = Ifp(F) is the least fized point of F,
[ lim Z [ term  Azp,...,2,00] | [ = gfp(F) is the greatest fived point of F.

Proof: follows immediately by Banach’s and Tarski’s fixed point theorem (see Section
12.1.2, page 310, and Section 12.1.1, page 308). m

In the remainder of this section we present conditions that ensure that the conditions of
part (b) of Proposition 10.1.17 are fulfilled. Clearly, if the operators op preserve suprema
and infima for all subexpressions expr; op expr, of term that contain a free occurrence
of Z then the operator f r [term]*!#=f] preserves suprema and infima. But, in many
applications, the requirement that only those operators op that preserve suprema and
infima are allowed is not sufficient because the multiplication operator * and the minus
operator — (and also the derived negation operator —) are not monotonic and hence do

13This observation justifies the name “mu-calculus” because usually (e.g. in the case of the relational
mu-calculus) the greek letter “mu” denotes “least fixed point”.

14We assume the natural metric d(z,y) = |z — y| and the natural order < on ®. The function space
D™ — R is equipped with the induced metric or partial order; see page 308 and page 310.
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not preserve suprema and infima. In what follows, we shrink our attention to the compact
interval ® = [0, 1] and define a subcalculus of the algebraic mu-calculus which is [0, 1]-
closed and contains least and greatest fixed point operators. Similar conditions for other
compact intervals [a, b] can be derived using the bijection [a,b] — [0,1], ¢ — (¢g—a)/(b—a).

[0, 1]-closedness requires the restriction to constants ¢ € [0, 1] and the use of such operators
op € Op that are total operators on [0, 1] and always return values between 0 and 1
(i.e. operators that can be restricted to functions [0, 1] x [0,1] — [0, 1]). For this reason,
we cannot use the addition operator + or the minus operator —. Instead of the binary
minus operator, we use the l-ary operator ¢ — 1 — ¢ and deal with expressions of the
form 1 — expr. One general possibility to handle summation is to combine the plus
operator + with the 1-ary minimum operator ¢ — min{1, ¢} and to deal with the operator
(q1,q2) — min{l,q; + g2} which yields expressions of the form min{l, expr; + expr,}.
Another possibility is to use boolean guards for the summation. For this, we deal with
special function symbols bfct for which we assume an interpretation by a boolean-valued
function and use expressions of the form

bfct(z1,...,2z,) * expry + (1 — bfct(zy,. .., 2,)) * €xpry.

Expressions of the above form can be read as “if bfct(zy,..., 2,) then expr, else expr,”.
Similarly, for the summation quantifier -, [expr| we could make the requirement that it
can only be used in the context of the minimum operator, i.e. in the form min{1, }°,[expr]}.
Alternatively, we can generalize the idea of the boolean guards by non-negative weights
that sum up to 1. This leads to a weighted sum e.g. of the form

> [ whct(z1,. .., 25, Y1y - - Ynk) * €XPT |

215y
where (21, ..., 2k, Y1, - - -, Yn_k) 1S a tuple of pairwise distinct individual variables and wfct
a special function symbol that is interpreted in such a way that, whenever we fix interpre-
tations ey, ..., e, g for yi,..., Yok and sum up the values I(wfct)(dy,. .., dx,e1,...,en )
where dy, . .., dj, range over all possible values for zy, . . ., z; then we obtain a value in [0, 1].

The algebraic [0, 1]-mu-calculus: We assume a subset Op'®Y of Op such that all
operators op € Op/®Y can be restricted to an operator [0,1] x [0,1] — [0,1]. Moreover,
we assume that g op L, L op q, L op L € [0,1]U{L} for any operator op € Op®!. Let
BFct"™ C Fct" be a set of boolean function symbols. Forn > 1and 1 <i; < ... <1 <n,
let WFct"(iy,...,i) C Fct" be a set of n-ary function symbols. The algebraic [0, 1]-mu-
calculus is those subcalculus of the algebraic mu-calculus whose expressions and n-ary
terms are built from the grammar shown in Figure 10.4 (page 272). Here, ¢ € [0,1], op is
an operator in Op/®Y wfct € WFct™ (i, . .. i) and bfct € BFct™. The least and greatest
fixed points operators are given by Ifp Z [term| = Ilim Z [term T Azi,...,z,[0]] and
gfp Z [term| = lim Z [term T Az1,...,z,[1]]. The expression if bfct(z,...,z,) then
expr; else expr, stands short for

bfct(z1,...,2z,) * expry + (1 — bfct(zy,. .., 2,)) * €xpr,.

A model for the algebraic [0, 1]-mu-calculus is a [0, 1]-model M = (D, I) for the algebraic
mu-calculus such that

e I(bfct)(d) € {0,1} for all bfct € BFct" and d € D",
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expr = q ‘ expr; op expr, ‘ 1 — expr ‘ term(zy, ..., 2n) ‘
if bfct(z,...,z2,) then expr, else expr, ‘
> [ whct(z1, ..., 2n) * expr ] ‘ min [expr| ‘ max [expr]
Zig i
term = fct | Z ‘ Az1, ..., Zp [€xpr] ‘ Ifp Z [term] ‘ gfp Z [term] ‘
iterate Z [ term 1 termy ]

Figure 10.4: Syntax of the algebraic [0, 1]-mu-calculus

e for all wict € WFct"(iq,...,i) and d; € D, i € {1,...,n}\ {i1,..., i},
> I(wict)(dy, ..., d,) < 1.

diy yonndiy €D

Example 10.1.18 The term in Example 10.1.11 (page 267) that describes the function
S xS —10,1], (s,t) — Prob(s,7*,[t|r) can be rewritten as

Ifp Z [ As,t [ if R(s,t) then 1 else expr | |.

which is a term of the algebraic [0,1]-mu-calculus provided that P € WFct?*(2,3) and
R € BFct®. The model M = (D, I) considered in Example 10.1.11 is a model for the
algebraic [0,1]-mu-calculus. m

It is easy to see that, for any expression expr of the algebraic [0,1]-mu-calculus and
any model M for the algebraic [0, 1]-mu-calculus, [expr]™ € [0,1] U {L}. Similarly, if
term is a term of the algeraic [0, 1]-mu-calculus then Range™ (term) C [0,1]U{L} for any
model M for the algebraic [0, 1]-mu-calculus. We now present conditions that ensure that
the semantics returns values in [0, 1] rather than the auxiliary symbol L. For this, we
make some syntactic requirements about the occurrences of the term variable Z within
subterms Ifp Z [term] and gfp Z [term|. The first condition (“formal monotonicity”)
is taken from the relational mu-calculus where, for the least and greatest fixed point
operators Ifp Z |[bterm| and gfp Z [bterm]|, the monotonicity of the induced operator
f— [[bterm]]M[Z =11 is ensured by the requirement that all free occurrences of Z in bterm
fall under an even number of the negation operator —bexpr.

Definition 10.1.19 [Formal monotonicity| Let term be an algebraic term, expr an
algebraic expression and Z an n-ary term variable. Z is formally monotone in term (or
expr ) iff all free occurrences of Z in term (resp. expr) fall under an even number of minus
operations.®

15The number of minus operations under which an occurrence of a term variable Z falls in an expression
or term is given by the number of subexpressions 1 — expr of that expression or term where the occurence
of Z is contained in expr.
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Example 10.1.20 Let Z be a l-ary term variable, fct a 1-ary function symbol and z, y
individual variables. Z is formally monotone in the expressions % Z(2) x (1 — fct(y)) and
Z(z)* (1 —(1—Z(2))) while it is not in (1 — Z(z)) * (1 — Z(2)). In the third expression,
both occurrences of Z fall under an odd number of minus operations. In the expression
(1—Z(z))* Z(z), the first occurrence of Z falls under an odd number of minus operations
(which yields that Z is not formally monotone in (1 — Z(z)) * Z(z)) while the second
occurrence falls under an even number of minus operations. m

Remark 10.1.21 Formal monotonicity of term variables in terms or expressions of the
relational mu-calculus (as a subcalculus of the algebraic mu-calculus) in the sense of
Definition 10.1.19 is the same as formal monotonicity a la Park [Park74]. m

The second condition that we need to ensure that the function f > [term]*!Z=f] pre-

serves suprema and infima is that, for each subexpression expr; op expr,, if Z occurs
free in expr; then the operator op preserves suprema and infima in the ¢-th argument.
To formalize this condition, we define the operator sets Op[lo’” and Op[zo’l] as follows. Let
Op[lo’l] be a set of operators op € Op®Y such that the function [0,1] x [0,1] — [0,1],
(q1,92) — q1 0p g2, preserves suprema and infima in its first argument, i.e. whenever @ is
a nonempty subset of [0,1] with ¢* = sup @ and ¢~ = inf @ and ¢ € [0, 1] then

sup{grop e €Q} = ¢  opqe, mf{Gopgp:qacQ} = ¢ opq.

Similarly, Op[zo’” denotes a set of operators op € Opl®t where the function [0,1] x [0, 1] —
[0,1], (¢1,92) — @1 op g2, preserves suprema and infima in its second argument. Clearly,

any operator op € OpEO’” is monotonic in the ¢-th argument. For instance, multiplication
*, minimum op,,;, and maximum op,,,, belong to Op[lo’l] N Op[20’1] while the operator
(q1,92) = q1/(1 + g2) is contained in Op[lo’l] \ Opg]’l] (provided that it belongs to Op[o’l]).
The comparison operators op,, are not contained in Op[lo’l] or Opg]’l].16

Definition 10.1.22 [Formal continuity| Let Z be an n-ary term variable. Z is called
formally continuous in a term or expression of the algebraic [0, 1]-mu-calculus iff, for any
free occurrence of Z in that term or expression within a suberpression expr,; op exprsy:

If Z occurs free in expr; then op € OpE"’”.

Example 10.1.23 Let Z, Y be l-ary term variables. Z is formally continuous in the
expressions = * (1 — Z(z)) and

min{Z(2), Z(z) x 2(z)} * ((1*Y(y)) op. 2)

while it is not in Z(z) op_ 2. m

Remark 10.1.24 Clearly, the algebraic [0, 1]-mu-calculus subsumes the boolean mu-cal-
culus. In the boolean mu-calculus, only the operators V = op,,,., A = 0p,,;, and the
comparison operators op,, are allowed. Thus, if bterm is a term of the boolean mu-
calculus then Z is formally continuous in bterm iff there is no free occurrence of Z within
a subexpression of the form expr; op_, expr,. In particular, for the relational mu-calculus a

16Note that the comparison operators op,, are not monotonic. For instance, 0.4 op-. 0.3 = 1 while
0.4 op, 0.5 = 0 although 0.3 < 0.5.
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la Park (the boolean mu-calculus without the comparison operators op,, and the bounded
iteration operator), all expressions and terms are formally continuous. m

Definition 10.1.25 [Formal divergence freedom| A term or expression of the alge-
braic [0, 1]-mu-calculus is called formally divergence free iff, for each subterm lfp Z [term]
or gfp Z [term], Z is formally monotone and formally continuous in term.

Example 10.1.26 The term in Example 10.1.11 (page 267) that describes the function
S xS — [0,1], (s,t) — Prob(s,7*,[t]r) is formally divergence free when we deal with
P € WFct*(2,3) and R € BFct*. m

Theorem 10.1.27 Let term be an n-ary term of the algebraic [0, 1]-mu-calculus that is
formally divergence free. Let M = (D, I) be a model for the algebraic [0, 1]-mu-calculus
and Z an n-ary term variable. Then, the function

Fo(D" = [0,1]) > (D" = [0,1)), F(f) = [rerm[M“=),

1s well-defined. Moreover, if Z is formally monotone and formally continuous in term
then F preserves suprema and infima and we have the following.

(a) [ Ilfp Z[term] [M = Ifp(F) is the least fired point of F,

(b) [ gfp Z[term| M = gfp(F) is the greatest fized point of F.
Proof: We say that an n-ary term variable Z is formally antitone in expr iff Z is
formally monotone in 1 — expr. Z is called formally antitone in a k-ary term term iff Z

is formally antitone in the expression term(zy, ..., z;). Let [, m be natural numbers with
Il +m > 1. We say that a function

F: (D™ —[0,1]) X ... x (D™ —[0,1]) — [0, 1]
is (I, m)-continuous iff, for all nonempty subsets Z; of functions f; : D™ — [0, 1],
F(f o f5 fo o fim) = sup {F(fi, o, fim) : fi €Esi =1, 1+ m},
F (s fy fibe o Jim) = W {F(fiyoo, frpm) : i € By =1, 14+ m}.

Here, f;" = supjcz, f and f;i = infyes, f. Similarly, we define (I,m)-continuity for
functions
F: (D™ —[0,1]) x ... x (D"+™ —[0,1]) — (D" — [0, 1]).

By structural induction on the expressions and terms of the algebraic [0, 1]-mu-calculus
we get the following. Whenever 7y, ..., Z;.,, are pairwise distinct term variables and a is
an algebraic expression or term such that a is formally divergence free and

® /y,..., 21y are formally continuous is a,
e /i,...,Z; are formally monotone in a,
® Zii1,..., Z1+m are formally antitone in a

then the function F, is (I, m)-continuous. Here, F, is given by
Fufireos fiim) = [aMB oo,

With a = term, | =1, m = 0, Z; = Z we get that the operator F' = F, preserves suprema
and infima. Parts (a), (b) can be derived from Proposition 10.1.17(b) (page 270). m
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10.2 The algebraic mu-calculus as a specification lan-
guage

In this section we show that the algebraic mu-calculus subsumes several temporal or modal
logics that can serve as specification languages for (several types of ) parallel systems. The
relational mu-calculus with its standard semantics a la Park [Park74] and Kozen’s modal
mu-calculus [Koze83] can be viewed as subcalculi of the boolean mu-calculus (see Sections
10.2.1 and 10.2.2). In particular, the boolean mu-calculus (and hence, the algebraic mu-
calculus) has the expressiveness of all formalisms — e.g. automata on infinite words and
several kinds of temporal logics such as CTL or LTL — that are contained in the relational
or modal mu-calculus; see e.g. [StEm84, EmLei86, Niwi88, BCM 90, EmJu91, Dam94].
Moreover, the algebraic mu-calculus contains several temporal and modal logics for rea-
soning about quantitative properties of concurrent systems. For instance, the algebraic
mu-calculus subsumes the extensions of Emerson [Emer92] and Seidl [Seidl96] of Kozen’s
modal mu-calculus for specifying (certain kind of) real time properties and several logics
to reason about probabilistic systems such as the probabilistic mu-calculus a la [HuKw97,
HuKw98] or PCTL [HaJo94, BidAl95]; see Sections 10.2.2 and 10.2.3. Moreover, the alge-
braic mu-calculus can serve as specification language for arithmetic circuits as it subsumes
the temporal logic Word Level CTL [CCH"96, CKZ96, Zhao96]; see Section 10.2.4. In
all these cases, we have an embedding of the respective (temporal or modal) logic L into
the algebraic mu-calculus of the following form. For each formula ¢ of L, there is an
“equivalent” algebraic term term,. Here, “equivalence” is in the following sense: For any
model AV for L, there is a model M for the algebraic mu-calculus with

(*)  [termy ™ = o]

Hence, all properties that can be specified by a formula of L can also be expressed in
the algebraic mu-calculus. Moreover, the definition of term, is by structural induction
on the syntax of ¢; i.e. the definition of term, is constructive. Thus, any method that
automatically computes the semantics of the terms of the algebraic mu-calculus yields a
model checker for L.

10.2.1 The relational mu-calculus

The syntax of Park’s relational mu-calculus is obtained from the boolean mu-calculus
(see page 261) by removing the expressions built from the comparison operators op,, and
the bounded iteration operator iterate Z [... 1* ...]. We now show that the semantics
of the relational mu-calculus (as a subcalculus of the algebraic or boolean mu-calculus
where the semantics of the least and greatest fixed point operators are defined as limits
of certain function sequences) agrees with the standard semantics & la Park [Park74]. In
the approach of Park, the use of the least and greatest fixed point Ifp Z [bterm| and
gfp Z [bterm| operators is restricted to those relational terms bterm and term variables Z
where Z is formally monotone in bterm.!” The meanings of Ifp Z [bterm| and gfp Z [bterm]
with respect to a {0,1}-model M = (D,I) (which can be viewed as a model for the

17Recall that formal monotonicity of a term variable Z in a relational term bterm means that all free
occurrences of Z in bterm fall under an even number of the negation operator —bexpr.
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relational mu-calculus in the sense of Park) are defined as the least and greatest fixed
points of the higher-order operator f ~ [bterm]*[#=/1 on the function space D" —
{0,1}. To see that the operators Ifp Z [bterm| and gfp Z [bterm| of the boolean mu-
calculus are indeed least and greatest fixed point operators we apply Theorem 10.1.27
(page 274).1%

Theorem 10.2.1 Let bterm be a n-ary term of the boolean mu-calculus that is formally
divergence free. Let Z be an n-ary term variable that is formally monotone and formally
continuous in bterm. Then, for any {0,1}-model M:

(a) [ Ifp Z [bterm| M = Ifp(F) is the least fized point of F
(b) [ gfp Z |bterm] |™ = gfp(F) is the greatest fized point of F

where F : (D" — {0,1}) — (D" — {0,1}) is given by F(f) = [bterm|*(#~1]

Proof:  follows immediately by Theorem 10.1.27 (page 274).!° m

Since formal continuity in expressions and terms of the relational mu-calculus is always
satisfied (see Remark 10.1.24, page 273), Theorem 10.2.1 yields that the standard seman-
tics for the relational mu-calculus a la Park agrees with the semantics of the relational
mu-calculus when viewed as a sublanguage of the algebraic mu-calculus. Thus, the rela-
tional mu-calculus can be viewed as a subcalculus of the algebraic mu-calculus.

10.2.2 The modal mu-calculus

The modal mu-calculus was introduced by Kozen [Koze83| as a language for analyzing
the behaviour of possibly infinite computations. Formulas of the modal mu-calculus are
built from the boolean connectives A, V, =, modal next step operators () and [a] (where
« ranges over certain actions) and least or greatest fixed point operators. They are
interpreted by sets of states of a finite action-labelled transition system and might express
e.g. safety or liveness properties. The modal next step operator («) can be viewed as the
modal counterpart to the boolean quantifier dxr and states that “there is an a-labelled
transition” while [a] is its dual (“for all a-labelled transitions”). Using 2-ary function
symbols R, — where R, represents the characteristic function of the transition relation
for the action label a (i.e. we assume an interpretation I such that I(R,) is a boolean-
valued function where I(R,)(s,t) is true iff s—~t) — each modal mu-formula ¢ can be
translated into an “equivalent” 1-ary boolean term bterm,. For instance, for mu-formulas
with modal next step (a) or least fixed points,

btermay, = Az[32' [ Ra(2,2") N btermy,(2') ]|, btermyg, z 1, = Ilfp Z [btermy).

181t should be observed that the boolean mu-calculus is a subcalculus of the algebraic [0, 1]-mu-calculus.
Note that the summation quantifier ), is not contained in the boolean mu-calculus, only the operators
A = 0P pmins V = 0D e @0d op., are allowed and the boolean negation operator —bexpr is modelled by
1 — bexpr.

9For this, we use the following simple fact. If F : (D™ — [0,1]) — (D™ — [0,1]) is an operator that
preserves suprema and infima and such that F(f)(di,...,d,) € {0,1} for any function f: D™ — {0,1}
and di,...,d, € D then the least and greatest fixed points of F' are functions with range {0, 1}.
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Here, “equivalence” is in the sense of condition (*) on page 275. Thus, Kozen’s modal
mu-calculus can be viewed as a sublanguage of the boolean mu-calculus.

In the literature, Kozen’s modal mu-calculus has been extended to reason about quan-
titaive properties of timed systems [Emer92, Seidl96] or probabilistic systems [HuKw97,
MoMcI97, HuKw98, McIv98|. In the approach of [Emer92|, formulas are still interpreted
over sets of states of a labelled transition system while [Seidl96, HuKw97, MoMclI97,
HuKw98, MclIv98] deal with an interpretation by functions from the states into the reals.
Emerson [Emer92] extends the modal mu-calculus by bounded iteration operators that
are used to formulate real time properties such as “the process will terminate within the
next k time units”. The above mentioned embedding of Kozen’s modal mu-calculus in the
boolean mu-calculus can be extended to an embedding of Emerson’s modal mu-calculus
where we describe Emerson’s bounded iteration operator with the help of our bounded
iteration operator iterate Z [... 1% ...]. In the remainder of this section, we briefly
explain how the modal mu-calculus with the interpretations by Seidl [Seidl96] over dura-
tional transition systems and Huth & Kwiatkowska [HuKw97, HuKw98| over probabilistic
(reactive) systems can be embedded into the algebraic mu-calculus.

The durational mu-calculus & la Seidl: [Seidl96] deals with an interpretation of
formulas by functions from the states of a finite action-labelled transition system into
a discrete time domain Time. The transitions are endowed with an duration (i.e. the
amount of time that is needed to perform the transitions). In some sense, the semantics
of the formulas gives a measure for the time of how long a certain property holds.

The time domain T%me is a subinterval of the non-negative integers extended by L that
we treat as 00.2° Moreover, Time is equipped with a set Op of binary operators such as
maximim op,,,,, minimum op,,;,, addition + and a sequence operator (z,y) — z;y = y.
Formulas are given by the following grammar

p u= bta | Z | propgs | [ | ()¢ | UpZ¢] | gfp Z [¢]

where bta is a basic time assignment, o € Act, Z a variable and op € Op. Here, Act
is a fixed finite set of actions. Formulas are interpreted over the states of a durational
transition system, i.e. a tuple § = (S,—, dur) where S is a finite set of states, — C
S x Act x S a transition relation and dur a function that assigns to each transition s = ¢
its duration dur(s,a,t). A model N' = (8, J) consists of a durational transition system
S = (S,—, dur) and an interpretation J for the variables and basic time assignments
by functions S — Time. The meaning [¢]" : S — Time is defined as shown in Figure
10.5 (page 278). We associate with each formula ¢ an l-ary term term, as follows. Each
basic time assignment bta is viewed as a l-ary function symbol. For each action «, we
use binary function symbols R, and dur,. Intuitively, R, represents the the a-labelled
transitions (i.e. R, stands for a boolean-valued function S x S — {0,1} where (s,t) — 1
is true iff s——t) while dur,, stands for the duration of the a-labelled transitions (i.e. dur,
represents the partial function S x S — IR where (s,t) — dur(s,a,t) if s—t). The
variables Z of the durational mu-calculus are viewed as 1-ary term variables.

termy = Z, termp, = bta, termy, ..., = As[termy, (s) op termy,(s)],

20To be precisely, [Seid196] also uses the symbol —oco to express unaccessibility. Using an extension of
the real line by the three symbols +00 and L rather than just the single symbol L, we could also deal
with —oo.
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[21¥ = J(2), [btal" = J(bta), Ler op @l (s) = [aV(s) op [eal(5)
[[oe]V(s) = min {dur(s, o t) + [p]V(t) - s % ¢}

[(@)e]V(s) = max {dur(s,a,t)+ [elV(t) : s ﬁ>t}

[Ifp Z [p]]V = least fixed point of (S — Time) — (S — Time), f + []VIZ=7]
[gfp Z [p][V = greatest fixed point of (S — Time) — (S — Time), f — [p]V1#=1]

Figure 10.5: Semantics of the durational mu-calculus a la [Seidl96]

termp), = As|[ming [ Ra(s,t) * (dury(s,t) + termy(t)) | |,
termay, = As|[max; [ Ra(s,t)* (durg(s,t)+ termy(t)) | ],
termyg, z o) = lim Z | termy, T As[timepy] |,

termgg, 7 (o] = lim Z [ termy, T As[timemqq] |.

Here, time,, = min{t : t € Time} and time,, = max{t : ¢t € Time}. Given a model
N = (8, J) where S is as before, we define a model M = (S, I) for the algebraic mu-
calculus by I(bta) = J(bta),

1 ifs St | dur(s,a,t) 1 ifs St
[(Ra)(s,t) = {0 . otherwise [(dura)(s,t) = {J_ : otherwise

and I(Z) = J(Z) for all variables Z. By structural induction on ¢, we get [o]V =
[term,|M.

The probabilistic mu-calculus a la Huth & Kwiatkowska: In the probabilistic
mu-calculus of [HuKw97, HuKw98|, formulas are given by the grammar

o v=ap | Z | pihes | me | @V | e | (e | HpZ e | gfp Z [g]

where ap is an atomic proposition, o € Act an action and Z a variable. Formulas are
interpreted with respect to a model N' = (8, J) consisting of a reactive system S =
(S, Act,P) (cf. Definition 3.3.10 on page 51 and Notation 3.3.11 on page 52) and an
interpretation J for the atomic propositions ap and the variables Z by functions S — [0, 1].
The meaning [¢]V : S — [0,1] of a formula ¢ is defined as shown in Figure 10.6 (page
279). For disjunction V and conjunction A, several interpretations by binary operators
are possible. To guarantee the existence of least/greatest fixed points for formulas with
alternating depth < 1 the following operators op,, and op, can be used.?!

e op, is op,,,, or one of the operators (g1, q2) — q1+¢2— q1 - 92, (q1,q2) — min{l, ¢ +¢2}
® 0p, iS op,,.,, * or the operator (qi, ) — max{q; + ¢2 — 1,0}.

Similarly to the way in which we describe each formula ¢ of Seidl’s durational mu-calculus
by an “equivalent” algebraic term term,, we obtain a transformation from the positive

2L Alternating depth < 1 means that, for any subformula IfpZ[¢] or IfpZ[)], at most the variable Z
occurs free in ¢. This ensures the existence of least and greatest fixed points of the associated operator
and that they can be computed by the standard iterations. See Proposition 1 and 2 in [HuKw98].
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ZIV = J(2), [ap]¥ = J(ap), [~V (s) = 1= [l (s),

1V 902]] =[]V opy T2l [1 A 2]V = [1]V 0p,, [a],

(@)p [V (s) = Ztes P(s, a,t) - [o]V (¢),

(e [V(s) = 1= Sies P(s,a,t)- (1= [o]V(2)),

Ifp Z [p] [V = least fixed point of (S — [0,1]) — (S — [0,1]), f — [p]V1Z=7],

[
[
[
[
[
[ gfp Z [p] [V = greatest fixed point of (S — [0,1]) — (S — [0,1]), f > []V#=1L

Figure 10.6: Semantics of the probabilistic mu-calculus a la [HuKw97]

modal mu-calculus with the Fuzzy interpretations of [HuKw97, HuKw98] to the algebraic
mu-calculus. For each formula ¢, we define an 1-ary algebraic term term, by structural
induction. The atomic propositions ap are viewed as l-ary function symbols. For each
action «, we use a binary function symbols P,. Intuitively, P,(s,t) stands for the prob-
ability for s to move to ¢t via an a-labelled transition, i.e. P, represents the function
S xS —10,1], (s,t) = P(s,a,t). The variables Z of the positive modal mu-calculus are
viewed as 1l-ary term variables. We suppose that op,, op, € Op and define termy = Z,
term,, = ap, term-, = 1 — term,, and

termy, vy, = As| termy, (s) op, term,,(s) |,

termy, np, = As| termy, (s) op, termy,(s) |,

termuy, = As|[ Xy [ Pa(s,t) * termy(t) ] |,

termyyy, = As[1—3; [ Pa(s,t) * (1 — termy(t)) ] ],

termyg, z o) = lim Z| term, T As[0] ], termygg, z | = lim Z[ term, 1 As[1] ],

Given a model N = (S, J) where S = (S, Act, P), we define a model M = (S, I) for the
algebraic mu-calculus as follows. For each variable Z, we define I(Z) = J(Z); similarly,
I(ap) = J(ap) for all atomic propositions ap. For the binary function symbols P,,
we define I(P,)(s,t) = P(s,a,t). By structural induction on ¢ it can be shown that
[e]V = [term,J™. Here, we assume that ¢ is a formula of alternating depth < 1.

10.2.3 The logic PCTL

In Section 10.4 (page 295 ff) we describe how the MTBDD-based algorithm to evaluate
the expressions and terms of the algebraic mu-calculus (presented in Section 10.3, page
285 ff) can be applied to obtain symbolic verification methods for probabilistic systems.
Thus, the method described in Section 10.4 focusses on a fixed data structure (namely
MTBDDs) for representing probabilistic systems. Here, we explain how — from a purely
mathematical point of view — PCTL formulas (with the interpretations over fully prob-
abilistic and concurrent probabilistic systems) can be reformulated as boolean terms.
Hence, any method that automatically evaluates the expressions and terms of the alge-
braic mu-calculus, can be used as basis for a model checker for PCTL, independent of the
chosen data structure of an implementation.
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Recall the syntax and semantics of PCTL that is explained in Chapter 9 (page 212 ff).
In the concurrent case, we shrink our attention to stratified systems (see Definition 3.2.3,
page 39) and consider the standard interpretation = a la [BidAl95] and the satisfaction
relation j=f- that involves fairness with respect to the non-deterministic choices.

We now explain how any PCTL formula ® can be translated into an “equivalent” boolean
term btermsg. For this, we use the following function symbols. For each atomic proposition
a € AP, we use an l-ary boolean function symbol Sat, that represents the (characteristic
function of the) set Sat(a) of states where a holds. Moreover, we use a binary term
variable P that stands for the transition probability matrix of a fully probabilistic system
or a stratified system. In addition, in the concurrent (stratified) case, we assume an 1-ary
boolean function symbol S, that stands for the (characteristic function of the) set of
probabilistic states.

The boolean terms btermg are defined by structural induction. We define bterm; =
As[l], bterm, = Sat, and, for formulas whose outermost operator is = or A,

bterm . = As | ~btermg(s) |, btermg,ne, = As | btermg,(s) A bterms,(s) |.

The definition of the boolean terms for formulas built from the probabilistic operator
Prob,., depends on whether we assume an interpretation over fully probabilistic or strat-
ified systems. In what follows, we briefly write Ifp Z|...| rather than lim Z [... T As[0]]
and use expressions of the form if bexpr then expr; else expr, instead of bexpr % expr,
+ (1 — bexpr) * expr,.

Fully probabilistic case: For formulas whose outermost operator is the probabilistic
operator Prob.., we define btermprop,.,(,) = As| termy(s) > p | where the algebraic terms
term,, for the path formulas are defined as follows.

termye = As[ Y, [ P(s,t)* btermg(t) | |
termg <rg, = iterate Z [ Aslexpr] 1% As[0] }
terme,ys, = lfp Z | As|expr] |

with

expr = if btermsg,(s) then 1 else btermsg, (s) * (Z [ P(s,t) x Z(t) ]) .
t

Let S = (S,P, AP, L) be a proposition-labelled fully probabilistic system. We define
M = (S,I) where I(P) = P and I(Sat,)(s) = 1if a € L(s), I(Sat,)(s) = 0 otherwise.
Then, [btermg]™ is the characteristic function of Sat(®) = {s € S : s = ®} while
[term,|* agrees with the function S — [0, 1], s — ps(®;UP2) where

ps(P1UP2) = Prob{m € Paths(s): 7= &.UDP,}.

This can be seen as follows. Theorem 3.1.6 (page 36) yields that the function S — [0, 1],
s — ps(P1UP,), is the least fixed point of the operator F : (S — [0,1]) — (S —
[0,1]) which is given by: F(f)(s) = 1if s | ®y, F(f)(s) = 0if s = & V ®; and
F(f)(s) = Yiesus, P(s,t) - f(t) if s E &3 A =®,. Using structural induction and
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Theorem 10.1.27 (page 274) we obtain that, for all states s, s = @ iff [bterms](s) = 1
and ps(p) = [term,]*(s).?* Thus,

termg,yg, = Ilfp Z| Aslexpr] ] and [ termg,ys, [V (s) = Up(F)(s) = ps(P1UD,).
Concurrent case: Depending on the comparison operator i and depending on the
satisfaction relation we need the minimal or maximal probabilities under all (or under all
fair) adversaries. For both satisfaction relations |= and =4, the boolean terms for the
formulas involving the probability operator Probg, are defined as follows.

btermprop () = )\s[termgm’*’(s) C p}

where C € {<, <}. For the path formulas ¢, term7*" is defined as follows.

maxr maxr

termRey = As| expr}% | where expri%

is

if Sp0p(s) then Z (s,t)  btermg(t) | else max [ P(s,t) « btermg(t) |

termy ., = iterate Z [ )\s[exprg‘l“lﬁ%] ™ As[0] ],
termg'e, = lip Z [ )\s[exprg‘ff,q,z] ]

1 maxr 1
The expression exprgdjs, is defined as follows.

exprg e, = if btermg,(s)then 1 else btermsg, (s) * expr’

where

expr' = if S,.,(s) then ; [ P(s,t) x Z(t) ] else max [ P(s,t) x Z(t) ].

Now we consider formulas of the form Prob-,(y) where J € {>,>}. If the outermost
operator of ¢ is the next step operator or the bounded until operator then the definition
of the corresponding boolean term is the same for the interpretations = and f=;,. For
p € {X®,0,U P,}, we define btermprob () = As [ term"(s) 3 p] where the

definition of the algebraic terms term™" is similar to the definition of term™4<.

P P

termPP = As[ exprP® | where expr?® is

if S,rob(s) then Z (s,t) * btermg(t) | else min [ P(s,t) x btermg(t) |

termy’ <.y, = iterate Z { \s { expri’e, ] ™ \s[0] }
with exprg’,e, = if bterms,(s)then 1 else bterms,(s) * expr” where expr”
if Sprp(s) then Z Z(t) ] else min [ P(s,t) * Z(t) ].

22Note that — with P € WFct?(2) — the terms term, are terms of the algebraic [0, 1]-mu-calculus
that are formally divergence free; the term variable Z is formally monotone and formally continuous in
As[expr].
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Next we consider the until operator, i.e. formulas of the form Prob,(®;U/®,). We define

btermpyob, (#,us,) = /\s[termgfzq,z(s) 3J p]

where the definition of termJ"},s depends on whether we deal with = or j=f,,. Dealing
with the standard interpretation |=, we define

termye, = lp Z [ As [ expry’e, ] ]
where exprj’? ;. is as in the case of the bounded until operator. Dealing with the satis-
faction relation |=f,; we use the result of Theorem 9.3.23 (page 227) stating that

§ Efair Probo,(®,U®,y) iff 1—pl(a’U—-a™) Jp

where a* and o’ are fresh atomic propositions representing the sets S*(®;,®,) and
ST(®y, ®y) = Sat(Py) \ ST(Py,P2). Recall that ST(P,, ®,) is the set of all states s € S
that can reach a ®,-state via a path through ®;-states (Notation 9.3.11, page 223). Thus,
St(®y,®2) = Ifp(F) where the monotonic operator F : 25 — 29 is given by

F(Z) = Sat(®;) U {s€ Sat(®;) : e S[(P(s,t)>0) ANteZ]}.
The definition of the term termgfzq,z with respect to the satisfaction relation f=;, is as
follows. We put

termyye, = As [ 1— term7 . (s)].

The algebraic term term; . is defined as described above with the only difference that

we deal with the boolean terms bterm’ = s [btermq>1(s) A ﬂbterm+(s)] and bterm™

+

rather than the function symbols Sat,: and Sat,+. Here, bterm™ is given by

Ifp Z [ As [ bterme,(s) V ( bterms,(s) A 3t [ (P(s,t) >0) N Z(t)])]].

As in the fully probabilistic case (and using Theorem 10.1.27 (page 274), Theorem 3.2.11
(page 43) and the results of Section 9.3) we obtain the following. Let S = (S,P, AP, L)
be a finite proposition-labelled stratified system. Let M = (S,I) where I(Sat,) and
I(S,05) are the boolean-valued functions S — {0,1} with I(Sat,)(s) = 1 iff a € L(s)
and I(Spp)(s) = 1 iff s is a probabilistic state. The interpretation I(P) for the binary
function symbol P is given the transition probability function P (defined as in Notation
3.2.4, page 40); more precisely, we deal with

P(s,t) : if s € Sy
I(P)(s,t) = ¢ 1 : if s ¢ Spop and s — £
L : otherwise.

Then, for all states s € S, s E4 @ iff [bterms]*(s) = 1 and

[term™" M (s) = }12?4 Prob {ﬂ' € Path}il(s) = go},

[term™ M (s) = iga Prob {ﬂ' € Path}tl(s) = go}
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where A stands for Adv or Adv,, (depending on whether we deal with |= or Ff,r).2* In
a similar way, we can deal with the satisfaction relations =, (where strict fairness is
supposed) or |=17, (where fairness in the WW-states is supposed). For the definition of the
boolean terms btermpyop,.,(#,us,) for formulas involving the unbounded until operator, one
has to describe the set 7™ (®;, ®,) (see Notation 9.3.14, page 224) resp. the set S}, (see
Notation 9.3.31, page 229) by a boolean term. In both cases, the corresponding boolean
term is of the form Ifp Z|bterm]. For instance, for the set 7% (®,, ®,), the definition of
bterm is given by

As [ —bterm™(s) V btermag,(s) V ( Spop(s) A Vt [ (P(s,t)>0)— Z(t)])

V (2Spron(s) A 3t [(P(s,8) >0) A (termge,(s) = termg e, () 1) 1.

10.2.4 Word level CTL

Word Level CTL [CCH'96, CKZ96, Zhao96] is an extension of CTL to reason about
properties involving the relationships among data words. Such properties are needed for
the verification of arithmetic circuits. Word Level CTL distinguishes between several
types of formulas: atomic formulas ®4F that are built from atomic propositions and
equations or inequalities for expressions, static formulas ®°F that are built from atomic
formulas and the boolean connectives A and — and temporal formulas ®*% that are given
by static formulas, the boolean connectives and the CTL path quantifiers combined with
the temporal operators X and U.

P = a ‘ V(ey > eg) ‘ J(ey > e2)
O n= 4 | @i naff | e
T = @ | ST AT | 0™ | vX&™ | I@{Tuel") | Joe’"

where a € AP and 1 € {=,<,<,>, >}. The words are tuples of propositional formulas,
i.e. they are of the form word = (®I¥ ... ®”F) where the propositional formulas ®**
are built from the atomic propositions a € AP and the boolen connectives A and —. The
expressions are given by:

e u= const ‘ word ‘ next(word) ‘ €L op ey ‘ if ®°F then e; else e

Formulas, expressions and words are interpreted over finite proposition-labelled transition
systems (S, R, AP, L) where S is a set of states, R C S x S the transition relation and
L : S — 24P the labelling function for the states by atomic propositions. Propositional,
atomic, static and temporal formulas are interpreted by sets of the states:

[a] ={se€S:ac L(s)}, [P1AD] =[P:] N[P2], [-P] =5\][2P],
[V(eses) ] = {s€ S : V&€ S[R(s,s") — [er](s,s)>a]e2(s,s") ]},
[Jlerxies)] = {seS : I €S[R(s,8) — [e](s,s)x]e2](s,s) ]},

Z3Here, for the extension of multiplication *, the minimum/maximum operators and the comparison
operators op,, on the extended reals, we assume that, if g € Rand 0 #Q C IR then g L = Lxqg= 1,
qoppeL = Lop,yg =1, min@ = min(Q \ {7}), max @ = max(Q \ {r}) and min{1} = max{Ll} = L.
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[VX®rp] = {s€S : Vs €S [R(s,s) = s €[Prr]]}
[3(@FYURITY] = {s€S : FTk>03sp,...,s, €8 [(s0=35),
A (sk € [@1F]) A Mosic (Rlsivsin) A(si € [@7F])) ] },
[30®TF ] = {s€S : Jsp,81,82... €5 [ (s =5)
A Aszo(R(sisi0) A (s € [277]) ]
The interpretation [word] : S — IN of a word is given by:

[(@F, ..., 1(s) = D [®77](s) - 2°
=0
where the set [®F] is identified with their characteristic function S — {0,1}. The
interpretation [e] : S x S — IN of an expression e is given by:

[const](s,s') = const, [e1 op ex](s,s') = [ei](s,s") op [e2](s,s'),
[word](s,s') = [word](s), [next(word)]|(s,s") = [word](s")

and

R n | ledd(s,s") if s € [®57]
[if ®°" then e; else ey](s,s') = { [ea](s,s') : otherwise.

We associate with each formula ® of the word level CTL an 1-ary boolean term bterme
while the words and the expressions are associated with algebraic terms term? and term?Z.
The terms for the expressions are binary while the terms for the words have the arity 1.
We use a binary function symbol R (that represents the transition relation R), 1-ary term
variables Sat, for all atomic propositions a (that represent the sets [a]) and individual

variables s and s’. The 1-ary algebraic terms for the words are given by:

termgfp oPFy = )\s[ > bterméfp(s)*T]

.....
1<i<n

The binary terms for the expressions are given by termZ . = \s, s'[const| and

termf , ., = As,s' [ term? (s, s') op term[ (s s") }
term?

if ®5F then e; else e
= As, s [ if btermgsr(s) then term? (s, s') else terml (s, s') }
The boolean terms for formulas built from the boolean connectives are clear:
bterm, = Sat,, bterm_e = As[-bterme(s)], bterme, e, = As[bterme, (s) A bterms, (s)]
For the atomic formulas we define:
btermy(e,se,) = AS [ Vs' { R(s,s") — ( term? (s, s') > termZ (s, s') ) } } :
btermse,pe;) = As [ 3s' [ R(s,s") — ( term? (s, s') p< term? (s, s) ) ] ] :

For the temporal operators we use the following boolean terms:
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btermyxgerr = As[Vs' [ R(s,s') — btermgrr(s') ]|
btel‘mg(q,%"ﬁ'uq,g‘ﬁ')

= lfpZ [ As [ btermgzr(s) V ( btermgzr(s) A 3s'[R(s,s') A Z(s")] ) } ]

btermspgrr = Ifp Z [ As| btermgrr(s) A ( 3s'[R(s,s') A Z(s")] ) ]]

The connection between the word level CT'L formulas and the associated algebraic terms
is as follows. Let M = (S,I) where I(R) = R and

1 if a € L(s)
[(Sata)(s) = {0 otherwise.
Using structural induction and Theorem 10.2.1 (page 276) we obtain: [term! JM =

[word], [termZ]M = [e] and

™ B 1 : ifse[?]
[bterms]™ (s) = {0 otherwise

for all formulas ®, words word and expressions e.

10.3 A “compiler” for the algebraic mu-calculus

The algebraic mu-calculus can be viewed as a language for manipulating real-valued func-
tions. Any closed algebraic term term yields an operator t(fi,..., fr) that takes the
interpretations f; = I(fct;) for the function symbols as its input and describes how to
combine these functions fi,..., fr via arithmetic operators and iteration. The semantics
[term]M (where M = (D, I)) stands for the composed function. For instance, in the
example for solving linear equation systems of the type z = q + A - z with the “naive”
method (Example 10.1.9, page 266), the term

term = lim Z {)\i[q(i) + Z[A(i,j)*Z(j)]} T ZO}

J

can be viewed as the operator that takes as its arguments the functions I(A) for the
matrix A, I(q) for the vector q and I(z) for the starting vector zy and “returns” the
function that represents the unique solution z.

In this section, we turn to the question how the terms (and expressions) can be evaluated
automatically and present an algorithm that takes as its input an algebraic term (or
expression) and a model M = (D, I) and returns the semantics [...]J* of that term (or
expression) with respect to M. In some sense, this algorithm can be viewed as a compiler
for the algebraic mu-calculus. Such an algorithm requires an adequate data structure for
the functions D® — IR. Of course, “adequacy” of the chosen data structure depends
on the concrete application. In that thesis where we concentrate on the verification of
probabilistic systems we shrink our attention to the use of MTBDDs as chosen data
structure since MTBDDs are known to be efficient for representing probabilistic systems
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[HMP*94, HarG98].2¢ Clearly, in other applications, the use of MTBDDs might be not
efficient. For instance, in Section 10.2.4 (page 283 ff), we saw that the algebraic mu-
calculus can also serve as specification language for arithmetic circuits. In that case, it
is known that the use of MTBDDs is not efficient (the resulting MTBDDs might have
exponential size) and the use of other decision diagrams like HDDs is preferable. See
[CCH"96, CKZ96, Zhao96].

In a first step, we introduce the mized calculus which is a variant of the algebraic mu-
calculus that is based on a fixed interpretation for the function symbols. For this, we
assume the domain D = {0, 1} of the underlying model M = (D, I) and a representation
of the functions I(fct) : {0,1}" — IR for the n-ary function symbols by MTBDDs. The
expressions and terms of the mixed calculus are interpreted by partial functions from
the individual variables into the reals. These functions are represented by MTBDDs
whose nonterminal vertices are labelled by individual variables.?> For the mixed calculus,
we describe an algorithm that takes a term or expression of the mixed calculus as its
input and generates the corresponding MTBDD. Given a model M = (D, I) for the
algebraic mu-calculus, we use an encoding of the domain D in {0, 1}* and transform the
algebraic expressions and terms into “equivalent” expressions and terms of the mixed
calculus. The MTBDD for that expression or term of the mixed calculus can be viewed as
a representation for the semantics [...]J™ with respect to M.2® Thus, the transformation
algorithm from the algebraic to the mixed calculus and the algorithm for computing
the MTBDDs for the expressions and terms of the mixed calculus can be composed to
a method that automatically computes the semantics of the algebraic expressions and
terms. On the other hand, the mixed calculus in its own can be viewed as a language
for manipulating MTBDDs where our algorithm acts as a compiler that automatically
generates the MTBDD described by an expression or term of the mixed calculus.

10.3.1 The mixed calculus

We present the syntax and semantics of the mized calculus. In essential, the syntax of
the mixed calculus arises from the syntax of the algebraic mu-calculus where the function
symbols are replaced by MTBDDs. The expressions of the mixed calculus are interpreted
by partial functions from the individual variables into the reals; the semantics of the n-ary
terms are partial functions that take as their arguments the individual variables and an
n-bit vector.

Syntax of the mixed calculus: We fix sets IndVar of individual variables, TermVar of
term variables where each term variable Z is associated with an arity (a natural number
> 1) and a set {1,%s,...} of dummy variables. As before, Op denotes a set of total
binary operators on the extended reals. The syntax of mixed expressions and n-ary terms
is given by the production system shown in Figure 10.7 on page 287. Here, ¢ € IR and

24The reader not familiar with MTBDDs should recall the definition of MTBDDs which is presented
in Section 12.3 (page 315 ff).

25To be precisely, the n-ary terms also take a n-bit vector as input. Thus, the MTBDDs for them also
contain nonterminal vertices labelled by other variables.

26For this, we surpress the interpretation I(z) for the individual variables of the algebraic mu-calculus
and consider [expr]™ as a function (IndVar — D) — IR and [term] as a function (IndVar — D) x
{0,1}" —» IR.
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expr = ¢ ‘ z ‘ eXpr; op expr, ‘ term(zy,...,z,) ‘
> [expr] ‘ min [expr] ‘ max [expr]
term = Q ‘ Z | Azy,...,z, [expr] ‘ lim Z [ term 1 termy |

iterate Z [ term 1" termy |

Figure 10.7: Syntax of the mixed calculus

op € Op. Q is a MTBDD over (¢4,...,%,). z, z1,...,2, € IndVar such that z;,...,z, are
pairwise distinct. Z € TermVar is an n-ary term variable. Free and bounded occurrences
of individual or term variables in mixed expressions or terms are defined in the obvious
way. For the expressions term(zy,...,z,), we require that there are no free occurrences
of the individual variables z; in term. A mixed expression or term is called closed iff it
does not contain free occurrences of individual or term variables. For Z = (zi,...,z,),
we briefly write 3> or 37, . rather than 3>, ...3Z, . Similarly, min;, maxz; or Az have
the obvious meanings. The mixed boolean calculus is defined in analogy to the boolean
mu-calculus (see page 261).

Semantics of the mixed calculus: Intuitively, the mixed expressions and terms are
interpreted by functions with values in the extended reals and whose arguments are the
individual variables. Moreover, the functions for the n-ary mixed terms depend on an
n-bit vector (that represents the values of the dummy variables ¢4, ...,4,). Formally,
the semantics of the mixed calculus is defined with respect to an interpretation 7 for the
n-ary term variables by functions {0,1}" — IR. The semantics

[expr] : (IndVar — {0,1}) — IR, [term]” : (IndVar — {0,1}) x {0,1}" - R

of the mixed expressions and terms with respect to J is defined by structural induction as
shown in Figure 10.8 (page 288). Here, ¢ is a function IndVar — {0,1} and (b, ...,b,) €
{0,1}". t[z1 :==c¢q,...,2g := cx] denotes those function IndVar — {0, 1} that agrees with ¢
on all individual variables z € IndVar\{zy, ..., z;} and returns the value ¢; for the variable
z;.2" The interpretation [J[Z := f] is defined in the obvious way.

10.3.2 Inference from the algebraic to the mixed calculus

Given an expression or term of the algebraic mu-calculus and a model M = (D, I) for
the algebraic mu-calculus, we define an “equivalent” mixed expression or term. This
inference from the algebraic mu-calculus to the mixed calculus is based on an encoding
of the elements of D by k-bit vectors. The individual variables z of the algebraic mu-
calculus are replaced by k-tuples (z7, .. .,z;) of individual variables of the mixed calculus.

2THere, we assume that z;,...,z; € IndVar are pairwise distinct and that cg,...,c; € {0,1}.
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[a]7 (1) = [2)7 (1) = 1(2)

[ expry op expry 17(t) = [expri]7 (1) op [expra]” (1)

[term(zy,. .., 2) [7(t) = [term]7 (4, (t(z1), .-, 0(z0)) )

[ alexpr] 17(0) = [expr]? (ez:=0]) + [expr]7( e[z:=1])

[ min[expr] ]7(:) = min { [expr]7( tfz:=0]), [expr]?([z:=1]) }
[ max,[expr] [7 () = max { [expr]7(ez:=0] ), [expr]7(e[z:=1]) }
[Q) (&, By ba) ) = folbr,. .., bn) [z7 = J(2)

[ Az1, ... znlexpr] ]9 (6, (by, ..., bn)) = [expr]? (t[zy := by, ... 2n :=by] )
[ lim Z [ term 1 termg | |7 = lim(fo, f1, fa, )

[ iterate Z [ term t* termy | |7 = fi

where fo = [termo]”, fis1 = [term] /21,

Figure 10.8: Semantics of the mixed calculus

While the individual variable z of the algebraic mu-calculus is interpreted by an element
I(z) of the domain D, the individual variable z; of the mixed calculus stands for the i-th
component of the bit vector that encodes I(z). Moreover, we represent the interpretations
I(fct) : D™ — IR for the n-ary function symbols by functions {0, 1}"* — IR and replace fct
by the corresponding MTBDD. Thus, n-ary algebraic terms are translated into (n - k)-ary
mixed terms.

We fix a model M = (D, I) for the algebraic mu-calculus and choose an encoding of D
in {0,1}* i.e. an injection code : D — {0,1}* (where k = [log|D|]). For each n-ary
function symbol fct, we assume a representation of the function I(fct) : D™ — IR by a
function I(/fzt) : {0,1}™* — IR. For instance, we may put

I{fct)(code(dy), . .., code(d,)) = I(fet)(dy,. .., dn)

for all di,...,d, € D. If b; € {0,1}*, i = 1,...,n, such that at least one k-bit tupe b;
is not of the form code(d) for some d € D then we put I(fct)(by,...,b,) = L.2 If fct is
an n-ary function symbol in the algebraic mu-calculus then we associate with fct those

MTBDD Qg over (91, ..., Unx) where the induced function fq,, is I(/fzt). Let IndVar be
the individual variables used in the algebraic mu-calculus. Then, in the mixed calculus

28Note that also other representations of I(fct) by a function {0,1}"* — IR are possible. E.g. if n = 2
then I(fct) might be defined by I(fct)(bl,cl7 .oy br,cr) = f(dy,ds) where (by,...,br) = code(d;) and
(c1y...,cp) = code(dz).
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we use the individual variables
IndVar = {z/ : z € IndVar,i=1,...,k}.

Each n-ary term variable Z of the algebraic mu-calculus is viewed as (n - k)-ary term
variable of the mixed calculus. I.e., in the mixed calculus, we deal with set TermVar =
TermVar of term variables where the arity of each term variable of the algebraic mu-
calculus is multiplied by the factor k. For each algebraic expression expr (or term term),
let mixed(expr) (resp. mixed(term)) be those mixed expression (or term) that results from
expr (or term) by replacing

e cach individual variable z € IndVar by the individual variables %, ..., z%,%

e cach function symbol fct by the MTBDD Q.

We get the “equivalence” of the algebraic expressions/terms and the resulting mixed
expressions/terms in the following sense. Let ¢ : IndVar — {0, 1} be given by

u(zF

) = i-th component of code(I(z)).

The interpretation J for the term variables of the mixed calculus is given by J(Z) =
I(Z). Here, as for the interpretation of the function variables, we assume a suitable

—

representation of the function I(Z) : D™ — IR by a function I(Z) : {0,1}™* — IR. Then,
[expr]™* = [ mixed(expr) ]7(¢)
for any algebraic expression expr. For any n-ary algebraic term term, we have
[term]M(dy, ..., d,) = [ mixed(term) |7 (¢, (code(d,), ..., code(d,)) ).

It is known that the efficiency of the MTBDD-based approach crucially depends on the
chosen variable ordering. Having obtained a MTBDD representation for f = I(fct) :
D" — TR (resp. the associated function f : {0,1}** — TR), well-known techniques
(e.g. Rudell’s sifting algorithm [Rude93|) can be applied to improve the representation.
Changing the variable ordering in the MTBDD corresponds to a permutation of the ar-
guments of the function f : {0,1}"* — IR. In the final MTBDD, the variables have to be
renamed resulting in a MTBDD over (¢4, ..., Yn%).

Example 10.3.1 In Example 10.1.9 (page 266) we presented an algebraic term that de-
scribes the “naive” iteration for solving linear equation systems of the formz = q+ A - z.
The reformulation of that algebraic term as a mixed term is obtained as follows. For
simplicity, we assume that A is a n x n-matrix where n = 2¥. We use an encoding for
the indices of the rows and columns of the matrix A by k-bit vectors and describe A
by a function {0,1}?** — IR. Let A be the MTBDD over (¥,,...,"9) for that func-
tion. Similarly, the vectors q, zg € IR" can be described by functions {0,1}* — IR and
represented by MTBDDs Q, Zg over (¥1,...,9%;). The size of the so obtained MTBDD
representations of A, q and zy depends on the way in which we represent A, q and z,
by functions from bit vectors into the reals. Often the standard encoding of integers

29The replacement of an individual variable z in a quantifier requires multiple use of that quantifier in
the mixed calculus, e.g. the summation quantifier , in the algebraic mu-calculus has to be replaced by

Zzi Ezz
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i € {1,...,n} by k-bit vectors (b, ..., b;) € {0,1}" ordered most significant to least sig-
nificant (i.e. i = 1+ S5 ; b - 2¥7!) and an interleaving of the encodings for the rows and
columns of quadratic matrices is used which leads to a representation of A by a function

F:{0, 1} = R, f(by,cr,..., 0, ck) = A(i, )

where (by,...,by) is the standard encoding of i (the index for the rows) and (¢, ..., c)
the standard encoding for j (the index for the columns).3® The vectors q and z, might be
represented by functions {0, 1}* — IR where (by, ..., b;) is mapped to the i-th component
of q resp. zg (if (b, ..., bg) is the standard encoding of ¢). Using these MTBDD represen-
tations of A, q and zo, the algebraic term term of Example 10.1.9 (page 266) corresponds
to the mixed term lim Z | term 1 Zo | where

term = )\il,...,ik[Q(il,...,ik) + > [A(il,jl,...,ik,jk)*Z(j1,---,jk)]}-

jla“'Jk

Note that other representations of A, q, zg by functions from bit vectors to the reals lead
to different MTBDD representations, in which case the individual variables i;, j, in the
above mixed term have to be permutated. For instance, if we represent A by the function
f:{0,1}** - R,

k k
Fbr, .. bgyer,y.oooer) = A(i,j) where i=1+> -2 j=1+> ¢-2F"

=1 =1

(where the first k£ arguments of f’ stand for the row while the last k arguments stand for
the column) then we have to deal with the mixed term lim Z | term’ 1 1z, | where term’
is the mixed term

/\il,...,ik [Q(Il,,lk) + Z [AI(Il,,Ik,Jl,,_]k)*Z(Jl,,_]k)]}

jla“'Jk

Here, Q and 7z are as before. A’ is the MTBDD over (¢4, ..., 02) for the function f’ of
above. m

10.3.3 Computing the semantics of the mixed calculus

We present an algorithm to compute the semantics [...]7 of the mixed expressions and
terms where we use MTBDDs as data structure for the functions associated with the
mixed expressions and terms.3! In essential, the algorithm works similar to the algorithm
of [BCM190] to compute the BDD representations for the formulas and terms of the rela-
tional mu-calculus. The individual variables and the dummy variables serve as variables
(i.e. as labellings for the nonterminal nodes) in the MTBDDs.

30This convention imposes a recursive structure on the matrix from which efficient recursive algorithms
for all standard matrix operations are derived [CFM*93].

31Clearly, the correctness of our method is up to the errors that arise from the approximations for the
limit operator. An implementation of our method might suffer from rounding errors. Thus, the resulting
MTBDD for a mixed expression or term can be viewed as an approzimation for the function [...]7.
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In what follows, we assume that IndVar is the set of individual variables used in the mixed
calculus. We fix a total ordering < on IndVar that we extend to a total ordering (also
called <) on IndVar U {81, 9, ...} where we define z < ¥; < ¥, < ... for all z € IndVar.
Then, [expr]” is represented by a MTBDD over (IndVar, <) while the functions [term]”
for the n-ary mixed terms are represented by MTBDDs over (IndVar U {9y, ...,3,}, <).

Since the variables in the MTBDDs are ordered, expressions of the form term(z,...,z,)
might cause problems, namely when it is not the case that z; < ... < z,. Given the
MTBDD for term, the replacement of the dummy variable ¥J; by the individual vari-
able z; yields a MTBDD that represents the function associated with the expression
term(zy, ..., z,) but the variable ordering in the resulting MTBDD is a new ordering <’
with z; <' ... <’ z,. On the other hand, the idea not to fix a variable ordering for the
MTBDDs leads to the problem that the operators for composing two MTBDDs via an
arithmetic operation (that we need to compute the MTBDDs for expressions of the form
expr; op expry) would be much more expensive; we would have to adjust the variable or-
derings of the two MTBDDs. Similar problems occur with terms built by A-abstraction.
For this reason, we fix a total ordering < on IndVar and shrink our attention to well-formed
terms and expressions.

Definition 10.3.2 [Well-formed mixed expressions and term] A mized expression
and term is called well-formed (with respect to the fized ordering <) iff,

e for each subexpression of the form term(zy, ..., z,),
e for each subterm of the form Azy, ..., z,[expr],
we have z; < ... < z,.

Any mixed expression or term can be rewritten as a well-formed mixed expression or
term. For this, we replace

e cach subexpression term(zi,...,z,) by ¢, .. [term(Cy, ..., ) * bexpr ]
e cach subterm Azj, ..., z,[expr] by A(1,...,( [ > 21z | €XPr * bexpr | ]

where
bexpr = A (G z).
1<i<n
Here, (3, ..., (, are auxiliary individual variables ordered by (; < ... < (,. For instance,

if zy < z; then term(z;, z;) is replaced by

> [term(C1, o) * bexpr ]
C1,¢2

where bexpr is (z; <+ (1) A (z2 <> (2). The semantics of the mixed expressions/terms and
the so obtained well-formed expressions/terms are the same.*?

Computing the MTBDDs for the well-formed mixed expressions and terms: In
what follows, we fix an interpretation 7 for the term variables. More precisely, we assume

32Note that the fresh individual variables (i, (s,... does not occur free in the resulting expres-
sions/terms. Hence, the semantics for the resulting well-formed expressions (or n-ary terms) can be
viewed as a function (IndVar x {0,1}) — IR (or (IndVar x {0,1}) x {0,1}" — IR) rather than a function
(IndVar U {¢1, (2, ...} = {0,1}) = R (or (IndVarU {¢1, (s, ...} — {0,1}) x {0,1}" — RR).
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MTBDDY [¢] denotes the MTBDD that consists of a terminal vertex labelled by g.

0 1

[0]

MTBDDY [ expr, op expr, | = APPLY (MTBDDJ [expr,], MTBDDY [expr,], op)

MTBDDY [z] denotes the BDD

MTBDDY [ term(zy,...,2z,) | = MTBDD [term]{0; + zy,..., 9, < z,}

MTBDDY [ 3, [expr] ] = AppPLy ( MTBDDY [expr]|,—o, MTBDDY [expr]|,—1, + )

MTBDD [ min, [expr] | = APPLY ( MTBDD [expr]|,—0, MTBDD [expr]|,—1, 0P ,uin )

MTBDDY [ max, [expr] | = APPLY ( MTBDD [expr]|,—0, MTBDD [expr]|,=1, 0P, .00 )

MtBpDY [Z] = J(Z)

MTBDDY [ Azy, ..., z,[expr] | = MTBDDY [expr]{z; « ¥1,...,2, + U}

MTBDDY [ lim Z[ term 1 termg | | denotes the MTBDD that is returned by
ITERATE, (i 4z, Z, term, termg).

MTBDDY [ iterate Z| term 1* term, | | denotes the MTBDD that is returned by

ITERATE(k, Z, term, termy).

Figure 10.9: Computing the MTBDDs for the mixed expressions and terms

that, for each n-ary term variable Z, the function J(Z) : {0,1}" — IR is represented by
a MTBDD (also called [J(Z)) over (¢4, ...,3,). Each well-formed mixed expression expr
is associated with a MTBDD MTBDDY [expr| over (IndVar, <), each n-ary well-formed
algebraic term term with a MTBDD MTBDDY [term] over (IndVar U {¥;,...,9,}, <).
We compute MTBDDY [...] for well-formed algebraic expressions and terms by struc-
tural induction as shown in Figure 10.9 on page 292. Here, we use the operators of
[Brya86, CFM*93|; see Section 12.3 (page 317). For the computation of the MTBDD
for expr; op expr, we have to combine the MTBDDs for expr; and expr, via the binary
operator op. For this, we use the well-known APPLY-operator that combines two MTB-
DDs via an arbitrary binary operator (see page 317). The MTBDD for term(zy,...,z,)
is obtained from the MTBDD for term by renaming the dummy variables 94, ..., 9, into
Z1,...,Z,. This renaming respects the variable ordering < as we have z; < ... < z,.
A-abstraction requires the converse operation where individual variables are replaced by
dummy variables. For the expressions built e.g. by the quantifier },[expr|, we have to sum
up the values for expr when z ranges over all possible values of the underlying domain. In
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i:=0; Qo := MTBDDY[termy];
Repeat
i=i+1; Q; := MtBpp7#F=Qi-1l[term];
B := MtBpDI[ A\Z] |Qi1(2) — Qi(@)| <€ ] ]
until i =i, or B = AZ[1];
Q = MtBDD/[ AZ [ (1-B@)*L + B@=*Qi2 ] ];
Return Q.

Figure 10.10: The procedure ITERATE (%4, Z, term, termy)

our case, we just have the values 0 and 1. Thus, we first compute the MTBDD for expr.
Then, by removing the z-labelled vertices in that MTBDD, we obtain the restrictions
to the cases where z = 0 and z = 1. This yields the MTBDDs MTBDD" [expr]|,—o and
MTBDD [expr]|,=; for the functions (IndVar — {0,1}) — R,

L+ [expr]? (t[z :=0]) and ¢~ [expr]?(c[z := 1]).

Finally, we combine these MTBDDs via the operator APPLY(...,+). Similar ideas
are used for the quantifiers min, and max,. The only difference is that in the last
step the MTBDDs MTBDD [expr]|,—o and MTBDDY [expr]|,—; have to be combined via
ApprLY(...,0p,,;,) and APPLY(..., 0p,,,.) respectively.

The limit operator: To approximate the semantics of lim Z [term T termg| we use
iteration on MTBDDs where we stop latest after a fixed number of iteration steps. Let
n be the arity of Z (hence, n is at the same time the arity of term and termg). Let
Z = (z1,...,2,) be an n-tuple of individual variables with z; < ... < z,. We fix some
some “sufficiently small” value € > 0 and some natural number 7,,,, (the maximal number
of iterations). The procedure ITERATE (%4, Z, term, termg) (shown in Figure 10.10 on
page 293) successively computes the MTBDDs Q, Q1, ... where

Qo = MTBDD [termy], Q; = MTBDDY “=%-1[term], i = 1,2, .. ..
Here, we suppose an extension of + and % to operators on the extended reals where
Llsxg=q*xL=_1Lforallge R\{0},0xL=1%0=0and L+qg=gq+ L= _1 for all
q € IR. The iteration terminates if the maximal difference between the function values

of fq, and fq, , is less than ¢, i.e. if |fq, ,(b) — fo,(b)] < € for all b € {0,1}". If this
condition is not satisfied after 7,,,, iterations then,

e for those bit vectors b where |fq, ,(b) — fo,(b)] > e convergence of the sequence
(fq,())i>0 is not “detected” and we assume that the limit operator on the extended
reals returns L,

e for those bit vectors b where |fq,_,(b) — fq.(b)] < e we assume convergence of the
sequence (fq,(b))i>0 and return fo, () as an approximation for lim fq, (b).

Note that the BDD B represents the (characteristic function of the) set

B = {be{0,1}" : |fo,(5) = fo,(D)| < €}
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Thus, the condition “B = Az[1]” is fulfilled iff B = {0,1}" iff | fq,_,(b) — fq,(b)| < € for
all b € {0,1}".

The bounded iteration operator: The procedure ITERATE(k, Z, term, termg) (shown in
Figure 10.11 on page 294) that we use to compute the semantics of the bounded iteration
operator is almost the same as ITERATE,(-); the only difference being that we do not care
about convergence and just halt after exactly k iteration steps.

i:=0; Qo := MTBDD’[termy];
Repeat
i=i+1; Q; := MtBpD’#=Qi-1l[term];
until ¢ = k;
Return Q.

Figure 10.11: The procedure ITERATE(k, Z, term, termy)

The mixed calculus as a language for MTBDDs: The algorithm of Figure 10.9
(page 292) yields the theoretical foundations for a tool that takes as its input certain
MTBDDs Qg,...,Q; and a closed mixed term term built from these MTBDDs and that
automatically generates the MTBDD representation of (the semantics of) that term. In
this sense, the mixed calculus can be viewed as a language for manipulating MTBDDs
where the closed mixed terms just describe which operations should be performed on
the MTBDDs that occur in that term. Thus, the closed mixed terms can be viewed as
procedures whose parameters are the MTBDDs occurring in that term and that outputs
the MTBDD associated with that term.

Applications: In Example 10.1.9 (page 266) we presented an algebraic term that de-
scribes the “naive” iteration for solving linear equation systems of the form z = q+ A - z.
The corresponding mixed term (see Example 10.3.1, page 289) stands for a procedure
that computes the MTBDD for (an approximation of) the solution z. Similarly, the cor-
responding mixed terms of the algebraic terms presented in Example 10.1.6 (page 264)
and Example 10.1.10 (page 266) yield MTBDD-based methods for computing shortest
paths or eigenvectors.3® In Section 10.2, we saw that the algebraic mu-calculus subsumes
a wide range of temporal and modal logics that can serve as specification languages for
parallel systems. Our MTBDD-based algorithm applied to the mixed terms obtained from
the algebraic terms term, for a formula ¢ (or boolean terms bterme for a state formula
®) yields a symbolic model checker for these logics. Of course, we cannot expect that
the obtained MTBDD-based methods are efficient in any of the above mentioned possible
applications. For example, the MTBDD approach is known to be efficient for verifying
probabilistic systems [HarG98] while it is not for arithmetic circuits [Zhao96]. Thus, we
might expect that the resulting symbolic model checking algorithm for PCTL is efficient
while the obtained MTBDD-based method for word level C'TL is not.

33For further discussions about the use of MTBDDs for computing shortest paths or MTBDD-based
methods for matrix operations, see [CFM193, BFGT93, HMP 94, FMY97].
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10.4 Symbolic model checking for probabilistic pro-
cesses

At the end of the previous section, we mentioned that the algebraic mu-calculus (with the
MTBDD-based method for computing the semantics) yields a symbolic model checker
for all logics that are contained in the algebraic mu-calculus; in particular, we obtain
a symbolic model checker for PCTL. In this section we have a more detailed look of
how to use the algebraic mu-calculus (or the mixed calculus) to obtain MTBDD-based
verification methods for probabilistic processes. Section 10.4.2 is concerned with PCTL
model checking. In Section 10.4.3 we briefly sketch how the MTBDD-based approach can
be applied for a symbolic method to decide strong or weak bisimulation equivalence for
fully probabilistic processes.

10.4.1 Representing probabilistic systems by MTBDDs

The basic idea behind the MTBDD-approach is the use a symbolic representation of
a probabilistic system by MTBDDs as in [HarG98] (see also [BCH'97]). In the fully
probabilistic case, the ideas of the non-probabilistic case [BCM 90, McMil92, CGL93]
where transition systems are described in terms of BDDs that represent boolean functions
(i.e. functions from bit vectors into {0, 1}) can be adapted. Using an encoding of the states
by bit vectors of length k, the transition probability function P : S x .S — [0,1] can be
viewed as a function {0,1}?* — [0,1] and described by a MTBDD. Of course, the size
of the MTBDD representation of the system depends on the encoding of the states and
the chosen ordering of the variables in the MTBDD. In most cases, an interleaving of the
components of the bit vectors for the starting state and the end state of the transitions
yields an efficient representation. This corresponds to the replacement of the transition
probability function P by the function P : {0,1}2* — [0, 1],

~

P(bl,Cl, .. .,bk, Ck) = P(S,t)

where (by,...,bg) is the encoding of state s and (ci,...,cx) the encoding of state t.
The resulting MTBDD representation can be improved using well-known techniques like
Rudell’s sifting algorithm [Rude93] or other heuristics, see e.g. [FMK91, MKR92, BMS95].

Example 10.4.1 [MTBDD representation of the communication protocol] We
consider a variant of the simple communication protocol of Example 1.2.1 (page 19).
The sender sends a message to the medium, which in turn tries to deliver the message
to the receiver. With probability 1(1]—0, the messages get lost, in which case the medium
tries again to deliver the message. With probability 1(1]—0, the message is corrupted (but
delivered); with probability %, the correct message is delivered. When the (correct
or faulty) message is delivered the receiver acknowledges the receipt of the message. For
simplicity, we assume that the acknowledgement cannot be corrupted or lost. We describe
the system in a simplified way where we omit all irrelevant states (e.g. the state where
the receiver acknowledges the receipt of the correct message). We use the following four

states:

Sinit: the state in which the sender passes the message to the medium,
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1
0.01
0.01
(Serror) a
10 01

Figure 10.12: The simple communication protocol

Sty the state in which the medium tries to deliver the message,
siost: the state reached when the message is lost,
Serror: the state reached when the message is corrupted

and the encoding code(s;ie) = 00, code(syy) = 11, code(siost) = 01, code(Serror) = 10.
Then, the associated function P : {0,1}* — [0, 1] is given by:

—

oif b101b202 S {0101, 0111, 1000}
= ¢ if bieybacy € {1011,1110}

0 )
(bl)clab2ac2) 7 908 . lf b1C1b2C2 — 1010

1
0 : otherwise.

—
(=}

(=}

The system and the encodings are shown in Figure 10.12 (page 296); the MTBDD repre-
sentation in Figure 10.13 (page 296). The thick lines stand for the “right” edges, the thin

Figure 10.13: The MTBDD representation of the simple communication protocol
lines for the “left” edges. m

Similarly, we can deal with action-labelled fully probabilistic systems. Let (S,P, Act)
be a finite action-labelled fully probabilistic system. We use an encoding of the actions
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in {0,1}" (where h = [log|Act[]) and states in {0,1}* and replace P by a function
P :{0,1}?*h — [0, 1] that we represent by a MTBDD.

Dealing with a concurrent probabilistic system S = (S, Steps), the situation is more
complicate since the outgoing transitions of a state s are given by Steps(s) which is a set
of distributions on the state space S. One possibility to get a MTBDD-representation
of § is to fix an enumeration v, s, ..., 1, of the outgoing transitions of s. Then, we

extend the i-th transition of s by its “identification number” ¢ and deal with a transition
probability function

S x Id# x S — [0,1], (s,,t) — v5(t)

where Id# stands for the set of identification numbers (e.g. Id# = {1,..., M4 } Where
Mmez = MaXses | Steps(s)|) and vf is the i-th distribution in Steps(s) according to the
fixed enumeration of Steps(s). (Here, we put vf(¢t) = 0 for all ¢t € S if i > |Steps(s)|.)
Then, using an encoding for the states and identification numbers by bit vectors, the above
function SxId# xS — [0, 1] can be viewed as a function from bit vectors into the reals and
represented by a MTBDD. As far as the author knows, whether or not such a MTBDD-
representation of a concurrent probabilistic system is efficient for verification purposes
is not yet investigated.?* However, it seems to be much simpler to require a concurrent
probabilistic system whose transitions can be described by a function P : S x S — [0, 1]
(or P: S x Act xS — [0,1] in the action-labelled case) in a more natural way. This is the
case for stratified systems (cf. Notation 3.2.4, page 40) or reactive systems (cf. Notation
3.3.11, page 52).3° In that case, we can use the same ideas as for non-probabilistic or fully
probabilistic systems and deal with an encoding of the states (and actions) by bit vectors
which turns the above transition probability function P into a function from bit vectors
into the reals and allows for a natural symbolic representation by a MTBDD.

10.4.2 Symbolic model checking for PCTL

In Section 10.2.3 (page 279 ff') we saw that any PCTL formula ® can be transformed into
an ‘“equivalent” boolean term bterms. For this transformation, we used l-ary function
symbols Sat, (that represent the sets Sat(a) = {s € S :a € L(s)}) and a binary function
symbol P (that represents the transition probability matrix P). To obtain a symbolic
model checking algorithm for PCTL, we translate btermg into the mixed calculus and
apply the algorithm to compute the BDD representation for mixed(bterms). For this, we
need the MTBDD representation P for the transition probability matrix P as described
above. Moreover, for each atomic proposition a, we need a BDD representation SAT,
for the (characteristic functions of) the set Sat(a) = {s € S : a € L(s)}. Dealing with
stratified systems, we also need a BDD S,,,, that represents the set S,,,, of probabilistic
states. Then, the mixed term mixed(bterms) is obtained from bterms by replacing the
function symbols Sat,, Sy, and P by the corresponding (MT)BDDs SAT,, Sy and P;
the individual variables s, ¢ (that we used in the algebraic terms to range over the states)

34The author doubts whether it is. The operators on these MTBDDs that we would have to perform
seem to be quite complicate because of the auxiliary (meaningless) components for the identification
numbers.

35Recall that in Section 3.2, page 40, we argued that stratified systems have the same expressiveness
as concurrent probabilistic systems.
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by k-tuples (si,...,s), (t1,...,tg) of individual variables (where e.g. s; stands for the i-th
component of the encoding of state s). For example, if the MTBDD representation P is
based on a description of P by the function P that interleaves the bits for the starting and
end state of the transitions then any subexpression P(s,t) of btermg has to be replaced by
P(si,t1,...,sk ty). We obtain a closed mixed term mixed(bterme) where the associated
BDD - that we get by applying the algorithm for computing the semantics of the mixed
calculus — represents the characteristic function of Sat(®) ={s € S:s = ®}.%

Example 10.4.2 We consider the system in Example 10.4.1 (page 295). We use two
atomic propositions ay, as and the labelling function

»C(sz'm't) = (ba E(Stry) = {alaa2}a »C(slost) = {a2}a E(Serror) = {al}-
We regard the PCTL formula ® = Prob. ¢ gss0s(¢) where ¢ = —error U del and

e error = ay A —ay (i.e. Sat(error) = {Serror}),
o del = —a; A —ay (i.e. Sat(del) = {Sinit})-

Intuitively, ® states that the message will eventually be delivered with some probability
> 0.989898 when interpreted over the state s;.,. We describe how our method works to
get the BDD for the PCTL formula ®. For this, we first construct the MTBDD for the

path formula ¢. The algebraic term term,, is (more precisely, can be reformulated to)

Ifp Z [)\s lmax { Satger(s), (1 — Satemor(s)) * <Z [P(s,t) * Z(t)]> } ] ]

t

Hence, we get the mixed term Ifp Z [ Asy, sy [expr| | where expr is

max { SAT4ei(s1,52), (1 — SAT¢ror(S1,52)) * ( Z [P(s1,t1,52,t2) * Z(t, t2)] ) }

t1,t2

Then, our algorithm applied to that mixed term uses the procedure ITERATE(-) (see
Figure 10.10, page 293) which successively computes the MTBDDs Qq, Q1, Q2, . . . for the
mixed terms termg = Asy, s3[0], termy, termo, ... where term;; is given by

AS1, S2 lmax {SATdel(sl,s2),C(sl,s2) * (Z [P(s1,t1,52,ta) * Qi(tl,t2)]) } ] .
t1,t2
The BDD SAT represents the sets Sat(del) = {s4e} (which corresponds to be boolean
function (by,bs) — —by A —by); C is a BDD for {s € S : s [~ error} = {Sinit, Stry, Siost }
(which corresponds to the boolean function (by, bs) — —by V by). SAT4 and C are shown
in Figure 10.14 (page 299). The MTBDDs Qq, Q1, . . . for the mixed terms termg, termy, . ..
represent the functions

0 1 1 1 1 1

0 0 0 0.98 0.98 0.9898

0|’ 0]’ 0 ’ 0 ’ 0 ’ 0 T
0 0 0.98 0.98 0.9898 0.989898

36This symbolic model checking procedure uses an iterative method (that approximates the least fixed
point of a certain operator) for the handling of unbounded until /. This is unlike the PCTL model
checking algorithms of Hansson & Jonsson [HaJo94] or Bianco & de Alfaro [BidAl95] that work with
linear equation systems or linear optimization problems respectively.
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1.92 ={I| ?92
0 0
Figure 10.14: The BDDs C and SAT4
0 1

NN

Figure 10.15: The MTBDD Q3 for the mixed term termg

where we use the vector notation (f(0,0), f(0,1), f(1,0), f(1,1)) (written as a column)
to denote a function f : {0,1}?> — IR. Note that

® fq...(1,0) =0as fg(1,0) =0 and fsar,,(1,0) =0,
® fq.,.(0,0) =1 as fsar,,(0,0) =1,
i fQi+1(0’ 1) = fQi(17 1) as fs(0,1) =1, fSATdel(O’ 1) =0 and

1 : ifciep=11
fp(0,01,1,02) = {0 othterzwise

b fQi+1(1’1) - 100 sz(O 0) 1(1)0 'fQi(Oal) + 1_30']((;21'(170)
as fg(1,1) =1, fsar,,(1,1) =0 and

% oif C1Cy = 00
fp(].,Cl,].,Cz) = 1(1]—0 o if C1Cy € {01,10}
0 o if cpeq = 11.

For instance, the MTBDD Q3 is shown in Figure 10.15 (page 299). Our algorithm returns
some MTBDD Q; as an approximation for the function s +— ps(go) which is given by

pslost((p) = pstf‘y ((70) = %’ pserr‘or( ) - 0 and pszntt - ]'
For the PCTL formula ® = Prob- ggses(y), our 0
algorithm computes the MTBDD Q for ¢ (as ex- \\1
plained above) and then evaluates the mixed term

As1, 55| Q(s) > 0.989898 | / N

which yields the BDD shown on the right. m
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10.4.3 Deciding bisimulation equivalence

In the non-probabilistic case, the set of bisimulation equivalence of a labelled transition
system can be characterized as the greatest fixed point of a monotonic set-valued operator
[Miln89]. If S is the state space then the set of bisimulation equivalence classes is the
greatest fixed point of F : 25%5 — 25%5 where F(Z) is the set of pairs (s, s') € Z such
that, for all a € Act:

(1) s—+t implies s'—~t' for some t' € S with (t,t') € Z
(2) s+t implies s——t for some t € S with (¢,t') € Z.

On the basis of Tarski’s fixed point theorem, this observation leads to an iterative method
for computing the bisimulation equivalence relation ~:

~ = gfp(F) = () F(Sx5).
i>0
Clearly, each of the relations F*(S x S) is an equivalence. For Z to be an equivalence on
S, the set F'(Z) consists of all pairs (s,s') € Z such that, for all a € Act and t € S:

s—t' for some t' € S with (¢,t') € Z iff '—+t' for some t' € S with (¢,t') € Z.

Burch et al [BCM190] (see also [EFT93]) take up this characterization of ~ and describe
~ by the following term of the relational mu-calculus

bterm = gfp Z [ As,s'[ Va Vt [bexpr] | |

where bexpr is 3t' [ Z(t,t') A R(s,a,t')] <« 3t [Z(t,t') N R(s',a,t") ].3" Thus,
the BDD-based method of [BCM™90] to evaluate the terms of the relational mu-calculus
yields a symbolic method for computing bisimulation equivalence classes.

We now explain how this idea can be adapted for the probabilistic case. Recall the
definition of bisimulation equivalence for probabilistic systems.?®* We consider a finite
action-labelled fully probabilistic or reactive system S = (S, Act,P) and use a ternary
function symbol P to represent P. As in the non-probabilistic case, bisimulation equiv-
alence can be described as the greatest fixed point of an operator on 2°*°. We consider
the operator F. : 25%5 — 25%5 where F(Z) is the set of all pairs (s,s') € Z such that,
foralla € Act and t € S:

> P(s,a,t) = > P(sa,t).

t'es thes

(t,t)ez (t,t)ez
First, we observe that — in contrast to the non-probabilistic case — this operator is not
monotonic. For instance, consider the system shown in Figure 10.16 (page 301). Let Z be
the smallest equivalence relation on S that contains (s, s’) and that identifies the states
vy, V2, v and Z' = Z U {(v',u')}. Then, we have Z C Z' while F.(Z) ¢ F.(Z'). For
instance, (s,s") € F.(Z) \ F.(Z'). To see why (s,s') ¢ F.(Z') consider the state ¢t = v’
and the set

T ={teS:(t,t')eZ'} = {t'eS:(Wt)eZ} = {v,v2,0v,u'}.

3THere, R is a ternary predicate (function) symbol that represents the underlying transition relation
— C S xAct x S.
38See Section 3.4.1, Definition 3.4.1 (page 54) and Definition 3.4.2 (page 54).
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Figure 10.16:

Then, P(s,a,T) = 3 < 1= P(s,a,T). Nevertheless, ~ = ;59 F.(S x §) is the
greatest fixed point of F.. and the iteration Zy = S x S, Z;y1 = F.(Z;),i=0,1,2,...,
“converges” to ~ (i.e. Z; = ~ for some i).* Thus, ~ is the set associated with the
boolean term*® gfp Z [ As, s’ [ Va V t [bexpr| | | where bexpr is

<Z [ Z(t,t') * P(s,a,t') | ) = (Z [ Z(t,t') * P(s',a,t) ] ) :

t t

In particular, the corresponding mixed term yields the BDD representation of ~. Similar
ideas can be used to compute the weak bisimulation equivalence classes of an action-
labelled fully probabilistic system (cf. Chapter 7). For this, we can use the fact

~ = gfp(Fx) = [ Fi(Sx5S)

i>0

where the operator Fy, : 2575 — 25%5 ig defined as follows. F.(Z) is the set of all pairs
(s,s') € Z such that, for all a € Act and t € S:

Prob(s, 7" ar*,[t]z) = Prob(s',7"ar",[t]z)

where [t]z; = {t' € S: (t,t') € Z}. Using similar ideas as in Example 10.1.11 (page 267),
we obtain algebraic terms termfmb that represent the function

S x Act x S —[0,1], (s,a,t) — Prob(s,7*ar*,[t|z).

Then, the semantics of the boolean term

Ifp Z [ As, s’ [Va vt [ term? (s, a,t) = term? .(s',a,t) ] ] ]

prob prob
is ~. Our algorithm applied to the corresponding mixed term successively generates
the BDDs B; for the relations F(S x S), i = 0,1,2,.... For the computation of B,
the algorithm calculates the MTBDD Q; for mixed(termgmb) where the term variable
Z is interpreted by (the characteristic function of) F*(S x S) which is represented by
the BDD B;. The MTBDDs Q; are computed by an iterative method (the procedure
ITERATE(-) of Figure 10.10, page 293). Thus, this method relies on repeated iterations

*>, %k

to approximate the real-valued functions (s,a,t) — Prob(s,7*ar*,[t];).*' Alternatively,

39This is because F.. restricted to an operator on equivalence relations on S is monotonic.

“ONote that this term gfp Z [...] is not formally divergence free since the term variable Z is not formally
continuous in As, s'[ Va Vt[bexpr] | as there are free occurrences of Z within a subexpression of the form
expr, op., expr,. However, because of the above observation, the meaning of gfp Z[...] = lim Z[... 1
As, t[1]] is the characteristic function of ~.

417¢]; denotes the equivalence class of ¢ with respect to F*(S x S)).
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we can use the algebraic mu-calculus to describe (a variant of) the algorithm proposed
in Section 7.2 (page 164 ff). The resulting MTBDD-based method just uses iterations on
boolean-valued functions to compute least fixed points of monotonic set-based operators
(rather than iterations on real-valued functions).*? For this, we use a variant of the results
presented in Chapter 7 where weak and branching bisimulation are shown to be the same
and where an alternative characterization of branching bisimulation is used as basis for
an algorithm to compute the branching (or weak) bisimulation equivalence classes. We
define a monotonic operator G on the equivalence relations on S as follows. Let Z be an
equivalence relation on S. Then,

G(Z) = ) {(s,s) : s and s’ are contained in the same block of Refine(S/Z,a,C)}
a,C

where (a, C') ranges over all pairs (a,C) € Act x S/Z and where the operator Refine(-)
is defined as in Notation 7.2.13 (page 168). The initial relation Z,,;; is those equivalence
relation on S that identifies all divergent states (states that cannot reach a state where a
visible action can be performed) and all non-divergent states, i.e.

Zinit = Div x Div U (S\ Div) x (S\ Div)
where Div is the set of divergent states (see Definition 7.2.14, page 168). Then,
Zinit 2 G(Zinit) 2 G(G(Zinit)) 2 ... and & = G*(Zjpyt) for some 1.

Thus, the BDD representation for ~ can be obtained by evaluating the mixed term
corresponding to the following boolean term.

limZ [ As,s' [ Gz(s,s') 1 Init]]

Init and Gz are boolean terms that represent the sets Z;,; and G(Z). For the definition of
Init and Gz we use the notations (i.e. expressions of the form term(ky, ..., k,)) explained
on page 267. Moreover, we use expressions like “a # 7”7 (where a is an individual variable
and 7 € Act the symbol for the internal action) to denote the boolean term —E,(a) where
E, is an l-ary function symbol that represents the singleton set {7}. For the definition
of Init we use the following fact. S\ Div is the least set Y C S that contains

Vis = {s€S:P(s,a) >0 for some o € Act \ {7} }

(the set of states where a visible action can be performed) and, whenever t € Y, a € Act
and P(s,a,t) > 0 then s € Y. We define Init by

Init = As,s' [ Vis*(s) + Vis*(s') ]
where Vis = As[ da 3t [(a #7) A (P(s,a,t) >0)]] and
Vis" = lfpY [ As [ Vis(s) V Ja 3t [Y(t) A (P(s,a,t) >0)]].

The definition of G relies on the following observation.** Let Z be an equivalence relation
on S. We define Py(s,a,t) = P(s,a,[t]z) and Sz = {s € S : P(s,7,[s]z) < 1}.** Let

42We might expect that the latter return the correct results (sets) and are much faster than the former
(which return approximations rather than the exact values).

“3The correctness of this observation can be easily derived from the results of Section 7.2 (page 164 ff).

44[t]z is the equivalence class of ¢ with respect to Z, i.e. [t]z = {t': (t,t') € Z}.
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Split , be the set of pairs (s,s’) € Z where s, s’ € Sz and, for all a € Act and t € S: if
a#T1or (s,t) ¢ Z then

Pz(s,a,t)  Pgy(s,a,t)
1—-Py(s,7,s) 1—-Py(s,1,5s)

Ay denotes the relation consisting of those pairs (s,t) € Z where either (s,t) € Split, or
there exists a finite path o = sy =+ s; — ... — s such that k > 1, s = s, 8; € S\ Sy,
i=0,...,k—1and (sg,t) € Split,. Alternatively, Az can be described as the least fixed
point of the operator H : 25%5 — 25x5

H(X) = Split, U{ (s,t) : s¢ Sz AN Jue S[(P(s,7,u) >0)A (u,t) € X]| }.

By is the set of pairs (s,t) € Az such that (s,t') € Az implies (¢,t') € Split,. It is easy
to see that (s,t) € By iff t € Sz and s, t belong to the same block of Refine(S/Z,a,C)
for any (a,C) € Act x S/Z. Thus, if Resy is the set of all states s € S where there is no
t € S with (s,t) € By, then

G(Z) = {(s,syeZ : s,s € Resy vV 3t [(s,t), (s',t) e Bz ]}.
From this, we derive the definition of the algebraic term Gz. We define
Gz = Xs,s' [Z(s,s") N( (Resz(s) A Resz(s')) vV 3t [ Bz(s,t)V Bz(s',t)]) ]
where we use the following auxiliary algebraic (or boolean) terms.

Pz = Xs,a,t [ X, [ Z(t,u) * P(s,a,u) ||,
P, = Xs,a,t [ Pz(s,a,t) % (1 — Pgz(s,7,5s)) ],
Sz = As[ Pz(s,7,s) <1],
Split, = As,s' [ Z(s,s") N Sz(s) N Sz(s') A
Va vt [((a# 1)V —=Z(st) = (Py(s,a,t) = Py(s',a,1)) ] ],
Ay = Ifp X [ As,t | Splity(s,t) vV (=Sz(s) A Fu[ (P(s,7,u) > 0) A X(u,t) ] ] ],
Bz = As,t [ Az(s,t) N V' [Az(s,t') — Split,(t,t')] |,
Resy; = As [ —3t[ Bz(s,t)]].
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Chapter 11

Concluding remarks

In summary, when the author started to work on probabilistic systems in the end of 1995,
a lot of excellent research had already been done in this field. In this thesis, she tried to
fill a few gaps but there are still a variety of interesting open questions. Among those
that are closely related to the topics of this thesis we mention just a few.

Only a few research has been done so far in the development of algorithmic methods for
establishing an implementation relation between two systems; in particular, the literature
(still) lacks for algorithms that can check a weak equivalence for concurrent probabilistic
systems (e.g. weak or branching bisimulation a la Segala & Lynch [SeLy94]). This is most
important for the mechanised design and the system analysis since the weak relations are
those that are needed to compare a “high-level” system (the specification) and a “low-
level” system (the implementation) and that play a crucial role to reduce the state space
by abstraction. Recent work by Philippou, Sokolsky & Lee [PSS98] and by Stoelinga,
Vaandrager and the author [BSV98] are first attempts in this direction. [PSS98| present
an algorithm for deciding weak bisimulation equivalence for stratified systems which uses
an alternative characterization of weak bisimulation equivalence by means of the mini-
mal/maximal probabilities of certain events under all adversaries. Stoelinga & Vaandrager
[StVa98] propose to adapt the concept of normed simulations [GriVa98| for the probabilis-
tic setting thus yielding a quite simple characterization of branching simulations. It seems
to be the case that this characterization can serve as the basis of an algorithm for checking
whether two concurrent probabilistic systems are branching (bi-)similar [BSV98].

An open problem that concerns the design of probabilistic systems is the question whether
satisfiability of PCTL (or the full logic PCTL") is decidable with respect to any of the
satisfaction relations. Possibly, a decision procedure for satisfiability might serve as a
basis for an automatic synthesis of probabilistic processes fulfilling a given specification
in the form of a satisfiable PCTL formula (as it is the case for non-probabilistic systems
[EmCI82, MaWo84, AtEm89, PnRo89)).

Even though algorithmic verification for establishing qualitative or quantitive properties
for concurrent systems are known, for realistic applications, the completeness for double
exponential time for LTL model checking in the concurrent probabilistic case (shown
by Courcoubetis & Yannakakis [CoYa95]) seems to be fatal. In [BKN98], we propose a
method for computing lower and upper bounds for the values p™%(p) and p™"(yp). This
method is based on a Greedy algorithm and runs in single exponential time and needs
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polynomial space. In the worst case, the obtained bounds might be far away from the
precise values; e.g. it is possible to obtain 0 as lower and 1 as upper bound. The quality
of this method has still to be worked out on the basis of experimental results. It would
be desirable to have efficient methods (PTASs) that approzimate the values p** () and
P ().

Most research that has been done so far in the field of methods that attack the state
explosion problem for probabilistic systems concerns the MTBDD approach [CEM193,
HMP*94, BCH"97, HarG98]. It would be interesting whether the partial order reduction
techniques [Pele93, Valm94, Gode94| can be modified for (concurrent) probabilistic sys-
tems. Recent work by Biere et al [BCC*98] shows that, for non-probabilistic systems,
symbolic LTL model checking is also possible without BDDs, using a reduction to the
satisfiability problem for propositional logic. It would be very interesting whether similar
ideas (e.g. using arithmetic equations rather than propositional formulas) are applicable
for probabilistic systems.

Another interesting point is the investigation of probabilistic systems with an infinite state
space. First attempts in this direction are the investigation of probabilistic lossy channel
systems (PLCSs); see [IyNa97] where an appoximative method for verifying quantitative
properties is proposed and [BaEn98| where it is shown that qualitative LTL model check-
ing for PLCSs can be reduced to a reachability problem in the underlying non-probabilistic
LCS (and is solvable with the methods of [AbJ093]).



Chapter 12

Appendix

In this chapter we recall some definitions and methods of the literature. Section 12.1
summarizes the necessary background that we need for the denotational semantics in
Chapter 5. Section 12.2 briefly explains our notations concerning ordered balanced trees,
Section 12.3 recalls the definition of MTBDDs. The notations introduced in one of the
Sections 12.1, 12.2 or 12.3 are not used without a references to the relevant parts of this
chapter.

12.1 Mathematical preliminaries for the denotational
models

In Chapter 5 we use the standard procedure to give denotational semantics in the metric
and partial order approach and the probabilistic powerdomain of evaluations. Here, we
need some basic notions of domain theory, the theory of metric spaces and categorical
methods for solving recursive domain equations. These are briefly summarized in Sections
12.1.1, 12.1.2 and 12.1.3. In Section 12.1.4, we briefly recall the notion of an “evaluation”
on a topological space as introduced by Jones & Plotkin [JoP189, Jone90].

12.1.1 Basic notions of domain theory

We briefly recall some basic notions of domain theory and explain our notations. Further
details can be found e.g. in [GHK"80, AbJu94, SLG94].

Preorders and partial orders: A preorder on a set D is a binary relation on D which
is reflexive and transitive. A poset is a pair (D, ) consisting of a set D and a partial
order C on D (i.e. C is an antisymmetric preorder on D). We often write D instead of
(D,C). If nothing else is said then the underlying partial order of a poset D is denoted
by Cp or shortly C. A pointed poset is a poset D which has a bottom element (denoted
by Lp or shortly L), i.e. L C x for all z € D. If D is a poset and = € D then we put
rl={yeD:yCz}andz 1= {ye€D:zLCy} Let X be asubset of a poset D. We
put X | = Uzex ¢ and X T = Ugex @ T. X is called leftclosed or downwardclosed ift
X is nonempty and X | = X. Similarly, X is called rightclosed or upwardclosed iff X is
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nonempty and X T = X. An element zq € D is called an upper bound of X iff x C z
for all x € X. xy is called the least upper bound of X iff xy is an upper bound of X such
that xy C y for each upper bound y of X. The least upper bound of X (if it exists) is
denoted by || X or lub(X). X is called directed iff every pair of elements in X has an
upper bound.

Dcpo’s: A pointed poset in which each directed subset X has a least upper bound is
called a directed-complete partial order (shortly dcpo).! A w-chain in a dcpo D is an
infinite monotone sequence in D, i.e. a sequence (z,)n>o in D such that zo C 2y C ...
For (z,)n>0 to be a w-chain, we write |l,~o , or briefly | |z, to denote the least upper
bound of {z, : n > 0}. -

d-continuity and strictness: Let D, D' be dcpo’s and f : D — D' a function. f is
called monotone iff x Cp y implies f(z) Cp f(y). f is called d-continuous iff, for each
directed subset X of D, f (UX) =1 f(X). (In particular, if f is d-continuous then f is
monotone.) f is called strict iff f(Lp) = Lp.

Tarski’s fixed point theorem:?> Whenever D is a dcpo and f : D — D a d-continuous
function then f has a least fixed point Ifp(f). Moreover, Ifp(f) =11 f™(L).

Scott-Topology: A subset A of a dcpo D is called lub-closed iff for every directed subset
X of A we have | JX € A. We always suppose a dcpo D to be equipped with the Scott-
topology whose closed sets are the downward-closed and lub-closed subsets of D. For A
to be a nonempty subset of D, A° denotes the Scott-closure of A, i.e. the smallest Scott-
closed subset containing A. We define ¢ = { L}. Then, for A to be finite and nonempty,
A=A |.

Hoare powerdomain: If D is a dcpo then Pow gy (D) is the depo of nonempty and
Scott-closed subsets of D ordered by inclusion.

Continuous domains: Let z, y be elements of a dcpo D. We say y approrimates x
iff for all directed subsets X of D,  C || X implies y C z for some z € X. Approz(zx)
denotes the set of elements y € D such that y approximates x. A basis of a dcpo D is a
subset B of D such that for each x € D the set BN Approz(x) contains a directed subset
with least upper bound z. A continuous domain is a dcpo which has a basis.

Function spaces: If X is a set and D a dcpo then the function space X — D (of all
functions f : X — D) is supposed to be equipped with the partial order f; T fo iff
fi(z) Cp fo(z) for all z € D. Note that X — D is again a dcpo whose bottom element is
the function X — D, x — 1 p and where, for each directed set = of functions f : X — D,
the least upper bound ||Z is given by: (UZ)(z) = U{f(z): f € E}. In particular, if
(fn) is a w-chain in X — D then (L f,) (z) = U fu(z).

The function space X — [a,b]: Clearly, any compact interval [a,b] of real numbers
(where a < b) equipped with the natural order < is a dcpo. We use the symbols “sup” or
“Inf” to denote least upper bounds (suprema) or greatest lower bounds (infima) in [a, b]
which exist for all nonempty subsets of [a, b] or sequences in [a, b]. We consider the function

!Note that, in contrast to the notions used in [AbJu94] and several other authors, we require a dcpo
to have a bottom element.

2Several authors use different names for this theorem. For the history of this theorem and the question
by whom it should be named (Tarski, Kleene or Knaster) see [LNS82].
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space X — [a, b] (where X is an arbitrary nonempty set) equipped with the induced order,
also denoted by <, as explained before, i.e. f < f'iff f(z) < f'(z) for all © € [a,b]. If
E = {fi : i € I} is a nonempty family of functions f : X — [a,b] then sup;z f (or
sup;c; fi or briefly sup f;) denotes the function X — [a,b], © — sup;.z f(x). Similarly,
infez f (or infye; f; or briefly inf f;) denotes the function X — [a,b], v — infscz f(2).
We say that a function F' : (X — [a,b]) — (X — [a,b]) preserves suprema iff, for all
nonempty sets Z of functions f : X — |a, b],

() - e

feE feE

Similarly, F' preserves infima iff, for all nonempty sets = of functions f : X — |[a,b],

Proposition 12.1.1 Let F': (X — [a,b]) — (X — [a,b]) be a monotone operator. Then,
F has a greatest fived point gfp(F) and a least fized point ifp(F'). gfp(F) and lfp(F) are
given by
gfp(F) = sup f, IUfp(F)= inf f
feEg Fess
where 2 = {f : X — [a,b] : f < F()},EE ={f: X = [a,b] : f > F(f)}. IfF
preserves infima then -
gfp(F) = inf F"(fy)

where fy(x) = b for all x € X. Similarly, if F preserves suprema then Ifp(F) =
sup,>o F"(fa) where fo(x) = a for allx € X.

Proof: easy verification. m

Remark 12.1.2 For higher-order operators with more than one (function) arguments,
e.g. operators whose arguments are pairs (f,g) where f : X — [a,b] and g : Y — [c,d]
are functions, monotonicity is not a sufficient condition for the existence of least/greatest
fixed points.® Nevertheless, if the operator preserves infima (resp. suprema) then greatest
(resp. least) fixed points exists and an analogue to the second part of Proposition 12.1.1
holds. Formally, let £ > 2, Xi,..., X} nonempty sets and ay,...,ax, by,...,b; real
numbers such that a; < b;. Let D the set of k-tuples (fi,..., fr) where f; : X; — [a;, b)]
is a function. The partial order < on D is given by

<f1)"'7fk> < <gla"'7gk> iff fzggzal:]ﬂak

Let F': D — D be an operator that preserves suprema, i.e. whenever =; are nonempty
families of functions X; — [a;, b;] and f;" = sup;.z, f then

sup {F(fl))fk)fzealalzl))k} = F(fiaaflj_)

Then, Ifp(F') exists and equals sup,>o F"(f1,.-., fx) where f; denotes the function f; :
X; = [as, b)), fi(z) = a; for all ¢ € X;. Similarly, if F' preserves infima then gfp(F) exists
and can be obtained by iteration. m

3This is because suprema or infima of arbitrary sets of tuples of function might not exist.
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12.1.2 Metric spaces

Basic notions concerning metric spaces can be found in any standard book about topology,
see e.g. [Dugu66, Suth77, Enge89]. We briefly recall the definitions that we are used in
that thesis and explain our notations.

Metric and ultrametric spaces: A metric on a set M is a function d : M x M — [0, 1]
such that, for all z, y, z € M,

d(z,y) = d(y,z), d(z,y) = 0 iff z = y, d(z, 2) < d(z,y) + d(y, 2).

A metric d is called an ultrametric iff, for all z, y, 2 € M, d(z, 2) < max{d(z,y),d(y, 2)}.
An (ultra-)metric space is a pair (M, d) consisting of a set M and an (ultra-)metric d on
M. We often write M rather than (M, d) and refer to d as the distance on M. We always
suppose that the underlying distance on a metric space M — which we always denote by
dys or shortly d — satisfies d < 1. In what follows, let M, M' be metric spaces.

Non-expansive and contracting functions and embeddings: Let f : M — M’
be a function. f is called non-expansive iff dyp(f(x), f(y)) < dy(z,y) for all z, y €
M. f is called contracting iff there exists a real number C' with 0 < C' < 1 such that
du(f(z), f(y)) < C-dy(z,y) for all , y € M. In that case, C is called a contraction
coefficient of f. f is called an embedding iff dpp(f(x), f(y)) = dp(z,y) for all z, y € M.

Topology of open balls: The topology on M is given by taking the open balls B(z, p),
x € M, p > 0, as its basic opens. Here, the open ball B(x, p) with center x and radius p
is defined by B(z,p) = {y € M : d(z,y) < p}. B(z,p) = {y € M : d(z,y) < p} is called
the closed ball with center z and radius p. Balls(M) denotes the set of all open balls,
Balls,(M) the set of open balls with radius > p, i.e. open balls of the form B(z,r) where
r > p. By a p-set, we mean an open set U C M such that B(z,p) C U forall z € U.

Cauchy sequences, limits and density: A Cauchy sequence in M is an infinite se-
quence (z,)p>o in M such that for each € > 0 there exists N > 0 with d(zp,z,,) < €
for all n, m > N. If (z,) is a sequence in M and = € M then x is called the limit of
() (denoted by lim, . , or shortly limz,) iff for each € > 0 there exists N > 0 with
d(z,,x) < eforall n > N. As in standard analysis, if limz,, exists then we say (z,) is
converging or (z,) converges to x. A subset X of M is called dense in M iff, for each
x € X, there is a converging sequence (x,),>o in X such that z = limz,.

Completeness: M is called complete iff each Cauchy sequence in M has a limit. A
completion of a metric space M is a pair (M’, e) consisting of a complete metric space M’
and an embedding e : M — M' such that e(M) is dense in M'. If e is understood from
the context (or not of interest) then we briefly say that M’ is a completion of M.

Banach’s fixed point theorem: Each contracting function f : M — M on a complete
metric space M has a unique fixed point fiz(f). Moreover, for each z € M, (f"(z)) is a
Cauchy sequence with fiz(f) = lim f"(z).

Function spaces: If X is a set and M complete then the function space X — M
equipped with the distance

d(fi, fo) = :16115 du (f1(z), f2(z))
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is also a complete metric space. For each Cauchy sequence (f,) in X — M, the limit
lim f,, : X — M is given by (lim f,) () = lim f,(z).

The powerdomain Pow .,m,(M): A subset X of M is called compact iff each infinite
sequence in X contains a convergent subsequence whose limit belongs to X. Pow copy (M)
denotes the collection of compact subsets of M. If M is complete then Pow comy(M)
equipped with the Hausdorff metric

d(X,Y) = max {sup inf d(z,y), sup in)f(d(a:,y)}

zeX YeY yey =€

is a complete metric space (see [Kurab6]).

12.1.3 Categorical methods for solving domain equations

We briefly explain the methods of Rutten & Turi [RuTu93] and Abramsky & Jung
[AbJu94]| for solving recursive domain equations for metric spaces or dcpo’s. We refer
the interested reader to [SmP182) MajC88, AmRu89, MajC89, MaZe91, EdSm92, Barr93|
for more informations about how to solve recursive domain equations. For the definition of
categories and functors (and other related notions) see e.g. [McLan71, AHS90, BaWe90].

Coalgebras and fixed points of functors: Let Cat be a category and F : Cat — Cat a
functor. A coalgebra of F is a pair (X, e) consisting of an object X of Cat and a morphism
e: X — F(X) in Cat. A coalgebra (X,e) of F is called final iff it is a final object in
the category of all coalgebras, i.e. iff for each coalgebra (X' e') of F there exists a unique
morphism f : X' — X in Cat with F(f)oe' =eo f. A fizred point of F is a coalgebra
(X,e) of F such that e is an isomorphism in Cat. A fixed point (X, e) of F is called
final iff for each fixed point (X' e') of F there exists a unique morphism f : X' — X
in Cat with F(f) o e’ = eo f. Final coalgebras of F are always final fixed points (see
e.g. [RuTu93]). A fixed point (X, e) of F is called initial iff for each fixed point (X', ¢’)
of F there exists a unique morphism f : X — X' in Cat with F(f)oe = €' o f. We
say (X, e) is the unique fixed point of F iff (X, e) is a fixed of F and for each fixed point
(X', €') of F there exists a unique isomorphism f : X — X' in Cat with F(f)oe =¢'o f.
If the underlying (iso-)morphism e of a coalgebra or fixed point is clear from the context
or not of interest then we shortly write X instead of (X e).

Categories used in that thesis:

SET denotes category of sets and functions,
CUM the category of complete ultrametric spaces and non-expansive functions,
CONT | the category of continuous domains and strict, d-continuous functions.

Categorical methods for solving recursive domain equations: A functor F :
CONT, — CONT, is called locally d-continuous if, for all continuous domains D, D',
the function (D —7strict & dcont D,) — (f(D) —7strict & dcont f(D’)), f = f(f)) is d-
continuous. Here, D —gtrict & deont 1’ denotes the set of strict and d-continuous functions
from D to D' (i.e. the set of CONT-morphism from D to D'). Clearly, the composition
of locally d-continuous functors CONT, — CONT| is locally d-continuous. As shown in
[AbJu94]|, each locally d-continuous functor F : CONT, — CONT, has an initial fixed
point.
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Let F : CUM — CUM be a functor. For M, M' to be complete ultrametric spaces,
M —pexp M' denotes the set of non-expansive functions M — M', ie. the set of
CUM-morphism from M to M'. F is called locally contracting iff there exists a real
number C with 0 < C < 1 such that dzy(F(f1), F(f2)) < C - dy(fi, fo) for all
complete ultrametric spaces M, M' and all non-expansive functions f; : M — M/,
i = 1,2, i.e. iff the function (M —nexp M') = (F(M) —pexp F(M")), f — F(f), is
contracting with contracting constant C'. Similarly, F is called locally non-expansive ift
droey(F(f1), F(f2)) < dar(f1, f2) for all complete ultrametric spaces M, M' and all non-
expansive functions f; : M — M', i = 1,2. Clearly, if F; : CUM — CUM are locally
non-expansive functors, + = 1,2, 3, such that at least one of them is locally contracting
then the composition F; o F; o F3 is locally contracting. As shown in [RuTu93], each
locally contracting functor F : CUM — CUM has a unique fixed point.*

Functors used in that thesis:

e Powerdomain functors: The functors Powg, : SET — SET, Powpeere : CONT | —
CONT,| and Powcopmp : CUM — CUM are defined as follows. If X is a set then
Powg, (X)) denotes the set of finite subsets of X. If f : X — Y is a function then we
define Powg,(f) : Powgn(X) — Powg,(Y) by Powgs,(f)(U) = f(U). The defini-
tions of the Hoare powerdomain Pow goqre (D) for a dcpo D and and the powerdomain
Pow comp (M) of compact subsets of an ultrametric space M are given on page 308
and page 311 respectively. If D, D’ are continuous domains and f : D — D' is
strict and d-continuous then Pow goure(f) : Pow gogre (D) — Pow gogre (D') is given by
Pow goare (f)(A) = f(A). If M, M' are complete ultrametric spaces and f : M — M’
is a non-expansive function then Pow comy(f) @ PoOW comp(M) — Pow comp(M') is given
by Pow comp (f)(X) = f(X).

e The functors F3: If Ais a set then F4 : SET — SET is defined as follows: F4(X) =
A x X and, for f: X — Y to be a function, F4(f)(a,z) = (a, f(z)) for all a € A and
r € X. We extend Fu to endofunctors of CUM and CONT, (called F§*™ and F§m
respectively) as follows.

— F{™(M) = A x M where the ultrametric on A x M is given by:

ifa+#b
~dy(z,y) : otherwise (i.e. if a =b).

d((a, ), (b,9)) = {

YT

For f: M — M’ to be a morphism in CUM, we define F{“"(f) = Fa(f).

- FP™(D) = {L}WAx D where W denotes disjoint union and where the partial order
on {L}WAXx D is given by: L C (a,z) for all (a,z) € A x D and (a,z) C (b,y)
iff a=band z Cp y. For f : D — D' to be a morphism in CONT, we define
Fmt(f)(L) = L and F§¢™(f)(a,z) = (a, f(x)) for all (a,z) € A x D.

e The distribution functor: Distr can be viewed as an endofunctor of SET where, for
f: X — Y to be a function, the function Distr(f) : Distr(X) — Distr(Y) is given by

Distr(f)(p)(y) = p[ f(y) ] (cf. Section 2.2, page 31).

“To be precise, [RuTu93] deals with the category CMS of complete metric spaces and non-expansive
functions instead of the subcategory CUM. However, it is easy to see that the fixed point theorem of
[RuTu93] carries over to the category CUM.
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It is easy to see that the functors Pow, and F7; are well-defined and that Pow g4 and
Féomt are locally d-continuous, Pow .., is locally non-expansive while F§*™ is locally

contracting.

12.1.4 Evaluations

We recall the definition of evaluations on topological spaces as introduced by Jones &
Plotkin [JoP189, Jone90).

Evaluations (cf. [JoP189, Jone90]): For X to be a topological space, Opens(X) de-
notes the set of open sets in X. A function E : Opens(X) — [0, 1] is called an evaluation®
iff the following three conditions are satisfied:

1. If (U;)ier is a directed family of open sets U; in X (i.e. (U;)ies is a family in Opens(X)
such that for all ¢, j € I there exists k € I with U; C Uy, and U; C Uy,) then

2. EUNU') + E(UUU") = EU) + E(U")
3. E(X)=1

The probabilistic powerdomain of evaluations Eval(X) of a topological space X is the set
of evaluations on X. Clearly, for each evaluation E € Eval(X), E(0) = 0, and, whenever
U, U € Opens(X) with U C U’ then E(U) < E(U’). We extend evaluations to closed
subsets of X where we put E(A) =1 — E(X \ A) for each closed subset A of X.

The function Eval(f): If X, X' are topological spaces and f : X — X' is a continuous
function then Eval(f) : Eval(X) — Eval(X') is defined by Eval(f)(E)(U) = E(f1(U)).
Thus, Eval can be considered as a functor TOP — SET where T'OP denotes the category
of topological spaces and continuous functions.

The evaluation E, for a distribution p: If u € Distr(X) then
Eﬂ : OpenS(X) - [0) 1]) EM(U) = /’L[U]

is an evaluation on X. Whether the function Distr(X) — Eval(X), p+— E,, is injective
(and hence can be considered as an embedding) depends on the underlying topology on
X. Consider the topology {0, X} on a set X which contains at least two points; it is
easy to see that this function is not injective. In our applications — where X is equipped
with an ultrametric or a directed-complete partial order — Distr(X) can be considered as
a subspace of Eval(X) (cf. Theorem 5.1.12, page 95, and Theorem 5.1.16, page 97).

Remark 12.1.3 Let evalx : Distr(X) — Eval(X) be the function evalx(p) = E,. It is
easy to see that evaly o Distr(f) = Eval(f) o evalx for every function f : X — Y. Le. for
each distribution u € Distr(X),

EDistr(f)(u) = Eva’l(f)(Eﬂ)

°An evaluation in our sense is a probabilistic continuous evaluation in the terminology of Jones &
Plotkin [JoP189).
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Hence, ewval is a natural transformation Distr — FEwval where Distr is considered as a
functor SET — TOP (where Distr(X) is supposed to be equipped with the discrete
topology). m

Composition of evaluations (cf. [Heck95]): If X and Y are topological spaces and
Ex € Fval(X), Ey € Eval(Y) then Ex * Ey denotes the unique evaluation on the product
space X x Y such that (Ex x Ey)(U x V) = Ex(U) - Ey(V) for all U € Opens(X) and
V € Opens(Y). Note that, if 4 € Distr(X), v € Distr(Y') then E, * E, = E,,,,, (where
the definition of p * v was given on page 30).

The probabilistic powerdomain of evaluations on dcpo’s: Recall that we suppose
a dcpo D to be equipped with the Scott-topology, i.e. Opens(D) consists of all subsets U
of D where U is upward-closed and D \ U is lub-closed. If D is a dcpo then Eval(D) is a
dcpo where the partial order C on Ewval(D) is given by

E, C Ey)iff E,(U) < Ey(U) for all U € Opens(D)
(cf. [JoP189]). The bottom element L pye(p) of Eval(D) is E,1  (where Lp is the bottom
D
element of D), i.e. it is given by L gya(py(U) = 0if U # D and L gyaypy(D) = 1. If (E;)ier
is a directed family of evaluations then the least upper bound E = || E; in Eval(D) is
given by E(U) = sup;; E;(U). It is shown by Heckmann [Heck95] that, for every dcpo

D, the composition operator * : Eval(D) x Eval(D) — Eval(D x D), (Ey, Ey) — Ey % Es,
is d-continuous.

The evaluation functor Eval : CONT, — CONT,: If D, D' aredcpo’sand f : D — D'
is a strict, d-continuous function then Fval(f) is strict and d-continuous. From the results
of Jones [Jone90], it can be derived that Eval(D) is continuous if D is continuous. Hence,
Eval can be considered as a functor CONT, — CONT,.

Lemma 12.1.4 The functor Eval : CONT, — CONT, is locally d-continuous.

Proof: easy verification. m

12.2 Ordered balanced trees

For the implementation of the algorithms for deciding bisimulation and simulation equiva-
lence (Chapters 6 and 7), we propose the ordered balanced trees (binary search trees with
a certain balance criteria, such as AVL, BB[a] or Red-Black trees) for the computation of
certain equivalence classes. The definition of (the several types of) ordered balanced trees
can be found in any standard book about data structures; see e.g. [Knut73, CLR96]. We
just explain our notations.

Let I be a nonempty and finite set and p;, ¢ € I, real numbers. By an ordered balanced
tree for p;, i € I, we mean a binary balanced tree (e.g. an AVL-tree [AVL62] or BB[a|-tree
NiRe73|) which arises by successively inserting the elements p;, i € I, (in any order)
and performing the necessary rebalance steps. Each node v is labelled by a key-value
v.key € {p; : i € I} such that v;.key < v.key < v,.key for all nodes v; (v,) in the left
(right) subtree of v.° The construction of an ordered balanced tree for p;, i € I, takes

6Note that we do not allow different nodes to be labelled by the same key-value.
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O(|I|log(r+1)) time and O(|I|) space where r is the cardinality of {p; : i € I'}. We often
use additional labels for the nodes, e.g. v.indices = {i € I : p; = v.key}. We describe

the additional labels by their final value (i.e. the value in the final tree). For example, let
I'={1,...,10} and

PL=ps=05, ppo=pr=ps =17, ps=4, ps =3, ps =2, pg = p1o = 0.

The final tree depends on the type of ordered trees (AVL-, BB[a] or whatever) and on
the order in which the elements p; are inserted. For instance, it is possible to obtain the
following final tree.

@ vo.key = 4 wv.indices = {3}
vi.key = 2 wvi.indices = {6}
va.key = 5  wvy.indices = {1,4}
vs.key = 0 ws.indices = {9,10}
= 3

@ @ vy.key = vy.indices {5}
vs.key = T wvs.indices = {2,7,8}
If we deal with a function f : X — {1,...,10} where X = {x1,®s, 23,24} and f(z1) =
f(z2) =5, f(xz3) =6, f(z4) = 7 and the additional labels

v.elements = {z € X : f(x) € v.indices}

then v;.elements =0, 1 =0, 1,3, 4, v4.elements = {x1, x>} and vs.elements = {x4}.

12.3 Multiterminal binary decision diagrams

Chapter 10 deals with MTBDD-based verification methods. In this section, we briefly
recall the definition of multi-terminal binary decision diagrams (MTBDDs), also called

algebraic decision diagrams (ADDs). For further details and possible applications see
e.g. [CFM1™93, BFG193, HMP*94, CFZ96, SaFu96, FMY97].

MTBDDs were introduced by Clarke et al [CFM™93| as an efficient data structure for
matrices. MTBDDs are an extension of Bryant’s ordered binary decison diagrams (OB-
DDs or BDDs for short) [Brya86]. While BDDs are a data structure for boolean functions
f:{0,1}* — {0,1}, MTBDDs represent functions from bit vectors into a certain domain
R (i.e. functions of the type f : {0,1}" — R). In most applications, the underlying
domain R is the set IR of real numbers.

MTBDDs: Let Var be a finite set of variables, < a total order on Var and R a nonempty
set. A R-valued MTBDD over (Var, <) is a rooted acyclic directed graph with vertex
set V' containing two types of vertices, nonterminal and terminal. Each nonterminal
vertex v is labelled by a variable var(v) € Var and has two sons left(v), right(v) € V.
Each terminal vertex v is labelled by an element value(v) € R. For the labelling of the
nonterminal vertices by variables we require that, on any path from the root to a terminal
vertex, the variables respect the given ordering <, i.e., for all nonterminal vertices v,

e var(v) < wvar(left(v)) if left(v) is nonterminal,

e var(v) < var(right(v)) if right(v) is nonterminal.
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A BDD is a {0, 1}-valued MTBDD, i.e. a MTBDD where all terminal vertices are labelled
by 0 or 1.7 If Var = {xy,...,2,} and z; < z3 < ... < z, then we also speak about
MTBDDs over (zy,...,z,) rather than MTBDDs over (Var, <).

Representing real-valued functions by MTBDDs: Each R-valued MTBDD Q over
(Var,<) represents a function f§* : (Var — {0,1}) — R. Given an interpretation
¢ : Var — {0, 1} for the variables by the boolen values 0 and 1, the function value fg‘”(L)
is the label of the terminal vertex that we obtain by traversing the MTBDD starting in the
root and, whenever we reach a nonterminal vertex v, then we go to left(v) if «(var(v)) = 0,
otherwise we go to right(v). When we abstract from the names of the variables then any
MTBDD with n (or less) variables represents a function from bit vectors of length n into
the underlying domain R. Formally, for each R-valued MTBDD Q over (zy,...,2,), we
define the function

by

FE = by by) = T (e = b, = b))
where [z := by,...,2, = b,] denotes those interpretation ¢ : {z1,...,z,} — {0,1}
where «(z;) = b;, i = 1,...,n.% Note that the function fg“""’w") depends on the variables
(21,...,2,) over which Q is considered. For instance, the MTBDD Q shown in Figure

12.1 (page 316) can be viewed as a MTBDD over (z,y, z) and as a MTBDD over (w, z, y).
Q viewed as a MTBDD over (z,y, z) induces the function

N
V &

Figure 12.1: The MTBDD Q

if (b1,b2) = (1,0)
lf (bla b2) — (1, ]_)

while Q viewed as a MTBDD over (w, z,y) yields the function

FE&UD (b1, baybg) = bi-(1/3 + 2/3-by) =

—wi= O

if (b2,b3) = (1,0)
lf (b2, bg) — (]_, 1)

"Note that a MTBDD Q over ( Var, <) is also a MTBDD over ( Var’, <') for any superset Var' of Var
and total order <’ on Var’ such that z; < x5 iff 1 <’ x5 for all z1, zo € Var.

féwvx,y)(blab23b3) = b2'(1/3 + 2/3.b3) -

—wi= O

8.e. to obtain the value fg“ """ w")(bl,...,bn), we traverse QQ starting in the root. If we reach a
nonterminal vertex v labelled by z; then we go to left(v) (resp. right(v)) if b; = 0 (resp. b; = 1). If we
reach a terminal vertex v then we put fq(b) = value(v).
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If the variables (zi,...,z,) over which a MTBDD Q is considered are clear from the
context then we shortly write fq rather than fg“"“’x”). Vice versa, each function f from
bit vectors of length n into a domain R can be represented by a MTBDD. Given a function
f:{0,1}" — R, the decison tree can be viewed as a MTBDD that represents f. For real-
valued functions (i.e. ® C IR), the decision tree is obtained from the Shannon expansion
f(br, .. by) = (L—=01)- f(0,b2,...,b,) + b1 f(1,bs,...,b,). Canonical (in some sense
“minimized”) MTBDD-representations can be obtained using the REDUCE operator by
Bryant [Brya86.

In Section 10.3 we need the following operators on MTBDDs which are taken from [Brya86,
CFM™93]. Let Q, Q1, Q2 be MTBDDs over (z1,...,Z,).

Combining two MTBDDs via binary operators: If op is a binary operator on
R (e.g. summation + or multiplication x for ® = IR, disjunction V or conjunction A
for ® = {0,1}) then APPLY(Q, Q2, 0p) returns the unique reduced MTBDD Q over

(x1,...,z,) where fo = fo, op fq,-

Variable renaming: Let y;,...,y; be pairwise distinct variables and 1 < ¢, < ... <
ir. < nosuch that y, ¢ {x1,..., 2.} \ {zi,- .. @}, h =1,... k. Let a2} = x; if i €
{4, ,np\ {ér,...,ix} and @}, =yn, h=1,..., k. Then,

Qi{zi, —y1,. -, Ty, < Ynt

denotes those MTBDD over (z,...,z!) that arises from Q by renaming simultaneously
the variables z;, by yn, h = 1,...,k. (Le. for each nonterminal vertex v in Q with
var(v) = z;, we set var(v) to yp.)?

Restriction: If i € {1,...,n} and b € {0,1} then Q|,,—, denotes those MTBDD over
the variables (z1,...,%; 1,%ii1,...,T,) that represents the function {0,1}"* — {0,1},

(bl, . ,bi,bi+1, .. ,bn) — fQ(bla .. .,bifl,b, bi+1, .. ,bn)

Q|z;—» is obtained from Q by removing all x;-labelled vertices and “replacing” them by
their left or right son depending on whether b = 0 or b = 1. For instance, if b = 0 and
var(v) = x; then any edge w — v in Q is replaced by the edge w — left(v).

%Note that Q and Q{x;, + v1,...,Z;, < Yr} represent the same function (when viewed as MTBDDs
over (z1,...,zy) and (z],...,z!) respectively).
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